Final Groundwater and Non-Groundwater Corrective Action Remedy Selection Report

Green Landfill Sebree Station Webster County, Kentucky

Prepared for:

Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, KY 42452

Prepared by:

AECOM Technical Services 525 Vine Street, Suite 1800 Cincinnati, Ohio 45202

AECOM PN 60626688

November 18, 2020

Certification Statement 40 CFR § 257.97(a) – Selection of a Remedy for the Corrective Action Program for Green Station CCR Landfill

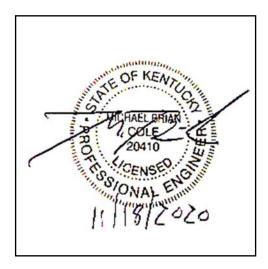
Big Rivers Electric Corporation Sebree Generating Station, Green CCR Landfill

AECOM ("Consultant") has been retained by Big Rivers Electric Corporation to certify whether the selected groundwater remedy presented herein for the Green Station coal combustion residuals (CCR) landfill meets the requirements of Chapter 40 of the Code of Federal Regulations (CFR) §257.97.

LIMITATIONS

The signature of Consultant's authorized representative on this document represents that to the best of Consultant's knowledge, information, and belief in the exercise of its professional judgment, it is Consultant's professional opinion that the aforementioned information is accurate as of the date of such signature. Any opinion or decisions by Consultant are made on the basis of Consultant's experience, qualifications, and professional judgment and are not to be construed as warranties or guaranties. In addition, opinions relating to environmental, geologic, and geotechnical conditions or other estimates are based on available data, and actual conditions may vary from those encountered at the times and locations where data are obtained, despite the use of due care.

CERTIFICATION


I, Brian Cole, being a Registered Professional Engineer in the State of Kentucky, certify to the best of my knowledge, information, and belief, that the remedy selected by Big Rivers Electric Corporation for the Green Station CCR Landfill meets the requirements of 40 CFR § 257.97, and that this certification is true and correct and has been prepared in accordance with generally accepted good engineering practices.

M. Brian Cole

Printed Name

11/18/2020

Date

Quality information

Revision History

Revision	Revision date	Details	Authorized	Name	Position
1	6-18-20				
2	8-18-20				
Final	10-5-20				
Amended Final	11-18-20				

Distribution List

# Hard Copies	PDF Required	Association / Company Name	
	1	Big Rivers Electric Corporation	

Table of Contents

1.	Introc	luction	1
	1.1	Regulatory Background	1
	1.1.1	Federal CCR Background	1
	1.1.2	Kentucky Division of Waste Management Background	2
2.	Site E	Background	4
	2.1	Site Description	4
	2.2	Groundwater Investigation Summary	
	2.3	Conceptual Site Model	
		Physical Setting	
		Geology	
		Groundwater Hydrogeology	
		Non-Groundwater Hydrogeology	
	2.3.4		
	2.3.4	•	
	2.3.5	Constituents of Concern	
		Impacted Media	
		Distribution of COCs	
		Potential Receptors/Exposure Pathways	
	2.4	Interim Corrective Measures	
		Deep Seep Collection Trench	
		Northwest Seep Collection Trench	
	2.5	Assessment of Corrective Measures Summary	
		Assessment of Corrective Measures for Groundwater Impacts	
		Assessment of Corrective Measures for Non-Groundwater Impacts	
3.		ctive Measure Evaluation	
	3.1	Corrective Action Objectives	
	3.2	Corrective Measures Alternatives Assembly	
	3.3	Corrective Measures Criteria Evaluation	
	3.3.1		
	3.3.2	Balancing Criteria Evaluation	
		Modifying Criteria Evaluation	
		Corrective Measures Alternative Evaluation Summary	
4.		edy Selection	
	4.1	Closure in Place	
	4.2	Source Control	
	4.3	Institutional Controls	
	4.4	Groundwater Monitoring	
5.	Reme	edy Implementation Schedule	
	5.1	Schedule Evaluation Factors	
	5.1.1	Nature and Extent of Contamination	
		Compliance Probability	
		CCR Treatment and Disposal Capacity	
		Exposure Risk	
		Aquifer Resource Value	
		other Relevant Factors	
	5.2	Performance Review	

6.	References	2	23
----	------------	---	----

Figures

Figure 1	Site Location Map
Figure 2	Well Location Map
Figure 3	Site Geologic Map
Figure 4	Cross-Section A-A ¹
Figure 5	Cross-Section B-B ¹
Figure 6	Cross-Section C-C ¹
Figure 7	Cross-Section N-N ¹
Figure 8	Potentiometric Surface Map – April 7, 2020
Figure 9	Groundwater Conditions Map – 2019 and 2020 Analytical Results
Figure 10	Green Landfill – Seep Collection Trench Locations

Tables

Table 1	Green Landfill Constituents of Concern
Table 2	Green Landfill – 2019 Characterization Sample Results
Table 3	Green Landfill – April 2020 Groundwater Elevation Data
Table 4	Green Landfill - April 2020 Lithium Analytical Results
Table 5	Potential Corrective Measures Options for Groundwater Impacts
Table 6	Potential Corrective Measures Options for Non-Groundwater Impacts
Table 7	Threshold Criteria Evaluation Summary
Table 8	Balancing Criteria Evaluation Summary
Table 9	Modifying Criteria Evaluation Summary
Table 10	Cumulative Criteria Evaluation Scoring Summary

Appendicies

Appendix A	July 2018 River and Seep Sampling and Analysis Data
------------	---

- Appendix B Green Landfill Analytical Summary Tables
- Appendix C Green Landfill Statistical Procedures and Results
- Appendix D Green Landfill April 2020 Groundwater Analytical Data
- Appendix E Remedy Selection Evaluation Criteria
- Appendix F Remedy Implementation Schedule

1. Introduction

In accordance with provisions of the United States Environmental Protection Agency's (USEPA) coal combustion residual (CCR) rule, Title 40 of the Code of Federal Regulations (CFR) Part 257.97, Big Rivers Electric Corperation (BREC) is required to select a remedy to address groundwater impacts identified at the Green Station CCR Landfill (the Unit) at the Sebree Generating Station located in Webster County, Robards, Kentucky (**Figure 1**). Previous monitoring results indicate the presence of lithium at a Statistically Significant Level (SSL) above the Ground Water Protection Standard (GWPS) in four monitoring wells (MW-3A, MW-4, MW-5, and MW-6) at the Unit. In June 2019, BREC performed an Assessment of Corrective Measures (ACM) for the Unit to identify remedial alternatives to address groundwater impacts. A public meeting was held on July 16, 2020 in Henderson, Kentucky to dicuss the results of the ACM. No public input was received at this meeting. Additional technical assessment has been utilized by BREC to select the final remedy for the Unit in accordance with 40 CFR Part 257.97, which is presented in this report.

On December 16, 2019, an Agreed Order was filed with the Kentucky Office of Administrative Hearings between BREC and the Commonwealth of Kentucky, Energy and Environment Cabinet, Division of Waste Management (KDWM) to address Notices of Violation (NOVs) received in regard to unpermitted discharges and seepage emanating form the Unit (see Section 1.2). Within the AGREED ORDER are requirements for remedy selection reporting, including a timeline for review by the KDWM. These requirements are discussed in Paragraphs 18 and 23 of the Agreed Order and listed in Exhibit 4 to the Agreed Order. This report has been prepared to address these requirements in the Agreed Order and Exhibit 4 to the Agreed Order, in addition to the Federal CCR Rule requirements.

In parallel with addressing groundwater impacts, BREC performed an ACM for non-groundwater release surface seeps at the Unit in June 2019. In September and October 2019, BREC initiated interim corrective measures (ICMs) to address non-groundwater releases at the Unit. The ICMs are currently being evalauted through performance monitoring and are expected to benefit corrective action as a whole for the Unit. As a result, no separate remedy selection report is currently being developed for non-groundwater releases. BREC intendes for this report to address the remedy selection requirements for both groundwater and non-groundwater impacts under 40 CFR Part 257.

1.1 Regulatory Background

Kentucky Revised Statue (KRS) Chapter 224.50-760 governs the disposal of special waste, including utility wastes. The Commonwealth of Kentucky, Energy and Environment Cabinet (The Cabinet) promulgated regulations under Title 401 of the Kentucky Administrative Regulations (KAR) Chapters 45 and 46 to regulate the disposal of special wastes The Unit is a Kentucky permitted landfill (Permit No. SW11700007) subject to permitting requirements for special wastes established under 401 KAR Chapter 45.

In 2015 the USEPA promulgated 40 CFR Parts 257.50 through 257.107 which established national standards to govern the location, design, construction, and operation of landfills and surface impoundments utilized to manage CCR. In 2017, the Cabinet promulgated 401 KAR 46:110 which incorporates the federal CCR standards by reference into Kentucky regulations. As noted in the Agreed Order, the Unit is an existing CCR landfill under the Federal CCR rule and therefore subject to the operating criteria and corrective action standards of 401 KAR 46:110.

Corrective actions at the Unit are being performed to address both the federal requirements in 40 CFR Part 257 and state requirements in 401 KAR Chapter 46 as described below.

1.1.1 Federal CCR Background

In response to SSL exceedances in groundwater at the Unit, BREC evaluated the nature and extent of groundwater impacts as required by Title 40 CFR Part 257.95(g) for characterization monitoring.

Following chracterization monitoring, BREC performed an ACM, to identify potential corrective measures to address lithium impacts in groundwater pursuant to Title 40 CFR Part 257.96. A notice of ACM initiation dated January 14, 2019 was posted to BREC's publicly-accessible CCR reporting website. A report summarizing the results of the groundwater ACM (AECOM, June 2019) was posted to BREC's publicly-accessible CCR reporting website on June 14, 2019.

On March 15, 2018, the USEPA proposed a modification to the federal CCR regualtions to address four provisions within 40 CFR Section 257 that were remanded back to the USEPA on June 14, 2016 by the United States Court of Appeals for the District of Columbia Circuit. The proposed modifications to 40 CFR 257 (also known as the Remand Rule) also included provisions for owners and operators of CCR units in states that have approved CCR permit programs. Title 40 CFR Part 257.99 established procedures for owners and operators of CCR units to perform corrective action for eligible non-groundwater releases at a CCR unit. In alignment with corrective actions being performed to address the NOVs received from the KDWM for unpermitted discharges and seepage emanating from the Unit, BREC perfomed an ACM for non-groundwater releases in addition to the ACM for groundwater impacts. A report summarizing the results of the groundwater ACM (AECOM, June 2019) was posted to BREC's publicly-accessible CCR reporting website on June 28, 2019. In 2019, pursuant to 40 CFR Parts 257.90(d) and 257.84(b)(5), BREC initiated design of ICMs (i.e., containment systems) intended to reduce and prevent non-groundwater releases from reaching the Green River. In September and October 2019, BREC initiated construction of ICMs to address non-groundwater releases at the Unit (which are referred to herein as river seeps), including:

- Construction of a collection trench along the east side of the Green Landfill (refered to as the Deep Seep Collection Trench) to address seeps adjacent to the Green River; and
- Construction of a series of collection trenchs along the north side of the Green Landfill (refered to as the Northwest Seep Collection Trench) to address seeps near the northwest corner of the landfill discharging toward an east-flowing unnamed tributary to the Green River.

Construction of the ICMs was functionally completed in Janaury 2020, within the 180 day required timeframe required under proposed 40 CFR Part 257.99, although piping, pumping, and control system installation, and installation of supplemental collector systems were not completed until later in 2020. The ICMs completed to address non-groundwater releases under 40 CFR Part 257 and the Agreed Order are expected to benefit groundwater corrective action and are discussed collectively within this report (see Section 2.4).

Title 40 CFR Section 257.97(a) requires that progress reports be prepared on a semi-annual basis describing progress made in selecting and designing a remedy. The first Remedy Selection Progress Report was finalized on December 9, 2019 and posted to BREC's publicly-accessible CCR reporting website on December 12, 2019.

BREC held a public meeting on July 16, 2020 in Henderson, Kentucky to discuss the results of the Groundwater ACM in accordance with 40 CFR Part 257.96(e). No public input influencing the remedy for the Unit was received during the meeting. BREC has selected the remedy for groundwater and non-groundwater impacts at the Unit in accordance with 40 CFR Part 257.97 as detailed within this report.

1.1.2 Kentucky Division of Waste Management Background

On December 6, 2019, BREC signed Agreed Order #18-3-0138 with the KDWM to address NOVs received regarding unpermitted discharges and seepage emanating from the Unit. The Agreed Order was filed on December 16, 2019. Under the Agreed Order the following actions were required:

- Development of Standard Operating Procedures (SOPs) to characterize and mitigate leachate and seep releases to the surface (Exhibit 1);
- Development of construction and post-construction plans for implementing the Northwestern Seep Collection Trench Remedy (Exhibit 2);

- Development of construction and post-construction plans for implementing the Eastern "Deep Seep" Collection Trench Remedy (Exhibit 3); and
- Establishment of the process to complete the evaluation of groundwater corrective action remedies at the Unit pursuant to 401 KAR 46:110 (Exhibit 4).

Within Exhibit 4 of the Agreed Order, the following milestones for groundwater corrective action were identified:

- 1) Within 180 days of the entry of the Agreed Order, BREC shall conduct a public meeting as required by 40 CFR 257.96(e) and 401 KAR 46:110.
- 2) Within 90 days of the public meeting, BREC shall submit a draft groundwater remedy selection report for submittal to KDWM for a 30-day review and comment period.
- 3) As soon as possible, following receipt of KDWM comments on the draft groundwater remedy selection report, select the final groundwater corrective action remedy.
- 4) Posting of the Final *Groundwater and Non-Groundwater Corrective Action Remedy Selection Report* to BREC's CCR Rule compliance website in accordance with 40 CFR 257.97 and 257.107 (no timeline specified).

Although the milestone schedule has been adjusted due to the COVID-19 pandemic, which prevented BREC from holding the public meeting at an earlier date, BREC has moved forward with the activities required in the Agreed Order as documented in this report. A revised schedule for corrective action implementation is discussed in Section 5.0.

2. Site Background

2.1 Site Description

BREC owns and operates Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/Henderson Municipal Power & Light (HMP&L) Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 (65 Megawatts [MW]) began commercial operation in 1966 and is scheduled to be retired in 2020 pending regulatory approval from the Kentucky Public Service Commission and Rural Utilities Service. The Reid Combustion Turbine (65 MW) was commercialized in 1976. HMP&L Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (250 MW) and 2 (242 MW) began commercial operation in 1979 and 1981, respectively.

The location of the Green Landfill is illustrated on **Figure 1**. The Green Landfill is located directly south of Sebree Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that receives special wastes generated by burning coal (CCRs) from Green and Reid/HMP&L Stations. The landfill began receiving CCR wastes in 1980. The current Green Landfill footprint is approximately 170 acres.

As stated in the published CCR monitoring well network certification, available on the BREC website (http://www.bigrivers.com/), the original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological Survey (KGS) showed that at or immediately adjacent to the Site, there were a number of dry exploratory oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing oil well was decommissioned in 2019.

2.2 Groundwater Investigation Summary

Monitoring wells were installed at the Unit beginning in November 1996 prior to the implementation of the CCR Rule. However, the existing wells meet the requirements of Title 40 CFR Section 257.90 of the CCR Rule for installation of a groundwater monitoring system. These regulations require that monitoring wells adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The existing wells are located along the perimeter of the landfill footprint. One upgradient monitoring well (MW-1) and five downgradient monitoring wells (MW-2, MW-3A, MW-4, MW-5 and MW-6) were installed at the Unit to determine the general direction of groundwater movement and to monitor groundwater impacts. One additional characterization monitoring well (MW-104) was installed downgradient of the Unit in 2018. All monitoring wells were installed in the uppermost saturated portion of the sandstone bedrock aquifer. A map illustrating the location of all program monitoring wells is presented as **Figure 2**.

Nine rounds of Baseline groundwater sampling for Appendix III constituents were conducted between March 2016 and October 2017. Statistical evaluation for Detection monitoring indicated that statistically significant increases (SSIs) over background had occurred, and therefore, Assessment monitoring was triggered. Detection monitoring activities and data are presented in the annual reports that have been prepared to date, (AECOM 2018, 2019, and 2020).

As part of Assessment monitoring, upgradient and downgradient wells for the Unit were sampled for Appendix IV constituents in June, July, and September 2018. GWPSs were established for the Appendix IV constituents occurring at SSIs (lithium only), and statistical evaluation of the lithium concentrations indicated exceedances of GWPSs at SSLs, as detailed in **Table 1** below.

Monitoring Well (Date)	Parameter Lithium GWPS 0.04 (mg/L)
MW-3A (Jun 2018)	0.699
MW-3A (Jul 2018)	0.790
MW-3A (Sep 2018)	0.766
MW-4 (Jun 2018)	1.81
MW-4 (Jul 2018)	1.91
MW-4(Sep 2018)	1.81
MW-5(Jun 2018)	0.459
MW-5 (Jul 2018)	0.481
MW-5 (Sep 2018)	0.425
MW-6 (Jun 2018)	0.0650
MW-6 (Jul 2018)	0.0590
MW-6 (Sep 2018)	0.0558

Table 1. Green Landfill Constituents of Concern

GWPSs are the greater of the site-specific background concentrations, the USEPA primary drinking water standard maximum contaminant limits (MCL), or GWPS provided in 40 CFR 257.95(3)(h)(2)

An additional characterization well, MW-104, was subsequently installed to estimate the downgradient extent of impacted groundwater. Sample collection from MW-104 for Appendix III and IV parameters took place in March and April 2019. The analytical results for lithium were below the GWPS. The additional characterization data are summarized in **Table 2** below.

	Parameter
Monitoring Well (Date)	Lithium GWPS 0.04 ª (mg/L)
MW-104 (March 2019)	0.0281
MW-104 (April 2019)	0.0288

a The Upper Prediction Limit for lithium was calculated as 0.008 mg/L.

The results from both characterization sampling events helped to confirm the downgradient (southwestern) extent of constituent of concern (COC) impacts above GWPS at the Unit.

Semi-annual Assessment monitoring continued at the Unit in 2019 and 2020 in accordance with 40 CFR 257.95.

2.3 Conceptual Site Model

Development and refinement of a Conceptual Site Model (CSM) is necessary to support remedy selection for the Unit. A CSM is based on a set of working hypotheses regarding how contaminants of concern (COCs) entered the environment at a site, how they were and continue to be transported to various media, what the potential routes of exposure are, and who may be exposed, including both human and ecological receptors. As such, the CSM is a "living" model. As new data become available or site conditions change, a CSM should be evaluated and updated as necessary.

The CSM for the Unit was first provided in the June 2019 ACM for the Unit (AECOM 2019). The CSM presents the physical setting of the Unit (adjacent to the Green River), the unconsolidated and bedrock geologic strata underling the Unit, the occurrence and movement of groundwater, the distribution of COCs in groundwater, and the potential receptors (or lack thereof) for impacted groundwater. These elements are described in detail below and have been updated with new information for this report as appropriate.

2.3.1 Physical Setting

The Unit is located within the Interior Low Plateaus physiographic province. The province is part of the Interior Plains division of the United States. Characteristic features of the province include unglaciated rolling limestone plains with alluvial valleys and entrenched rivers and streams. Several large rivers are in the region, including the Green, Ohio, Kentucky, Tennessee, and the Cumberland Rivers. The geology underlying the Unit consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastic and carbonate bedrock consisting primarily of sandstone and shale. The unconsolidated materials also include fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium.

The Unit is located on an upland adjacent to the west bank of the Green River at an elevation of approximately 436 feet, above mean sea level [ft., amsl] (at the north end of the landfill) and 397 ft., amsl (at the south end of the landfill), with a maximum elevation of 608 ft., amsl at the landfill crest. Precipitation falling within the Green Landfill is directed to ponds on the north and south sides of the Unit and then to the river under Kentucky Pollution Discharge and Elimination System (KPDES) permit No. KY0001929. Underlying preconstruction soils consisted of Loring-Grenada, Loring-Zanesville-Wellston (Henderson County) and Loring-Wellston-Zanesville (Webster County) soil associations which are generally characterized as well drained to moderately well drained soils on nearly level to sloping uplands (Associated Engineers 2016, Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan).

2.3.2 Geology

The Unit lies in the Western Kentucky Coalfields section, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. Near the Unit, maximum topographic relief is on the order of 80 feet. The geologic quadrangle (Geologic map of the Robards quadrangle, Henderson and Webster Counties, Kentucky, 1973) for the area published by the Kentucky Geologic Survey (KGS) shows the surficial material in portions of the western half of the Unit to be unconsolidated loess representing the Pleistocene geologic epoch. The loess consists of sandy and clayey silt. Underlying the loess deposits and exposed at the surface on the eastern half of the Unit are broadly distributed Pleistocene and Holocene alluvium deposits consisting of intermixed and interlensing clay, silt, sand, and gravel. In close proximity to the Unit, the alluvium is generally a low permeability unit that forms terraces along the Green River at elevations of roughly 380 and 395 ft., amsl. The unconsolidated surficial materials range from approximately 10 feet (MW-5) to 52 feet (MW-104) in thickness surrounding the Unit. **Figure 3** provides an excerpt from the geologic quadrangle for the immediate area surrounding the Unit.

The unconsolidated materials are underlain by bedrock of the Upper Pennsylvanian Shelburn Formation [formerly identified as the Lisman Formation (Fairer, 1973)] and the Middle Pennsylvanian Carbondale Formation. At the base of the Shelburn Formation is the Providence Limestone Member, consisting of two distinct limestone beds separated by a sandy shale. The member is exposed in a streambed near the northwest corner of the Unit but is absent beneath much of the Unit footprint due to erosional channeling.

The underlying Carbondale Formation consists of cyclic sequences of sandstones, shales, siltstones and coals. The Carbondale sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the lithologic units of the Carbondale tend to be lenticular bodies rather than continuous sheet-like strata. Gradational and abrupt horizontal changes in lithology are often encountered.

Cross-sections have been developed to support the CSM and are presented as **Figures 4, 5, 6** and **7**. Cross-section locations are shown on **Figure 2**. These sections illustrate the sequence of geologic materials present under the Unit as interpreted using the currently available data.

2.3.3 Groundwater Hydrogeology

For purposes of compliance with the CCR Rule groundwater monitoring requirements, the interbedded sandstone and shale of the Carbondale Formation is considered the uppermost aquifer underlying the Unit. The uppermost aquifer is hydraulically confined and first encountered at an elevation of approximately 401 ft., amsl at the northwest end of the landfill, and 367 ft., amsl at the southeast end of the landfill (AECOM, 2019).

Groundwater elevation data collected in April 2020 are summarized on **Table 3** below. These data were utilized to construct a piezometric surface map illustrating groundwater flow conditions for the uppermost aquifer (see **Figure 8**). Overall groundwater flow beneath the footprint of the Unit is to the east towards the Green River and south-southeast towards Groves Creek.

Monitoring Well	Top of Casing Elevation (ft) ¹	Depth to Groundwater (ft)	Groundwater Elevation (ft, amsl)
MW-1	423.23	19.52	403.71
MW-2	392.37	16.24	376.13
MW-3A	386.48	12.08	374.40
MW-4	391.33	17.90	373.43
MW-5	390.18	17.62	372.56
MW-6	388.17	15.62	372.55
MW-12 ²	395.54	22.15	373.39

Table 3. Green Landfill - April 2020 Groundwater Elevation Data

1 Reference elevation of monitoring wells surveyed by Fuller, Mossbarger, Scott and May, Civil Engineers, Inc., Lexington, Kentucky, December 1996, December 1999. Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, NAD27 datum.

2. MW-12 is utilized for collection of piezometric data only and is not part of the CCR monitoring well network for the Green Landfill.

Slug tests were performed on April 25, 2019 at monitoring wells MW-3A, MW-4, MW-6, and MW-104 to assess the hydraulic characteristics of the uppermost aquifer. The estimated hydraulic conductivity of the monitoring wells tested ranged from 2×10^{-5} to 3×10^{-3} centimeters per second (cm/sec).

Although previous site-specific investigations have noted the presence of perched zones of saturation in the overlying unconsolidated materials, these discontinuous zones do not qualify as an uppermost aquifer under the CCR Rule because they do not produce usable quantities of groundwater (40CFR Part 257.53).

2.3.4 Non-Groundwater Hydrogeology

Two types of non-groundwater releases have been identified through inspection and investigation of the Unit: river seeps and perimeter seeps. The river seeps are those found along the Green River and its tributary streams. River seeps have been observed on the bank of the river/tributary and on the slope between the river/tributary and the landfill perimeter road. The river seeps on the northwest side of the

landfill drain to a KPDES permitted outfall, whereas the river seeps on the Green River side do not. Perimeter seeps are more surficial in nature and have been observed in various surface ditches located around the perimeter of the Green Landfill, all of which drain to sedimentation basins that discharge to a KPDES permitted outfall.

2.3.4.1 River Seeps

An investigation of the seeps along the Green River was conducted in July 2018 and was reported in a Technical Memorandum from AECOM to BREC dated September 6, 2018. The results of laboratory analysis of seep samples collected during this investigation are summarized in **Appendix A**. During this investigation, the banks of the Green River were surveyed by boat for evidence of seepage. The survey was conducted when the river stage had retreated to a low pool after a prolonged elevated stage so that the maximum number of seeps might be surveyed, and seepage rates might be high enough to allow sampling. Samples of seeps having visible flow were collected and tested for CCR indicator parameters (40 CFR Part 257 Appendix III), CCR constituents of concern (40 CFR Part 257 Appendix IV), and general chemistry parameters. The data from these analyses were used to evaluate whether individual seeps were likely associated with the Landfill.

Riverbank seeps were identified at sixteen discrete locations in the vicinity of Sebree Station. Seeps were recorded at locations on both the east and west banks of the river over two miles upstream of the landfill footprint and over 1.5 miles downstream of the landfill footprint. Some seeps appeared to potentially be associated with a surface water drainage feature, such as RS-11 where there appears to be a beaver pond beyond the riverbank, but most emanated from otherwise nondescript sections of riverbank. Some of the seeps resulted in a green discoloration of the riverbank, but most had orange staining.

Of the seven seeps tested, only three, RS-05, RS-07, and RS-08 as illustrated on Figure 1 in **Appendix A**, were found to have similar chemistry to leachate generated by the Green Landfill. These seeps did not differ greatly from the majority of the other riverbank seeps in that they were broadly seeping from the bank sediments and had a general orange discoloration, except that RS-07 had a some relatively discrete seepage points emanating from a few feet higher on the bank and RS-08 appeared to be emanating from on top of bedrock outcropping on the river bank. Seeps RS-05 and RS-07 are located near the center of the Landfill between monitoring wells MW-2 and MW-3A. This is the same area in which seeps have been observed higher on the slope between the river and the perimeter road, suggesting that they have a similar origin. Seep RS-08 is located adjacent to the South Sediment Basin and appears to be tied to that surface water feature. The approximate vertical position of the river seep locations relative to the Green Landfill are shown on **Figure 4**. It should be noted that the seep designated RS-06, located between RS-05 and RS-07, is likely to be of similar character and origin but was not generating enough flow to be sampled at the time of the survey.

The analytical results from the July 2018 river seep samples were compared to Kentucky Water Quality criteria for warm water aquatic habitat identified in 401 KAR 10:031 Section 6. Where there are no Kentucky Water Quality criteria for a specific constituent, the USEPA Region 4 surface water screening values were utilized for comparison. It should be noted that the Region 4 screening values are not compliance criteria, but rather values used to determine whether further evaluation is warranted. Samples from RS-05, -07 and -08 were found to exceed the 600 milligrams per liter (mg/L) limit for chloride. RS-05 also exceeded the current criteria for cadmium (0.00029 mg/L) and lead (0.0036 mg/L), but Kentucky has introduced a new cadmium criterion that may bring RS-05 back into compliance. Follow-up sampling conducted in December 2018 by the Kentucky Division of Water (KDoW) and BREC confirmed the exceedance of the chloride criteria. Accordingly, this parameter (chloride) is regarded as the primary COC for non-groundwater releases at the Unit requiring corrective action. Addressing the river seeps was included as a stipulation in the Agreed Order signed between BREC and the KDWM.

The analytical results for the river seep samples are summarized in **Appendix A**. Presented in parallel with the river seep results are deep in-stream river samples that were collected immediately adjacent to the river seeps to characterize the river water quality that is most likely to be impacted by seepage. The

deep samples were collected within 1 foot of the riverbed within 3 to 5 feet of the water line. None of the river sample results exceed the water quality or screening criteria suggesting that the identified river seeps are not impacting the Green River.

Additional data regarding the river seeps is provided in the Assessment of Corrective Measures Non-Groundwater Release Under the CCR Rule, Green Station CCR Landfill (AECOM June 28, 2019).

In April 2019, inspection of the Landfill site by the KDWM and KDoW identified an area of seepage outside the perimeter road on the northwest side of the Landfill (see **Figure 2**). This seepage (herein identified as the NW Seep) is adjacent to a tributary ditch that flows eastward to an unnamed outfall which has a KPDES discharge permit. The outfall was sampled by KDoW and BREC on April 2, 2019. A sample from this seep area (identified as sample 023) was collected by BREC personnel on April 11, 2019. The results indicated that the seep sample exceeded Kentucky Warm Water Aquatic Habitat criteria for Chronic Exposure for chloride and cadmium. As a result, this area was identified for corrective action. Addressing this seep area was included as a stipulation in the Agreed Order signed between BREC and the KDWM.

Photo 1: Bedrock outcrop located west of the NW Seep as observed on April 2, 2019.

The NW Seep appears to emanate from a horizon in or above a natural limestone ledge adjacent to the ditch. This conclusion is based on the observation of natural springs of groundwater upstream from the seep that clearly flows from fractures in the ledge. A series of three soil borings drilled between the landfill and the NW Seep area in May 2019 further suggest the seepage is controlled by this feature. **Figure 7** provides a cross-section illustrating the sequence of geologic materials present within the NW seep area as interpreted using the currently available data.

2.3.4.2 Perimeter Seeps

During the July 2018 investigation of Green River seeps, the area inside the Landfill perimeter road was also inspected for seeps. Four areas of perimeter seepage were identified (see **Figure 2**): along the west side of the landfill (LS-01), the southwest corner (LS-04), the south end adjacent to the South Sediment Basin (LS03), and the east side north of MW-2 vicinity (LS02). LS-01, LS-02 LS-03, and LS-04 are directed to the South Sediment Basin, which is pumped to the Northeast Sediment Basin and then further to the Green surface impoundment and eventually discharged to the Green River under KPDES permitted outfall #001.

Samples of a select set of these perimeter seeps were collected in July 2018 and tested for the Appendix III, Appendix IV, and general chemistry parameters. As previously noted, these seeps do not directly discharge to surface waters, but they may have the potential to influence groundwater and other non-groundwater releases. As such, they will be addressed by future corrective action to manage those potentials (see Section 4).

Additional data regarding the perimeter seeps is provided in the Assessment of Corrective Measures Non-Groundwater Release Under the CCR Rule, Green Station CCR Landfill (AECOM June 28,2019).

2.3.5 Constituents of Concern

Groundwater analytical data obtained from groundwater sampling events performed at the Unit through 2019 are summarized in **Appendix B**. A summary of the statistical evaluation conducted on the Appendix III and Assessment Appendix IV parameters for the Green Landfill is provided in **Appendix C**. Combined, these data indicate that the only COC detected at SSLs above its GWPS in groundwater at the Unit is lithium. Lithium has been detected at SSLs in the wells MW-4, MW-5, and MW-6 surrounding the South Sediment Basin and in MW-3A located north (downstream on the Green River) of MW-4.

Chloride is regarded as the primary COC for non-groundwater releases at the Unit requiring corrective action. Although there have been Appendix IV (Part 257) constituents detected in the surface seeps identified within the perimeter footprint of the landfill, these seeps are contained within a KPDES permitted discharge area that are monitored routinely to ensure compliance with applicable surface water quality standards.

2.3.6 Impacted Media

Both groundwater and surface water have been identified as impacted media of concern requiring corrective measures at the Unit.

2.3.7 Distribution of COCs

Groundwater sampling was performed at the Unit most recently in April 2020. Laboratory analytical data from the April 2020 sampling event is provided in **Appendix D**. The additional lithium data collected during this event are summarized below in **Table 4**.

	Parameter	
Monitoring Well (Date)	Lithium GWPS 0.04 (mg/L)	
MW-1	0.03	
MW-2	0.007	
MW-3A	0.68	
MW-4	0.82	
MW-5	0.38	
MW-6	0.05	

Table 4. Green Landfill - April 2020 Lithium Analytical Results

Figure 9 illustrates the distribution of COCs and other groundwater quality constituents in groundwater at the Unit. This distribution of COCs in groundwater suggests that impacts to groundwater likely originate from two primary source area. Impacts observed at MW-4, MW-5 and MW-6 likely originated as infiltration from the South Sediment Basin where storm water and landfill seepage accumulate on the south side of the landfill before being pumped to the Green Surface Impoundment. Data from characterization well MW-104 indicate that MW-3A may be effectively separated from the South Sediment Basin by a buried valley in the bedrock aquifer where groundwater does not appear to be impacted. This suggests that the impact observed at MW-3A may have instead originated from a different source, potentially from localized landfill seepage, which is now captured by the Deep Seep Collection Trench (see Section 2.4). It is possible that the MW-3A impact originates from the western end of the South Sediment Basin, but there is currently no feasible means of directly tracing that potential under the footprint of the landfill. It is, however, possible to evaluate this potential by monitoring MW-3A over time after the South Sediment Basin is rehabilitated as is currently planned (see Section 4). Ongoing monitoring of MW-3A also has the potential to demonstrate whether the landfill seepage intercepted by the Deep Seep Collection Trench is the source of impact.

2.3.8 Potential Receptors/Exposure Pathways

Contact with water (e.g., shallow groundwater or surface water) impacted by COCs at levels above GWPS or Water Quality Criteria is regarded as the potential pathway for exposure of potential receptors. Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Unit, thus limiting the potential receptors to the surface water, i.e., the Green River and its tributary, Groves Creek. The potential pathways to these receptors include seepage of water from the Unit through manmade and natural hydraulic conduits.

Other potential exposure pathways (e.g., soil or vapor) are not considered a risk as the CCR material is isolated in the Unit. This isolation prevents direct access by individuals that might result in direct contact or ingestion. In addition, the inherent non-volatile nature of the Unit-specific COCs eliminates the potential for a complete vapor pathway (i.e., vapor intrusion to indoor air).

2.4 Interim Corrective Measures

In September and October 2019, BREC initiated design and construction of two containment systems intended as an interim corrective measure to reduce and prevent non-groundwater releases at the Unit from reaching the Green River. The containment systems are identified as the Deep Seep Collection Trench (also known as the Eastern Collection Trench) and the Northwest Seep Collection Trench.

No formal interim corrective measures have been performed at the Green Landfill to address groundwater impacts. However, the interim corrective measures for known non-groundwater releases completed at the Unit are expected to benefit corrective action for groundwater impacts. The compatibility of those corrective measures with potential groundwater remedies is currently being evaluated as part of the Unit's assessment monitoring and will continued to be evaluated in the future as part of systematic performance reviews (see Section 5.2).

2.4.1 Deep Seep Collection Trench

BREC began construction of the Deep Seep Collection Trench on October 7, 2019. The installation of four partially overlapping trenches and corresponding individual sumps was completed on November 11, 2019. This completion allowed removal of collected seepage using temporary pumping and piping until the permanent system components were completed.

The Deep Seep Collection Trench is located on the eastern side of the landfill, adjacent to the Green River. This collection system consists of 1,065 lineal feet of perforated (HDPE) pipe and four (4) stainless steel sumps. The HDPE perforated pipe is surrounded by a washed river gravel, with profiles set at a 0.5% slope toward the associated pumping (sump) station. Each section of HDPE pipe overlaps at the sump interconnection to prevent seepage bypass and to ensure all deep seeps are properly captured. Each sump was set at an elevation of 352 ft., amsl. The approximate vertical position of the

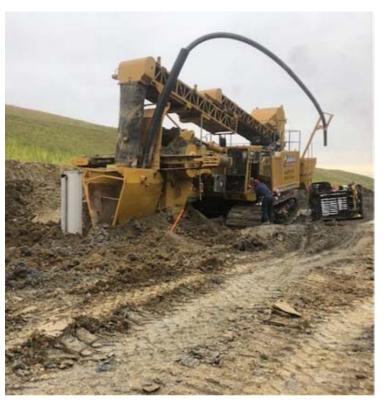


Photo 2: Installation of the Deep Seep Collection Trench in October 2019.

Deep Seep Collection Trench relative to the Green Landfill is shown on **Figure 4**. The location of the trench in plan view is provided on **Figure 10**.

The electrical and mechanical portion of the project that allows the system to become fully automated was finalized on May 29, 2020.

2.4.2 Northwest Seep Collection Trench

BREC began construction of the Northwest Seep Collection Trench on September 3, 2019. The construction of the collection trench was completed on January 22, 2020. The system is located in the northwest corner of the landfill and consists of 357 lineal feet of HDPE perforated pipe within the primary collection trench installed at an elevation of 391.4 ft, amsl. The HDPE perforated pipe is surrounded by a washed river gravel, with profiles set at a 0.5% slope toward the associated pumping (sump) station. Since the installation of the primary trench, BREC

Photo 3: Installation of the Northwest Seep Collection Trench in September 2019.

has installed two relay stations to ensure all possible seeps are captured and pumped to a permitted KPDES outfall. The Northwest Seep Collection Trench is configured to pump the incoming flow to a target manhole, which is located on the northeast corner of the landfill. The target manhole subsequently discharges to KPDES permitted outfall #009. The approximate vertical position of the Northwest Seep Collection Trench relative to the Green Landfill is shown on **Figure 7**. The location of the trench in plan view is provided on **Figure 10**.

2.5 Assessment of Corrective Measures Summary

2.5.1 Assessment of Corrective Measures for Groundwater Impacts

In June 2019, BREC performed an ACM for the Unit to identify remedial alternatives to address groundwater impacts. Title 40 CFR Section 257.96(c) requires that the ACM include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- 1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- 2) The time required to begin and complete the remedy; and
- 3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

As part of the groundwater ACM, several potential corrective measures technologies were evaluated to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below in **Table 5**.

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established Corrective Action Objectives (CAOs).
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.
Groundwater Monitoring (Assessment and Detection mode)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a standalone technology.
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing offsite migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations increase implementation difficulty with scale.
Ex-situ Treatment (Physical, Chemical or Biological)	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non- groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.

Potentially Applicable Technology	Status	Description/Overview
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies any single technology may not be utilized.

Preliminary assembly of corrective measures alternatives was performed based on site-specific and regional geology and groundwater conditions. For the Unit, six corrective measures alternatives were developed from this list of applicable corrective measures technologies during the ACM screening process:

- Alternative #1 No Action and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #4 CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 CiP, Other Source Control, ICs, and Groundwater Monitoring

The assembly of corrective measures alternatives presented in the ACM was considered preliminary and subject to revision following additional evaluation during the remedy selection process and/or following comment from the regulatory community and public. Further evaluation of the alternatives is discussed in the following sections.

2.5.2 Assessment of Corrective Measures for Non-Groundwater Impacts

Pursuant to Title 40 of the Code of Federal Regulations (CFR) parts 257.90(d) and 257.84(b)(5), BREC initiated design of containment systems intended to reduce and prevent non-groundwater releases from reaching the Green River as an interim corrective measure. Plans for these measures were submitted to the KDWM for review and comment in 2019. KDWM conditionally approved the interim corrective measures for implementation at the Unit and they were constructed in 2019 and 2020 (see Section 2.4).

In June 2019, BREC performed an ACM to evaluate whether additional remedial measures, that would be supplemental to the ICMs already planned, were warranted to address non-groundwater releases. Several potential corrective measures technologies were evaluated in order to identify which ones could be carried forward as components of corrective measure alternatives for non-groundwater releases, if required. The results of the corrective measures technology evaluation are presented below in **Table 6**.

Potentially Applicable Technology	Status	Description/Overview
No Action	Not retained as stand-alone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.

Table 6 – Potential Corrective Measures Options for Non-Groundwater Impacts

Potentially Applicable Technology	Status	Description/Overview
Hydraulic Containment	Retained	Hydraulic containment in the form of pumping of vertical or horizontal wells would potentially be used to provide spot control of seepage if the interim corrective measures are unable to fully capture the seepage.
Physical Containment	Retained	Physical containment in the form of a cutoff wall would potentially be used to re-direct or otherwise intercept seepage that was not adequately captured by the interim corrective measures.
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment is retained as a potential supplement to the interim corrective measures in the event that discharge via the station's KPDES permit is not possible.
In-situ Physical/Chemical Treatment	Retained	In-situ treatment is retained in the form of spot treatment or fixation of seepage areas in the event that the interim corrective measures do not adequately address all seepage areas.
Permeable Reactive Barriers (PRB)	Retained	The use of PRBs is retained in the form of a reactive cell in the event that interim measures result in seepage concentrations that require pre-treatment insitu prior to discharge.
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.
Other Source Control Technologies	Retained	Control of source area non-groundwater releases is being implemented as interim corrective measures but is retained in the event that interim measures need to be evaluated for expansion.

The ICMs implemented at the Unit in 2019 were designed to address river seepage and divert it to KPDES outfalls, eliminating any potential exposure to public health or the environment. During ACM development, it was anticipated that the ICMs would meet the CAOs by effectively eliminating any future river seepage through source control, and as a result, no supplemental remedies were considered warranted. Data collected at the Unit since installation of the ICMs suggests that the CAOs are being met and in compliance with the conditions of the Agreed Order.

Performance monitoring is ongoing and will continue to be performed in the future to demonstrate source control and evaluate the ability of the ICMs to meet the CAO. The ICMs implemented at the Unit in 2019 and 2020 are considered the final remedy for non-groundwater releases and are expected to benefit corrective action as a whole for the Unit. As a result, no separate remedy selection report is currently being developed for non-groundwater releases. If warranted based on performance monitoring results, additional evaluation of the non-groundwater corrective measures will be performed consistent with 40 CFR 257.98(b).

3. Corrective Measure Evaluation

To address the remedy selection requirement under 40 CFR Part 257.97, a corrective measure evaluation was performed to address groundwater impacts at the Unit. Currently, no separate corrective measure evaluation is planned for non-groundwater releases, as the ICMs implemented at the Unit in 2019 and 2020 are considered the final remedy for non-groundwater releases. The discussion included below details the evaluation performed to address groundwater impacts at the Unit.

3.1 Corrective Action Objectives

Corrective Action Objectives (CAOs) for the Unit were identified during the groundwater ACM completed for the Unit in June 2019. CAOs are overall descriptions of what remedial action is expected to accomplish at a given site. CAOs also provide a basis for evaluating the performance of a corrective measure. Title 40 CFR Section 257.97 (b) outlines the CAOs for corrective measures under the CCR Rule as follows:

- (1) Be protective of human health and the environment;
- (2) Attain the GWPS as specified pursuant to Section 257.95(h);
- (3) Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- (4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems;
- (5) Comply with standards for management of wastes as specified in Section 257.98(d). [note: this statute referces all applicable requirements under the Resource Conservation and Recovery Act (RCRA)].

The corrective measure alternative selected for the Unit must ultimately demonstrate attainment of the CAOs. Compliance with the CAOs will be a primary factor in determining the effectiveness of the corrective measure alternative selected for the Unit during future systematic performance reviews.

Each of the CAOs have been adopted as Threshold Criteria (see Section 3.3.1 below) for evaluating potential corrective measures in alignment with 40 CFR Part 257.97 (b).

3.2 Corrective Measures Alternatives Assembly

The groundwater ACM performed for the Unit in June 2019 identified a total of six (6) corrective measures alternatives to be carried forward into the remedy selection process. In December 2019, BREC provided a *Semi-annual Remedy Selection Progress Report* (AECOM, December 2019) as required under 40 CFR 257.97(a). As part of this submittal, two (2) corrective measures alternatives were eliminated from further consideration, including:

- Alternative #1 (No Action and Groundwater Monitoring) This alternative does not control or remove COCs from the environment and therefore does not achieve the RAOs.
- Alternative #2b (CbR, ICs, and Groundwater Monitoring) Implementing a CbR approach is considered cost prohibitive. In addition, any CbR approach would require relocating waste to an existing disposal unit or construction of a new waste disposal unit, which does not align with the one of the fundamental goals of RCRA (conserving energy and natural resources).

Four (4) potential corrective measures alternatives have been identified by BREC as viable options to address lithium impacts in groundwater and non-groundwater releases at the Unit, including:

• Alternative #2a (Alt 2a): CiP, ICs, and Groundwater Monitoring

- Alternative #3 (Alt 3): CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #4 (Alt 4): CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring
- Alternative #5 (Alt 5): CiP, Other Source Control, ICs, and Groundwater Monitoring

Each of the remining 4 corrective measures alternatives was evaluated against the threshold, balancing, and modifying criteria as discussed below.

3.3 Corrective Measures Criteria Evaluation

40 CFR Part 257.97(a) outlines the criteria for evaluating corrective measures under the Federal CCR Rule. Although not specifically stated as such, these criteria mirror the criteria outlined for the National Oil and Hazardous Substance Contingency Plan, more commonly referred to as the National Contingency Plan (NCP), established under 40 CFR 300. 40 CFR 300.430 identifies 9 criteria for evaluating remedial alternatives which are further divided into 3 categories:

- 1) Threshold Criteria;
- 2) Balancing Criteria, and
- 3) Modifying Criteria.

These criteria were utilized by BREC to evaluate the potential corrective measures alternatives for the Unit. Each of the remaining 4 corrective measures alternatives was evaluated against each other and scored on a scale from 1 to 4 (1 being lowest and 4 being highest). Where multiple corrective measures alternatives were considered equal with respect to a given criteria, the available points were combined and divided equally. The results of analysis performed to evaluate each of the corrective measures alternative is discussed below and summarized in **Appendix E**.

3.3.1 Threshold Criteria Evaluation

Title 40 CFR Part 257.97 (b) outlines the threshold criteria (also viewed as CAOs) for evaluating corrective measures under the CCR Rule, and these criteria were presented in Section 3.1 above. The results of the threshold criteria evaluation are summarized below in **Table 7**.

40 CFR 257.97 Reference	Alternative 2a	Alternative 3	Alternative 4	Alternative 5
(b)(1)	1	3	3	3
(b)(2)	1	3.5	2	3.5
(b)(3)	1	3	2	4
(b)(4)	1	3	2	4
(b)(5)	2.5	2.5	2.5	2.5

Further detail regarding how threshold criteria were evaluated in provided on Table E-2 in Appendix E.

3.3.2 Balancing Criteria Evaluation

Title 40 CFR Section 257.97 (c) outlines the balancing criteria for evaluating corrective measures under the CCR Rule as follows:

1) The long and short-term effectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful based on a consideration of the following:

- i. Magnitude of reduction of existing risks;
- ii. Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy;
- iii. The type and degree of long-term management required, including monitoring, operation, and maintenance;
- iv. Short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and re-disposal of contaminant;
- v. Time until full protection is achieved;
- vi. Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment;
- vii. Long-term reliability of the engineering and institutional controls; and
- viii Potential need for replacement of the remedy
- 2) The effectiveness of the remedy in controlling the source to reduce further releases based on consideration of the following factors:
 - i. The extent to which containment practices will reduce further releases; and
 - ii. The extent to which treatment technologies may be used.
- 3) The ease or difficulty of implementing a potential remedy(s) based on consideration of the following types of factors:
 - i. Degree of difficulty associated with constructing the technology;
 - ii. Expected operational reliability of the technologies;
 - iii. Need to coordinate with and obtain necessary approvals and permits from other agencies;
 - iv. Availability of necessary equipment and specialists; and
 - v. Available capacity and location of needed treatment, storage, and disposal services.

The results of the threshold criteria evaluation are summarized below in Table 8.

40 CFR 257.97 Reference	Alternative 2a	Alternative 3	Alternative 4	Alternative 5
(c)(1)(i)	1	4	3	2
(c)(1)(ii)	1	3.5	3.5	2
(c)(1)(iii)	1	2.5	2.5	4
(c)(1)(iv)	1	3	2	4
(c)(1)(v)	1	3	2	4
(c)(1)(vi)	1	3	2	4
(c)(1)(vii)	1	3	2	4
(c)(1)(viii)	4	2	1	3
(c)(2)(i)	1	3	2	4
(c)(2)(ii)	1	4	3	2
(c)(3)(i)	4	2	1	3
(c)(3)(ii)	4	2	1	3
(c)(3)(iii)	2.5	2.5	2.5	2.5
(c)(3)(iv)	4	2	1	3

Table 8. Balancing Criteria Evaluation Summary

(c)(3)(v)	1	2	3	4

Further detail regarding how threshold criteria were evaluated in provided on Table E-3 in Appendix E.

3.3.3 Modifying Criteria Evaluation

Title 40 CFR Section 257.97 (c) defines modifying criteria as "the degree to which community concerns are addressed by a potential remedy(s)". Given that an Agreed Order was signed between BREC and the KDWM for the Unit, the modifying criteria were expanded as part of this evaluation to include separate criteria for state and community acceptance (40 CFR 300.430 divides modifying criteria into two categories).

The results of the modifying criteria evaluation are summarized below in Table 9.

Table 9. Modifying Criteria Evaluation Summary

40 CFR 257.97 Reference	Alternative 2a	Alternative 3	Alternative 4	Alternative 5
NA - state acceptance	1	3.5	3.5	2
(c)(4)	1	3.5	3.5	2

Further detail regarding how threshold criteria were evaluated in provided on Table E-4 in Appendix E.

3.3.4 Corrective Measures Alternative Evaluation Summary

The cumulative scoring of the criteria evaluation is summarized below in Table 10.

Table 10. Cumulative Criteria Evaluation Scoring Summary

40 CFR 257.97	Alternative	Alternative	Alternative	Alternative
Reference	2a	3	4	5
Total Score	37	63.5	50	69.5

Further detail regarding the cumulative scoring criteria is provided on Table E-1 in **Appendix E**. Alternative 5 scored highest of all the alternatives during the evaluation.

4. Remedy Selection

In alignment with the scoring completed as part of the corrective measure evaluation (see **Appendix E**), BREC has selected Alternative #5 (CiP, Other Source Control, ICs, and Groundwater Monitoring) as the remedy to address groundwater and non-groundwater impacts at the Unit. A description of each corrective measure technology incorporated into the selected remedy is provided below.

4.1 Closure in Place

In adherence with the BREC's permit conditions, the Site will continue to operate as a solid waste disposal facility through its life cycle and will be closed in accordance with the requirements of the permit. The current life cycle estimates for the Green Landfill predict that the Unit will reach capacity in approximately 2041. Source control through landfill closure will include installation of final cover that will prevent infiltration and contribute to groundwater quality restoration.

4.2 Source Control

To comply with the Agreed Order signed by BREC and KDWM for the Unit, additional source control measures will be implemented in 2020 and 2021 to reduce/eliminate the downward migration of COC into groundwater. As currently planned, theses measure will include the following:

- Landfill perimeter collection trenches; and
- Removal of CCR material from the South Sediment Basin.

Interim corrective measures for the perimeter seeps are being planned in a phased approach. The first step is to divert the seepage to the Northeast Sediment Basin which is routed to the KPDES outfall of the Green Surface Impoundment. Removing the seeps from stormwater channels will prevent mixing with impounded stormwater. The use of the South Sediment Basin requires that CCR materials be removed so that the seepage does not have the potential to impact groundwater. Corrective measures for the South Sediment Basin will involve the removal of any residual CCR material and creation of two lined sump areas, one on the east end to collect the South and East perimeter seeps and one on the west end to collect Southwest corner perimeter seeps. Additionally, perimeter seeps on the north side of the landfill will be similarly controlled but will be directly routed to the collector sump on the north side of the landfill.

Design of the additional source control remedies is currently being performed by BREC. A draft design package will be provided to KDWM as part of a separate submittal to comply with the conditions of Agreed Order #18-3-0138. The implementation schedule for source control measures is discussed in Section 5.

4.3 Institutional Controls

The use of ICs (i.e., Environmental Covenant, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of the remedy for the Unit.

4.4 Groundwater Monitoring

Assessment monitoring is expected to continue at the Unit until the CAOs have been met.

5. Remedy Implementation Schedule

5.1 Schedule Evaluation Factors

The schedule for remedy implementation is provided in **Appendix F**. 40 CFR Part 257.97(d) outlines the factors that must be considered in specifying a schedule to remedial implementation at a CCR unit as follows.

- 1) Extent and nature of contamination, as determined by the characterization required under § 257.95(g);
- 2) Reasonable probabilities of remedial technologies in achieving compliance with the groundwater protection standards established under § 257.95(h) and other objectives of the remedy;
- 3) Availability of treatment or disposal capacity for CCR managed during implementation of the remedy;
- 4) Potential risks to human health and the environment from exposure to contamination prior to completion of the remedy;
- 5) Resource value of the aquifer including:
 - i. Current and future uses;
 - ii. Proximity and withdraw rate of users;
 - iii. Groundwater quantity and quality;
 - iv. The potential damage to wildlife, crops, vegetation, and physical structures caused by exposure to CCR constituents;
 - v. The hydrogeologic characteristic of the facility and surrounding land;
 - vi. The availability of alternative water supplies; and
- 6) Other relevant factors.

Each of these factors was consider by BREC as part of the remedy selection process as described below.

5.1.1 Nature and Extent of Contamination

The data obtained during characterization monitoring performed at the Unit under 40 CFR Part 257.95(g) indicates that the extent of groundwater and non-groundwater impacts is confined to Sebree Station. Source control measures implemented to date will ensure that non-groundwater releases are captured and will not migrate beyond the functional perimeter of the Unit and the property controlled by BREC.

Assessment monitoring will continue at the Unit to confirm that the nature and extent of contamination is defined and progressing in accordance with the CAOs.

5.1.2 Compliance Probability

Implementation of the selected remedy is expected to have a high probability of meeting the CAOs. There is firm evidence of a relatively direct connection between infiltration of co-mingled leachate and stormwater at the South Sediment Basin and the observed impact to monitoring wells MW-4, -5, and -6. Consequently, removal of that infiltration by the planned corrective measures (excavating CCR from the South Sediment Basin and containing leachate in a series of sumps and piped conveyance) is expected to have a direct influence on groundwater quality. The time required to achieve GWPSs at the affected wells has not been modeled but is expected to be on the order of one to five years if the remedy is implemented as planned.

Impacts observed at MW-3A may be tied to the nearby non-groundwater release captured by the Deep Seep Collection Trench, in which case, the time to achieve CAOs may be relatively quick now that the

seepage is being hydraulically controlled. However, there are unknowns regarding the nature of how lithium is transported to that well location. Those uncertainties cannot be evaluated given the physical constraints of the site (proximity of the landfill to the river), so the time frame required to meet CAOs cannot be predicted until additional Assessment monitoring data are available.

5.1.3 CCR Treatment and Disposal Capacity

Wastes generated by the groundwater corrective measures activities will include residual CCR content removed from the South Sediment Basin and seepage collected from the perimeter seepage controls. Wastes generated by the non-groundwater corrective measures activities will be seepage collected from the Deep Seep Collection Trench and the Northwest Seep Collection Trench.

The solids (dredged material from the South Sediment Basin) will be interred in the Landfill as allowed under the existing solid waste permit. The Landfill has sufficient capacity for this one-time waste stream volume. The liquid wastes will be managed under the KPDES permit for the station.

5.1.4 Exposure Risk

As detailed in Section 2.3.8, there is no data to suggest that human health and the environment are currently being exposed to COC emanating from the Unit. This condition is not expected to change prior to implementation of the remedy but will continue to be evaluated through Assessment monitoring and systematic performance reviews.

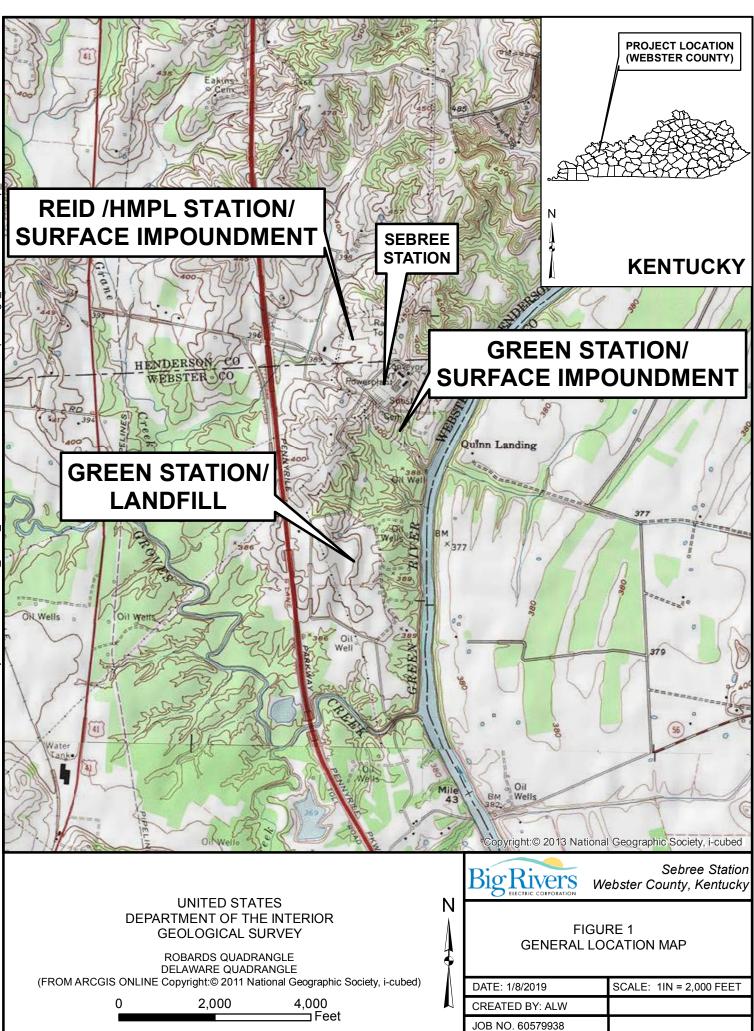
5.1.5 Aquifer Resource Value

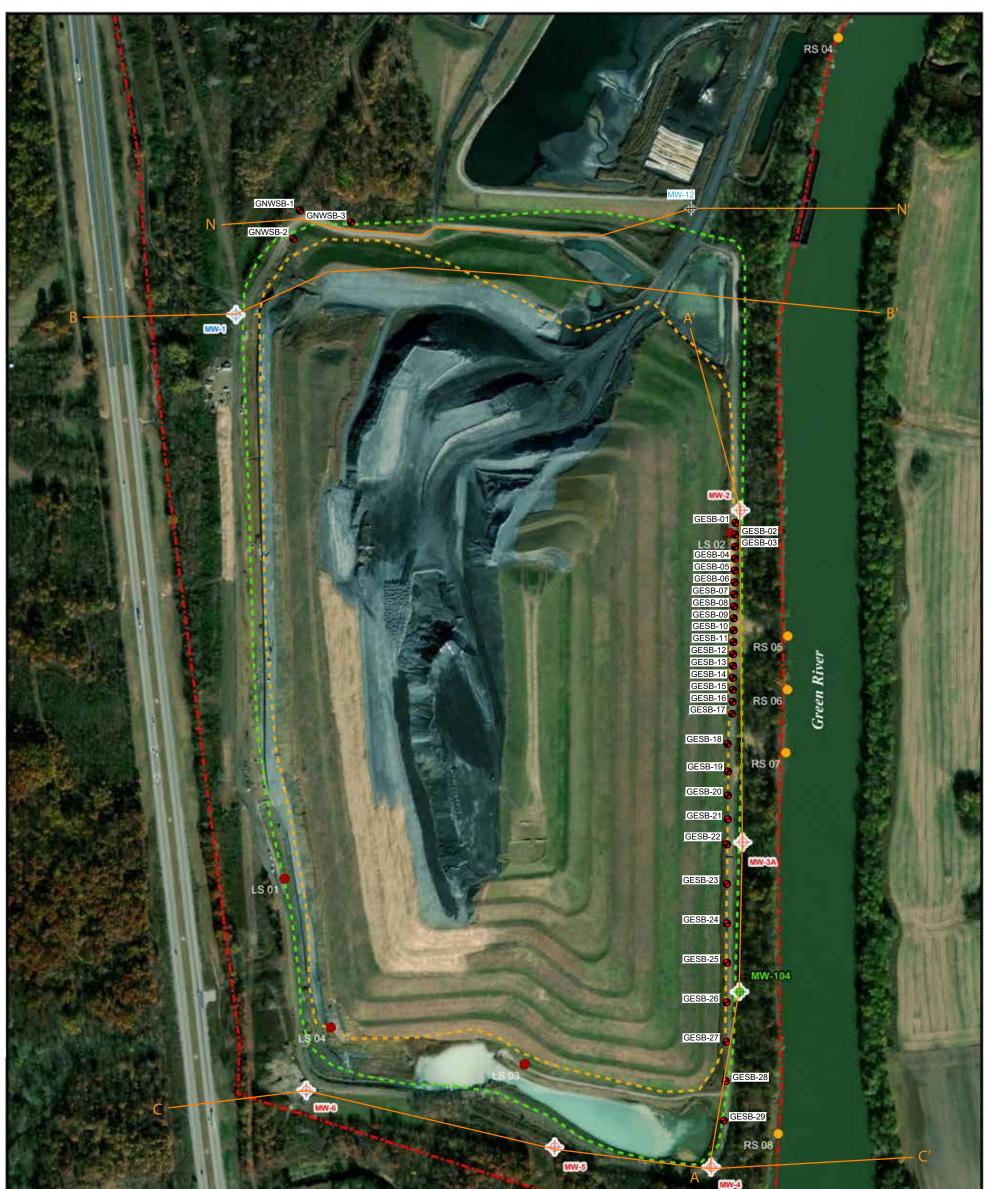
Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Unit. This is not expected to change in the future but will be re-examined during future performance reviews. Therefore, the significance of aquifer resource value is not considered pertinent to this evaluation or the resulting schedule.

5.1.6 Other Relevant Factors

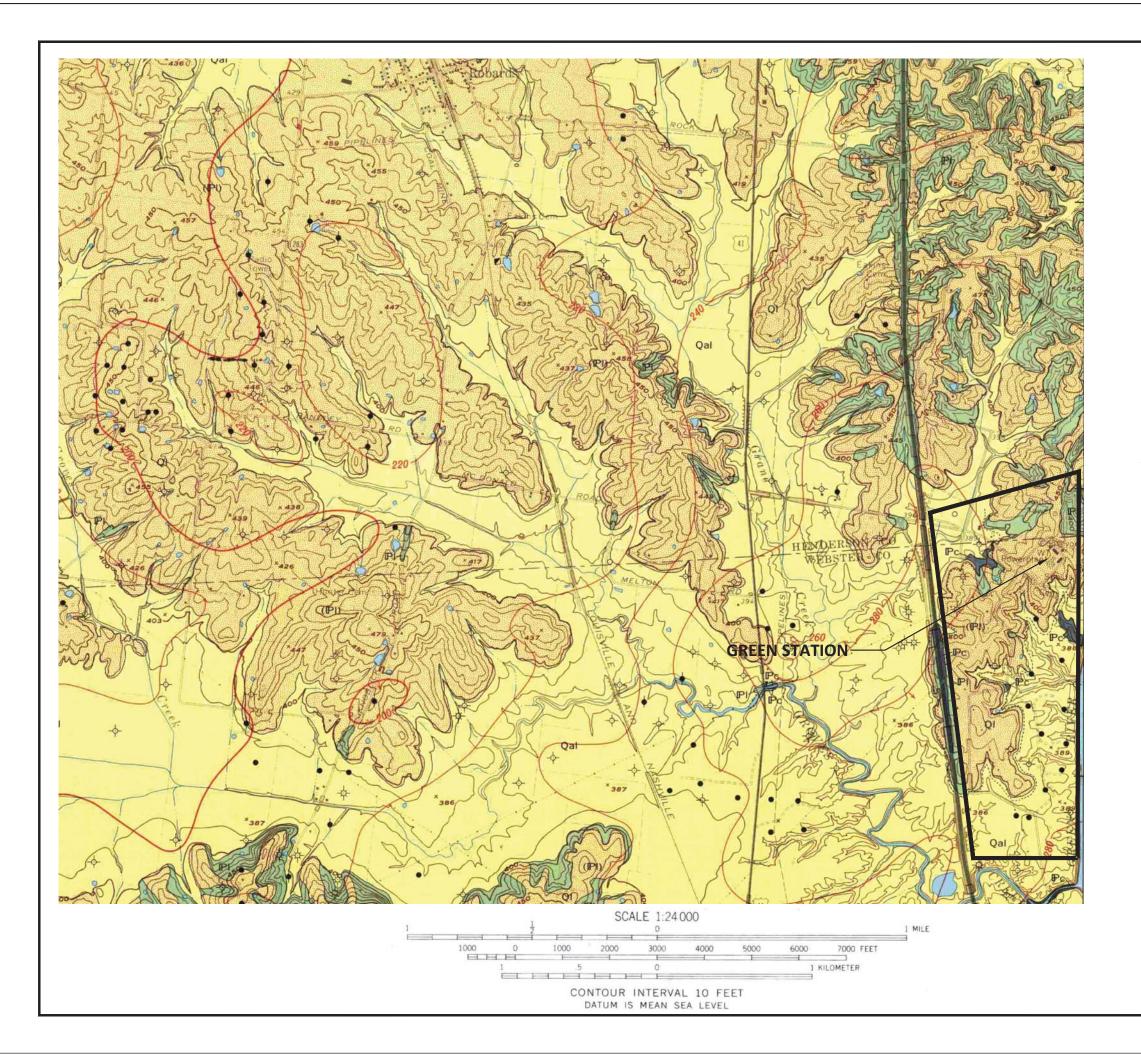
Within Exhibit 4 of the Agreed Order, a milestone schedule was provided for groundwater corrective action. Although the milestone schedule has been adjusted due to the work conditions imposed by the COVID-19 pandemic, which includes holding the public meeting at an earlier date, BREC has moved forward with the activities required in the Agreed Order.

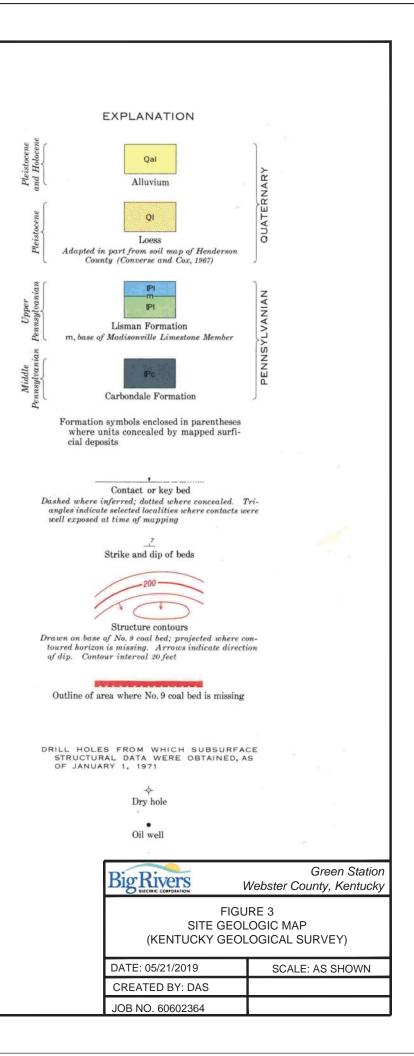
5.2 Performance Review

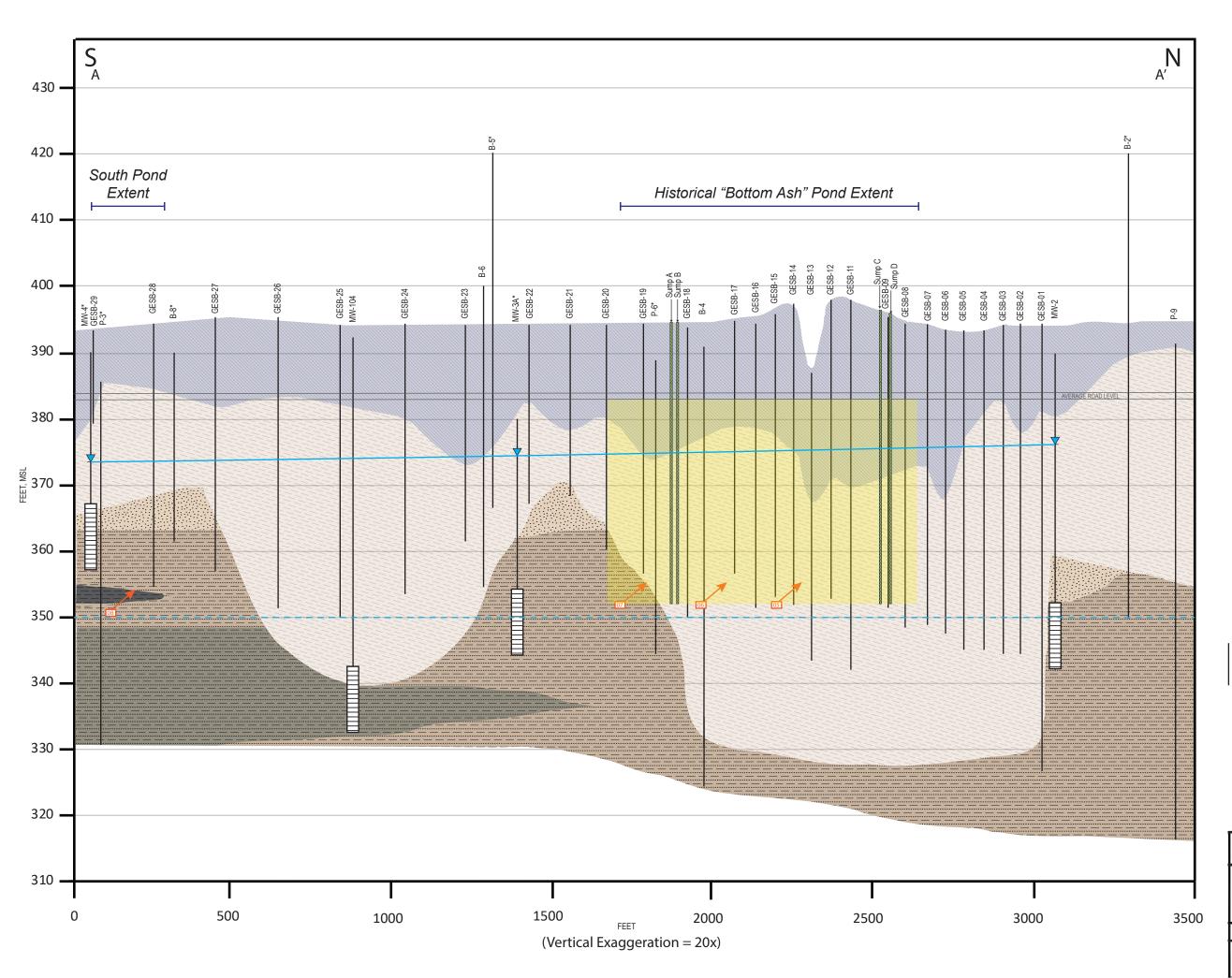

Source control measures are viewed as the remedial component likely to have the most significant shortand long-term benefit on reducing groundwater and non-groundwater impacts at the Unit. As such, evaluating the performance of source control measures constructed at the Unit should be evaluated through systematic review.


Although not specifically mandated under the CCR Rule, five-year reviews are generally required by the regulatory agency under corrective action programs (i.e. CERCLA) when hazardous substances remain at a site above levels that permit unlimited use and unrestricted exposure. Five-year reviews provide an opportunity to evaluate the implementation and performance of a remedy to determine whether it remains protective of human health and the environment. Generally, reviews take place five years following the start of corrective action and are repeated every succeeding five years so long as future uses remain restricted. BREC will perform a five-year review to evaluate compliance with the CAOs and evaluate the effectiveness of the remedy selected for the Unit five years after construction completion (approximately 2026).

6. References


- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Green Station CCR Landfill, Webster County, Kentucky.
- AECOM, 2019. Assessment of Corrective Measures Under the CCR Rule; Green Station CCR Landfill, Green Station, Webster County, Kentucky.
- AECOM, 2019. Assessment of Corrective Measures, Non-Groundwater Releases Under the CCR Rule; Green Station CCR Landfill, Green Station, Webster County, Kentucky.
- AECOM, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky.
- Associated Engineers 2016. Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.
- USEPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- USEPA, 40 CFR Part 257. [EPA–HQ–OLEM–2017–0286; FRL–9973–31–OLEM]. RIN–2050–AG88. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Amendments to the National Minimum Criteria (Phase One); Proposed Rule. Federal Register / Vol. 83, No. 51 / Thursday, March 15, 2018 / Proposed Rules.


Figures



	Creates Creat		
Legend Property Line A → A' KAR Permit Area GESB-01 CCR Fill Area Seeps Investigation Borings	Sourrer: Earl, Digital Globe, Geosty AaroGRID, IGH, and the Gi8 User Landfill Seep Sample River Seep Sample		Green Station Vebster County, Kentucky URE 2 CATION MAP
Downgradient CCR Monitoring Well 0	400 800	DATE:06/04/2019	SCALE: 1IN = 300 FEET
Upgradient CCR Monitoring Well	F irst	CREATED BY: DAS	
Characterization Well	Feet	JOB NO. 60602364	

Bedrock Lithologies:

Sandstone

Shale

Interbedded Sandstone and Shale

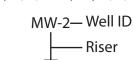
Interbedded Shale and Sandstone

Unconsolidated Materials:

Silty Clay

Collection Area

River Seep (projected)



APROX. RIVER LEVEL

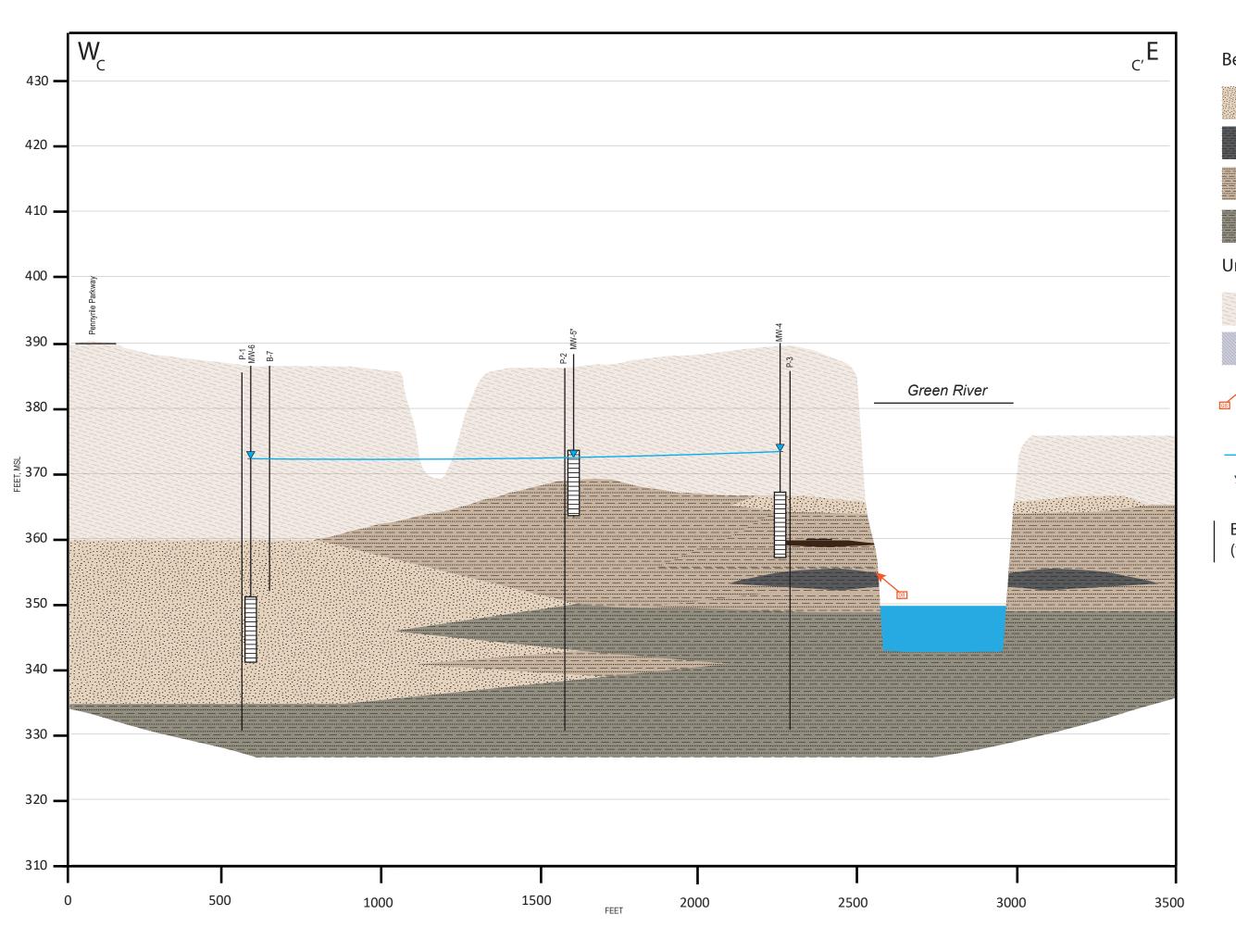
 $\mathbf{\nabla}$

Potentiometric Surface 11/11/2019 - 11/12/2019

Boring (*Projected) - Screen



FIGURE 4 CROSS SECTION A - A' East (River) Side of Ash Pile


DATE: 05/01/2020

CREATED BY: ALY

SCALE: AS SHOWN JOB NO. 60619283

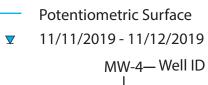
В'	Bedrock Lithologies:		
	Sandstor	ne	
	Shale		
	Limestor	ne	
		Interbedded Sandstone and Shale	
		ded Shale	
	Unconsolidated Materials:		
	Silty Clay	1	
h Settling Basin	Fill		
Green River		metric Surface 19 - 11/12/2019 MW-2— Well ID Riser Screen	
	Di Di	Green Station	
	Big Rivers Web	BigRivers Webster County, Kentucky	
3500	FIGURE 5 CROSS SECTION B - B' North Side of Ash Pile		
	DATE: 05/01/2020	SCALE: AS SHOWN	
	CREATED BY: ALY	JOB NO. 60619283	

Bedrock Lithologies:

Sandstone

Interbedded Sandstone and Shale

Interbedded Shale and Sandstone


Unconsolidated Materials:

Silty Clay

River Seep (projected)

Boring (*Projected)

Green Station Webster County, Kentucky

FIGURE 6 CROSS SECTION C - C' South Side of Ash Pile

DATE: 05/01/2020

BigRivers

CREATED BY: ALY

SCALE: AS SHOWN JOB NO. 60619283

Bedrock Lithologies:

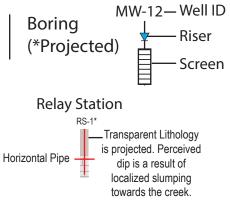
Sandstone

Shale

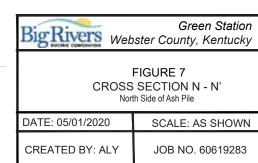
Interbedded Sandstone and Shale

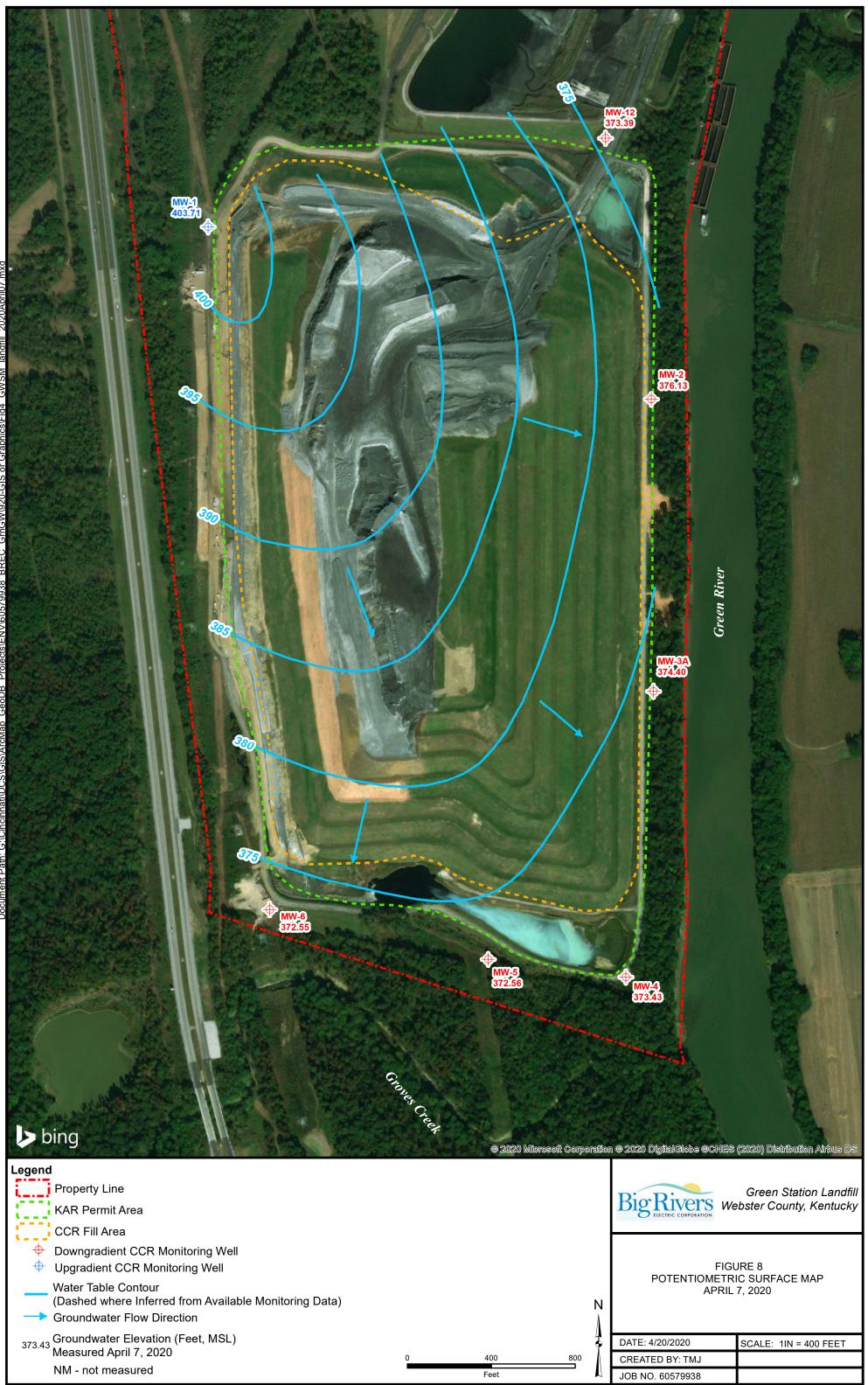
Interbedded Shale and Sandstone

Unconsolidated Materials:

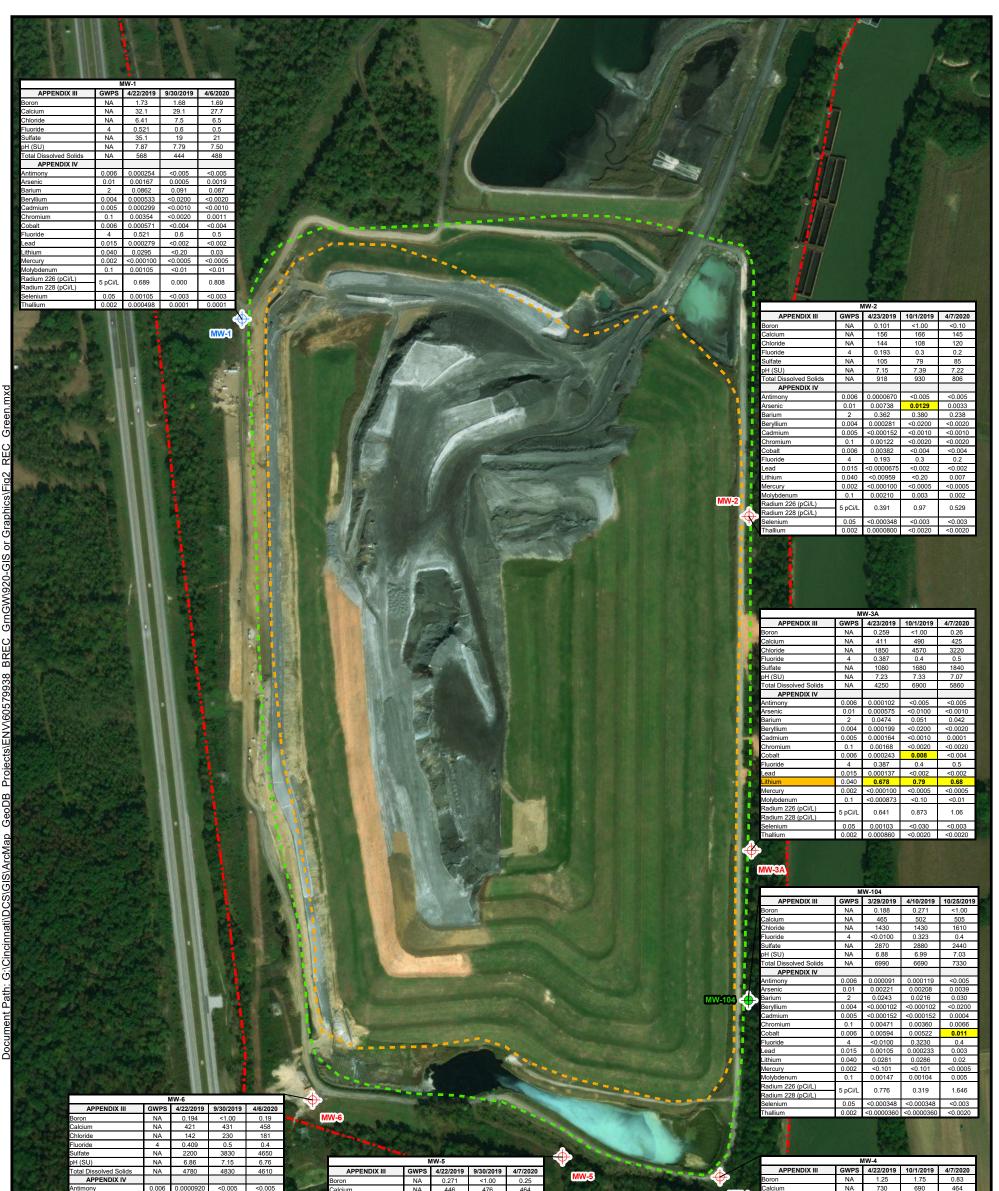


Silty Clay


Fill



Collection Area Sump



* Projected

Document Dath. G./Cincinnati/DCS/GIS/ArrMan_GeoDB_Drriedte/ENI/J60570038_RDEC_GrnG/M000_GIS_or_Graphics/Eiro/_GWSM_landfill_2020/Arril07_mvd

		0.000																	
	Antimony	0.006	0.0000920	< 0.005	< 0.005		Calcium	NA	446	476	464				Calcium	NA	730	690	464
Carlos of	Arsenic	0.01	0.000722	<0.0100	<0.0010		Chloride	NA	931	1500	1860	The second second second		MW-4	Chloride	NA	1510	1910	1560
E CONTRACTOR	Barium	2	0.0128	0.010	0.011		Fluoride	4	0.128	0.2	0.2				Fluoride	4	0.102	0.2	0.2
	Beryllium	0.004	< 0.000102	<0.0200	<0.002		Sulfate	NA	1800	2990	3720			Charles and	Sulfate	NA	1440	2490	4000
	Cadmium	0.005	< 0.000152	<0.0010	0.0001		pH (SU)	NA	7.15	7.41	6.94				pH (SU)	NA	7.26	7.36	7.10
-	Chromium	0.1	0.00196	<0.000020	<0.0020		Total Dissolved Solids	NA	4360	5320	4960				Total Dissolved Solids	NA	4840	4820	5120
	Cobalt	0.006	0.000276	<0.004	< 0.004		APPENDIX IV								APPENDIX IV				
	Fluoride	4	0.409	0.5	0.4		Antimony	0.006	0.0000700	< 0.005	< 0.005				Antimony	0.006	0.0000360	<0.005	< 0.005
	Lead	0.015	<0.0000675	<0.002	<0.002		Arsenic	0.01	0.000424	< 0.0100	<0.0010		C C NOTE		Arsenic	0.01	0.000445	<0.0100	< 0.0010
100	Lithium	0.040	0.0633	0.05	0.05		Barium	2	0.0167	0.016	0.014				Barium	2	0.0308	0.029	0.022
	Mercury	0.002	<0.000100	<0.0005	<0.0005		Beryllium	0.004	< 0.000102	<0.0200	<0.0020				Beryllium	0.004	< 0.000102	<0.0200	< 0.0020
and the second se	Molybdenum	0.1	0.000972	<0.10	<0.01	Ref of	Cadmium	0.005	< 0.000152	<0.0010	<0.0010			A CARLE	Cadmium	0.005	<0.000152	<0.0010	<0.0010
	Radium 226 (pCi/L)	5 pCi/L	0.450	1.246	0.744	1.10	Chromium	0.1	0.00159	0.0033	<0.0020				Chromium	0.1	0.00110	<0.0020	0.0008
	Radium 228 (pCi/L)			-			Cobalt	0.006	0.000288	< 0.004	< 0.004				Cobalt	0.006	0.000415	<0.004	< 0.004
	Selenium	0.05	0.00110	< 0.003	< 0.003	A COL	Fluoride	4	0.128	0.2	0.2		San State		Fluoride	4	0.102	0.2	0.2
	Thallium	0.002	0.0000610	<0.0020	<0.0020	100	Lead	0.015	0.0000860	<0.002	< 0.002	Hard The state of		The state of the state	Lead	0.015	< 0.0000675	<0.002	< 0.002
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1. S. S. S. S.	100			Lithium	0.040	0.434	0.40	0.38				Lithium	0.040	1.73	<0.20	0.82
2.00		A CONTRACT					Mercury	0.002	< 0.000100	<0.0005	< 0.0005	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Mercury	0.002	0.000825	0.0004	0.0003
			200	Constant of the	I Prove		Molybdenum	0.1	< 0.000873	<0.10	< 0.01				Molybdenum	0.1	<0.000873	<0.10	0.002
			a start	a sterner			Radium 226 (pCi/L)	5 0.1	0.045	4 000	4.40	A MARCELLA STREET, STRE			Radium 226 (pCi/L)	5 pCi/L	1.66	1.255	1.26
				1000			Radium 228 (pCi/L)	5 pCi/L	0.945	1.098	1.48				Radium 228 (pCi/L)				
							Selenium Thallium	0.05 0.002	0.000624 0.0000890	<0.003 <0.0020	<0.003 <0.0020	9			Selenium Thallium	0.05	0.00211 0.0000410	<0.003 <0.0020	0.023
bi	ing					Part of the	Selenium					© 2019 Microsoft	Corporation	@ 2019 Dį	Thallium	0.002	0.0000410	<0.0020	<0.002
end F	Property Line KAR Permit /	Area				Yello Orar SSL	esults listed in w highlighted age highlighted = Statistically	milli value d ana Sign	igrams es indic alyte ind	o20 per lite cate G dicate Level	o0020 er (mg/ WPS e SSL at	/L) unless otherwis exceedance. bove GWPS.	no noted	BigRig		0.002 ES (20 <i>Web</i> : GURE R CC	0.0000410 019)) Distr ster Co 5 9. NDITIO	 <0.0020 ibution / Greer unty, k NS MA 	 <0.0020 Airbus n Lan Xentu XP
end F K	Property Line KAR Permit / CCR Fill Area	Area a	R Mon	itoring	Well	Yello Orar SSL GWF NA =	esults listed in w highlighted ge highlighted = Statistically PS = Groundw Not Applicab	milli valuo d ana Sign vater le	igrams es indio alyte ino ificant Protec	v per lite cate G dicate Level tion St	⊲20 er (mg/ WPS e SSL al andarc	/L) unless otherwis exceedance. bove GWPS. d	no noted	BigRin Gl	Thailium gital Globe OCNI COPPORTON FIG ROUNDWATE 019-2020 ANA	U.002 ES (20 Webs GURE R CC ALYTI	0.000410 19)) Distr ster Co 5 9. NDITIO CAL RE	<0.0020 ibution / Greer unty, k NS MA SULTS	 <0.0020 Airbus Airbus Anticologies AP S
к С Ф С	Property Line KAR Permit /	Area a nt CCl		Ŭ		Yello Orar SSL GWF NA = ND =	esults listed in w highlighted ge highlighted = Statistically PS = Groundw	milli valuo d ana Sign vater le d at c	igrams es indio alyte ind ificant Protec	v per lite cate G dicate Level tion St	⊲20 er (mg/ WPS e SSL al andarc	/L) unless otherwis exceedance. bove GWPS. d	no noted	GI DATE: 5/	Thailium gital Globe OCNI COPPORTON FIG ROUNDWATE 019-2020 ANA	U.002 ES (20 Webs GURE R CC ALYTI	0.0000410 019)) Distr ster Co 5 9. NDITIO	<0.0020 ibution / Greer unty, k NS MA SULTS	 <0.0020 Airbus Airbus Anticologies AP S

Appendix A July 2018 River and Seep Sampling and Analysis Data

TABLE 1

CCR ANALYTICAL SUMMARY RIVER SEEP AND RIVER SAMPLE EVALUATION

JULY 2018

BIG RIVERS ELECTRIC CORPORATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

										WEBSTER COUNTY	,									
				uality Criteria		River Seep-14-	River Seep-12-	RiverSeep-16-	River 01A	River 01B	RiverSeep-08-	RiverSeep-07-	River 02A	River 02B	RiverSeep-05-	River 03A	River 03B	River 04A	River 04B	River-Seep-04-
	PRIMARY MCL and CCR	Human H	lealth	Warm W	ater Aquatic Habitat	71318	71318	71318	71218	71218	71318	71218	71218	71218	71218	71218	71218	71218	71218	71218
Field Parameters	LIMITS	Domestic Water Supply Source	Fish	Acute	Chronic	Lat 37.661126 Long -87.4894	Lat 37.61732 Long -87.4936	Lat 37.62167 Long -87.4967	Lat 37.64610 Long -87.5059	Lat 37.64610 Long -87.5059	Lat 37.62860 Long -87.5003	Lat 37.63299 Long -87.5003	Lat 37.63303 Long -87.5002	Lat 37.63303 Long -87.5002	Lat 37.63433 Long -87.5003	Lat 37.63433 Long -87.5002	Lat 37.63433 Long -87.5002	Lat 37.63789 Long -87.5004	Lat 37.63789 Long -87.5004	Lat 37.64122 Long -87.4997
H (Field Measurement) SU	NA					7.54	7.37	7.46	7.94	7.94	7.09	7.27	7.91	7.91	6.92	7.94	7.94	7.86	7.86	5.13
H (Lab Measurement) SU	NA					8.14	8.00	8.40	7.64	7.62	8.16	8.01	7.45	7.50	7.95	7.50	7.51	7.52	7.53	5.26
Conductivity (µmhos/cm)	NA					1207	226.2	654	268	268	7674	7715	267.7	267.7	6174	262.2	262.2	265.1	265.1	2545
Cemperature (°F)	NA					88.34	84.0	91.58	82.9	82.9	70.52	79.7	84.2	84.2	94.28	84.2	84.2	82.6	82.6	71.6
Dxidation-Reduction Potential	(m NA					-92	-98	-48	131	131	29	-123	98	98	-137	133	133	133	133	125
APPENDIX III CONSTITUENTS	s																			
Boron	NA					0.0694 J	0.0379 J	0.0321 J	0.0281	J 0.0252 J	0.510 J	1.46	0.0323 J	0.0322 J	0.853 J	0.0251	J 0.0235	J 0.0229 J	0.0234 J	2.19
Calcium	NA					171	21.1	93.8	31.8	33.2	801	1120	32.8	35.8	916	34.8	32.6	32.9	34.5	460
Chloride	NA	250	-	1200	600	22.7	32.7	23.2	4.58	B 4.52 B	2040	1990	6.75 B	6.69 E	1670	5.33	B 5.59 E	3 4.83 B	4.75 B	189
Fluoride	4 mg/L	4	-	-	-	0.144 J	0.0803 J	0.177 J	0.111	J 0.105 J	0.0915 J	0.102 J	0.0958 J	0.0979 J	0.0795 J	0.100	J 0.0954	J 0.0948 J	0.0945 J	0.239 J F1
Sulfate	NA	250	-	-	-	159 B	16.1 B	26.5 B	28.5	28.3	1440 B	1480 B	30.6	30.1	1170 B	28.8	28.9	28.6	28.6	1310 B
Total Dissolved Solids	NA	250	-	-	-	790	157	504	169	161	5310	6080	173	170	5140	175	170	174	156	2130
APPENDIX IV CONSTITUENT	S																			
Antimony	0.006 mg/L	0.0056	0.64	-	-	0.000312 J	0.000499 J	0.000270 J	0.000591	JB 0.000476 JB	0.00141 J	ND	0.00276 B	0.00106 JE	0.000366 J	0.000571	JB 0.000514 J	B 0.000504 JE	0.000360 JB	0.000200 J
Arsenic	0.01 mg/L	0.01	-	0.340	0.150	0.0173	0.00467 J	0.0247	0.00124	J 0.00137 J	0.000404 J	0.00182 J	0.00131 J	0.00135 J	0.0192	0.00126	J 0.00131	J 0.00118 J	0.00109 J	0.00188 J
Barium	2 mg/L	1	-	-	-	0.242	0.0757 J	0.190 J	0.0330	J 0.0374 J	0.0443 J	0.0605 J	0.0350 J	0.0396 J	0.718	0.0366	J 0.0362	J 0.0382 J	0.0402 J	0.0384 J
Beryllium	0.004 mg/L	0.004	-	-	-	0.000497 J	0.000145 J	0.000211 J	ND	ND	ND	ND	ND	ND	0.000545 J	ND	ND	ND	ND	0.00372
Cadmium	0.005 mg/L	0.005	-	0.00235	0.00029	0.000312 J	0.000183 J	0.000196 J	ND	ND	ND	ND	ND	ND	0.000563 J	ND	ND	ND	ND	0.00307
Chromium	0.1 mg/L	0.1	-	-	-	0.00969	0.00200 J	0.00383	0.000676	J 0.00143 J	0.000560 J	0.000340 J	0.00111 J	0.00155 J	0.0124	0.00112	J 0.00119	J 0.00134 J	0.00105 J	0.00386
Cobalt	0.006 mg/L					0.0125	0.00581	0.00613	0.000401	J 0.000623 J	0.000691 J	0.0218	0.000730 J	0.000937 J	0.0327	0.000934	J 0.000800	J 0.000841 J	0.000738 J	0.0447
Fluoride	4 mg/L	4	-	-	-	0.144 J	0.0803 J	0.177 J	0.111	J 0.105 J	0.0915 J	0.102 J	0.0958 J	0.0979 J	0.0795 J	0.100	J 0.0954	J 0.0948 J	0.0945 J	0.239 J F1
_ead	0.015 mg/L	0.015	-	0.092	0.0036	0.0109	0.00221 J	0.00521	0.000994	JB 0.00600 B	0.000769 J	0.000523 J	0.00125 JE	3 0.00199 JE	0.0104	0.00115	JB 0.00166 J	B 0.00141 JE	3 0.00147 JB	0.00507
Lithium	0.040 mg/L					0.0126 J	ND	ND	ND	ND	1.80	0.772	ND	ND	0.340	ND	ND	ND	ND	0.0209 J
Mercury	0.002 mg/L	0.002	0.000051	1 0.0014	0.00077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Molybdenum	0.1 mg/L					0.00550 J	0.000948 J	0.00878 J	0.00217	J 0.00130 J	0.00296 J	0.00219 J	0.00222 J	0.00145 J	0.00442 J	0.00105	J 0.00103	J 0.00101 J	0.000981 J	ND
Radium 226	5 pCi/L	5 pCi/L				NS	1.17	NS	0.417	0.249 U	1.31	1.4	0.554	0.735	7.64	0.404	U 0.391 U	J 0.544	0.423 U	1.48
Radium 228	0 0 0 1 2	0 0002							0	0.210 0			0.001	0.100		0.101	0.001		0.120 0	
Selenium	0.05 mg/L	0.17	4.2	-	0.005	0.000582 J	ND	0.000906 J	ND	ND F2	ND	ND	0.000423 J	0.000636 J	0.00121 J	ND	ND	0.000402 J	ND	0.00216 J
Thallium	0.002 mg/L	0.00024	0.00047	-	-	0.000126 J	ND	ND	0.0000500	J ND	ND	ND	ND	ND	0.000164 J	ND	ND	ND	ND	ND
ONIC CONSTITUENTS																				
Total Alkalinity	NA					443	38.2	393	85.6	85.6	174	87.7	85.7	85.8	229	86.1	86.4	80.9	85.8	ND
Hardness (as mg/L of CaCO3))** NA					578	74	318	106	110	3198	3010	108	117	2608	115	108	109	114	1411
Magnesium	NA					36.6	5.20	20.3	6.41	6.62	291	51.8	6.32	6.76	77.8	6.87	6.41	6.45	6.73	63.6
Potassium	NA					4.96	2.37	4.85	2.68	2.91	125	262	3.01	3.65	285	3.06	2.87	2.85	2.95	9.51
Sodium	NA					18.5	5.52	26.7	3.79	3.95	274	277	3.98	4.63	285	4.64	4.01	3.87	4.02	42.1

 *All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

 NA = Not available

 pCi/L = picoCuries per Liter

 SU = Standards units

 µmhos/cm = microSiems per centimeter

 "F = Degrees Fahrenheit

 mV = millivolis

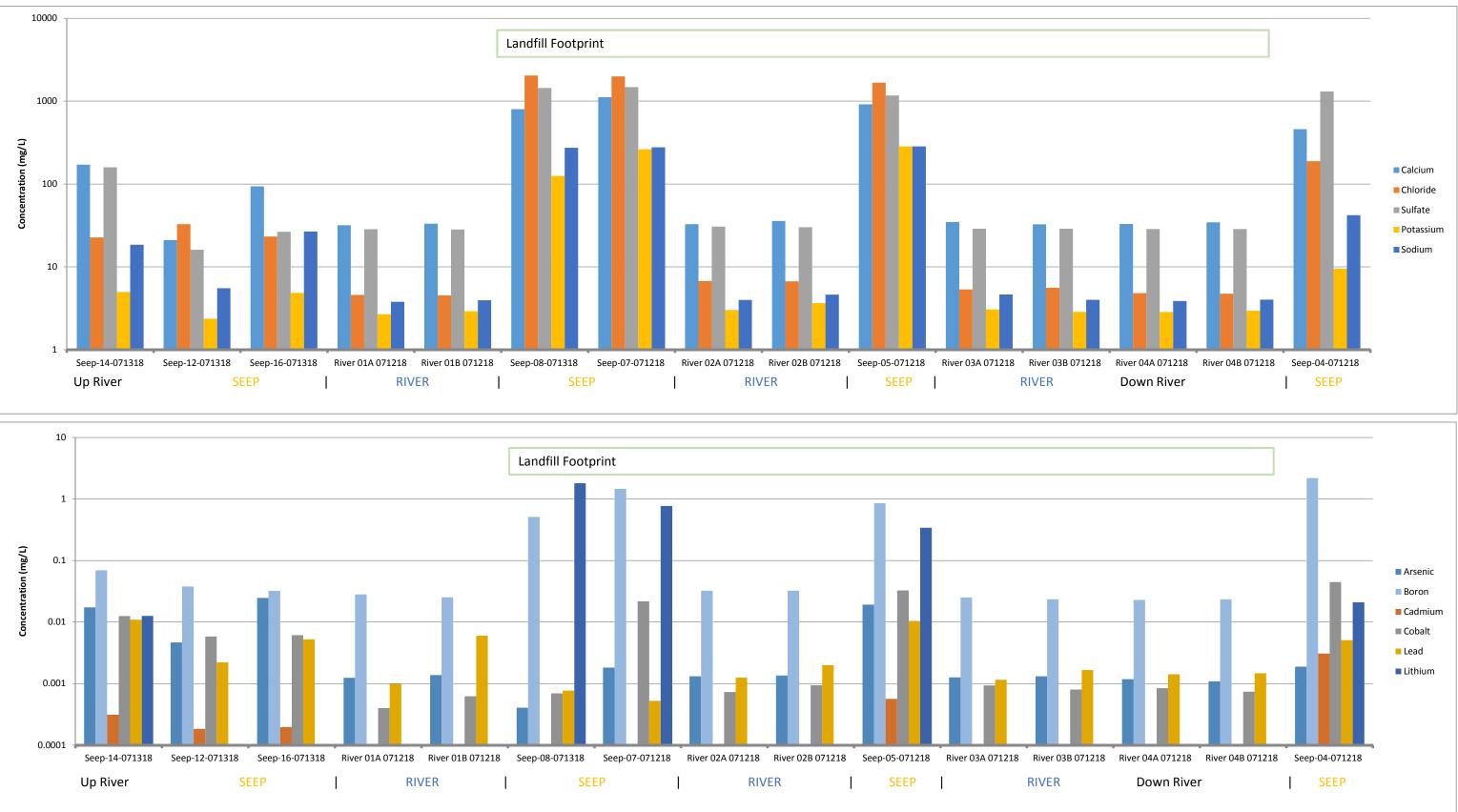
 ND = Not detected above the Method Detection Limit

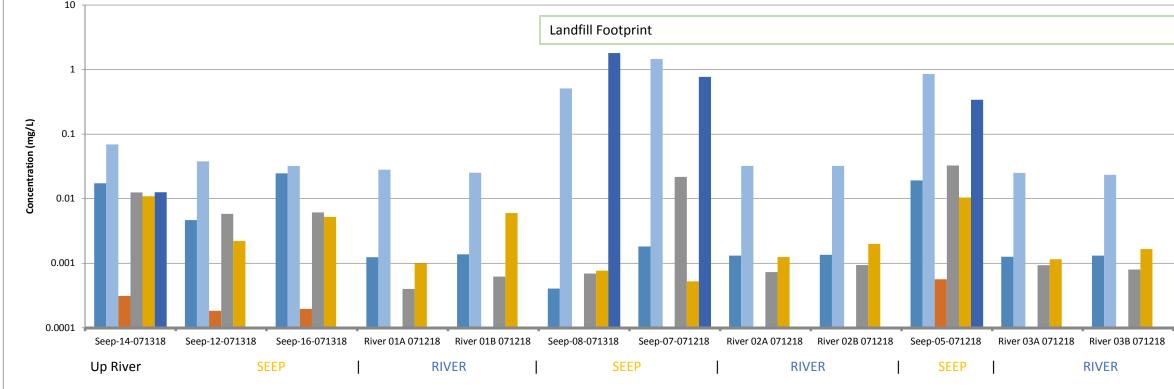
 J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

 B = Compound was found in the blank and sample.

 F1 = MS and/or MSD Recovery is outside acceptance limits.

NM = Not measured U = Result is less than the sample detection limit


Note: River "A" samples collected from surface River "B" samples collected <1 foot above river bed


** The water hardness is using American degree equivalent to mg/L. Water hardness(mg/L)=Ca(mg/L)×2.497 + Mg(mg/L)×4.118

Lead	Criterion = e(1.273 (In Hard*)-4.705)	1.3	3.6		
Cadmium	Criterion = e(0.7409 (In Hard*)-4.719)	0.16	0.29		
		(ug/L)	(ug/L)		
	Equation	Criterion	Criterion		
Constituent	Equation	50	110		
	KY Chronic Warm Water Habitat	(mg/L CaCO ₃)	(mg/L CaCO ₃)		
		Hardness	Hardness**		
ead	Criterion = e(1.273 (In Hard*)-1.460)	34	92		
Cadmium	Criterion = e(1.0166 (In Hard*)-3.924)	1.05	2.35	 	-
		(ug/L)	(ug/L)		_
		Criterion	Criterion		
Constituent	KY Acute Warm Water Habitat Equation	50	110		
		(mg/L CaCO ₃)	(mg/L CaCO ₃)		
		Hardness	Hardness**		

*Hard = Hardness as mg/L CaCO₃ **Average hardness concentration from collected River Samples (7/12/18)

Appendix B Green Landfill Analytical Summary Tables

GREEN LANDFILL ANALYTICAL SUMMARY TABLES

									DA	TE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018	9/28/2018	4/22/2019	9/30/2019
							Baseline Events	;				Assessment	Re-Sampling		Assessment	
Boron	0.08		1.67	1.49	2.25	1.70	1.71 J	1.68	1.85 B	1.79	1.92		1.41	1.94 B	1.73 B	1.68 D2 M4
Calcium	0.5		29.1	31.8 B	33.0	30.9	20.8	28.1	27.1	29.9 B	26.4		26.5	28.5 B	32.1	29.1 D2
Chloride	3		9.03 JB	0.501 JB	6.60 B	6.02 B	5.56 B F1	5.30 B	5.12 B F1	5.71 B	4.07 F1 B		6.34 B	6.17 B	6.41 B F1	7.5
Fluoride	1		ND J	ND JB	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J	ND J F1		ND J	ND JB	0.521 J	0.6
Sulfate	5		25.2	22.8 JB	22.9	20.7 B	28.4	24.0 B	25.3 B	23.4	24.9 JB		23.5	22.5 B	35.1 B F1	19
pH (SU)	0.10		7.39	7.24	7.57	7.19	7.63	7.54	7.45	7.48	7.63		7.08	8.43	7.87	7.79 H3
Total Dissolved Solids	10		598	588	585	585	605	630	614	627	636		585	616	568 B	444 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND B	ND	ND	ND JB	0.00297 B	ND JB		ND JB	ND J	NA	0.000254 JB	ND M1 V1 U
Arsenic	0.005	0.01 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND JB		ND JB	ND J	ND JB	0.00167 JB	0.0005 V1 J
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND J		ND JB	ND J	ND J	0.0862 J	0.091 D2
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000533 J	ND D2 U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000299 J	ND VI U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00354 B	ND U
Cobalt	0.005	0.006 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000571 J	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J		ND J	ND J	ND JB	0.521 J	0.6
Lead	0.005	0.015 mg/L	ND J	ND J	ND J	ND	ND	ND	ND	ND J		ND	ND J	NA	0.000279 J	ND V1 U
Lithium	0.05	0.040 mg/L	0.0293 J	0.0317 J	0.0326 J	0.0286 J	0.0342 J	0.0396 J	0.0314 J	0.0315 J		0.0319 J	0.0298 J	0.0279 J	0.0295 J	ND D2 M3 U
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND		ND J	ND J	NA	0.00105 J	ND U
Radium 226	1	5 pCi/L	1.05	1.02	0.676	1.02	0.694	0.666	0.491	0.601		1.92	0.882	0.905	0.689	0.782
Radium 228	1	5 p0//L	1.05	1.02	0.070	1.02	0.034	0.000	0.431	0.001		1.32	0.002	0.303	0.003	0.733
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND J	ND		ND	ND	NA	0.00105 J	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND J	ND	ND	ND J	ND		ND	ND	NA	0.000498 J	0.0001 V1 J

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

										DATE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/23/2019	10/1/2019
						B	aseline Events					Assessment	Re-Sampling		Assessment	
Boron	0.08		ND J	ND J	ND J	ND J	ND JB	ND J	0.113 JB	ND JB	ND J		ND J	0.0630 JB	0.101 JB	ND D2 U
Calcium	0.5		119	116 B	140	140 B	126	152	154	121	150		155	165 B	156	166 D1
Chloride	3		126 B	125 B	129 B	133	142 B	129 B	145 B	136 B	129 B		154 B	159 B	144	108 D
Fluoride	1		ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1	ND J		ND J	ND JB	0.193 J	0.3
Sulfate	5		80.0	84.5 J	85.5 J	90.1	89.8	83.2	92.0 JB	90.8	88.6 JB		107	108 B	105	79.0 D
pH (SU)	0.10		6.81	6.59	6.7	6.78	7.12	7.04	6.77	6.69	6.86	6.64	6.40	7.02	7.15	7.39 H3
Total Dissolved Solids	10		764	780	830	880	862	918	913	818	970		884	937	918 B	930 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND B	ND JB		ND JB	ND J	NA	0.0000670 JB	ND V1 U
Arsenic	0.005	0.01 mg/L	0.00703 J	0.00633	0.0110	0.0159	0.0462	0.00755	0.0381	0.00527		0.0327 B	0.0119	0.0211 B	0.00738 B	0.0129 D2
Barium	0.2	2 mg/L	ND J	ND J	0.280	0.319	0.347	0.332	0.308	ND J		0.369	0.323	0.367	0.362	0.380 D2
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000281 J	ND D2 U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND	NA	0.00122 JB	ND D2 U
Cobalt	0.005	0.006 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND J		ND JB	ND J	NA	0.00382 J	ND D2 U
Fluoride	1	4 mg/L	ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1		ND J	ND J	ND JB	0.193 J	0.3
Lead	0.005	0.015 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U
Lithium	0.05	0.040 mg/L	ND J	ND	ND	ND	ND J	ND J	ND JB	ND		ND	ND	ND	ND	ND D2 VI U
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND JB		ND J	ND J	NA	0.00210 J	0.003 J
Radium 226	1	5 pCi/L	0.533	ND	0.46	ND	0.856	0.73	0.968	0.537		1.18	0.733	0.803	0.391	0.136
Radium 228		5 p0/L	0.000		0.40		0.000	0.73	0.900	0.007		1.10	0.755	0.003	0.591	0.834
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND JB	ND	ND	ND JB	ND		ND	ND	NA	ND	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.0000800 J	ND V1 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

U = Target analyte was analyzed for, but was below detection limit

										DATE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/6/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/23/201	9 10/1/2019
				•		E	Baseline Events					Assessment	Re-Sampling		Assess	ment
Boron	0.08		0.145	0.135 J	0.279 J	0.213 J	0.235 JB	0.232 J	0.304 JB	0.376 J	0.313		0.177 J	0.257 JB	0.259 JB	ND D2 U
Calcium	0.5		431	322 B	362	365 B	327	420	421	438 B	408		469	447 B	411	490 D1
Chloride	3		2630 HB	3070	2150 B	2150 B	2220 B	2120 B	1790 B	2270 B	1870 B		2180 B	2040 B	1850	4570 D
Fluoride	1		ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16	ND J		ND J	ND JB	0.387 J	0.4
Sulfate	5		1330	1330	1190	1660	1080	1030 B	942	1130	1030 B		1010	1130 B	1080	1680 D
pH (SU)	0.10		6.92	6.86	6.95	6.75	7.17	7.11	6.81	6.9	6.95	6.84	6.55	7.98	7.23	7.33 H3
Total Dissolved Solids	10		4440	5010	4170	4450	4270	5170	5010	5020	5300		4540	4940	4250 B	6900 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.000102 JB	ND V1 U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000575 JB	ND D2 U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0474 J	0.051 D2 U
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.000199 J	ND D2 U
Cadmium	0.001	0.005 mg/L	ND J	ND J	ND	ND	ND J	ND J	ND	ND		ND J	ND J	NA	0.000164 J	ND V1 U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00168 JB	ND D2 U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000243 J	0.008
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16		ND J	ND J	ND JB	0.387 J	0.4
Lead	0.005	0.015 mg/L	ND J	ND	ND	ND	ND	ND	ND J	ND J		ND	ND J	NA	0.000137 J	ND V1 U
Lithium	0.05	0.040 mg/L	0.669	0.516	0.648	0.677	0.689	0.746	0.767	0.762		0.699	0.790	0.766	0.678	0.79 D1
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Radium 226	1	5 pCi/L	1.38	0.386	0.472	1.15	1.15	0.923	1.53	1.03		1.18	1.43	1.21	0.641	0.139
Radium 228		5 po//L	1.50	0.000	0.472	1.15	1.15	0.925	1.55	1.05		1.10	1.45	1.21	0.041	0.734
Selenium	0.01	0.05 mg/L	ND	ND	ND J	ND JB	ND	ND	ND	ND		ND J	ND	NA	0.00103 J	ND D2 U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND	ND	NA	0.000860 J	ND V1 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

H = Sample was prepped or analyzed beyond the specified holding time

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

U = Target analyte was analyzed for, but was below detection limit

										DATE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/22/2019	10/1/2019
				<u>.</u>			Baseline Event	S	-			Assessment	Re-Sampling		Assessment	
Boron	0.08		0.602	0.498 J	1.58	1.7	1.54 B	2.09	2.51 B	2.87 B	1.36		0.751 J	1.33 B	1.25 B	1.75 D2
Calcium	0.5		660	386 B	464	558	591	774	743	739	828		822	722 B	730	690 D1
Chloride	3		1450 B	939 B	952 B	1000 B	1420 B	1320 B	1360 B	1880 B	1730 B		1430 B	1310 B	1510	1910 D
Fluoride	1		ND J	ND	ND J	ND JB	ND J	1.06 B	ND	ND JB	ND J		ND J	ND JB	0.102 J	0.2
Sulfate	5		1830	1640	1420	1420 B	1620	1430 B	1600 B	2020	1590 B		1460	1400 B	1440	2490 D
pH (SU)	0.10		6.36	6.83	7.08	6.61	7.28	7.1	6.84	6.64	6.93	6.86	6.58	8.06	7.26	7.36 H3
Total Dissolved Solids	10		3700	4250	3440	3250	4420	4550	4890	4700 H	6220		4880	5170	4840 B	4820 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000360 JB	ND V1 U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000445 JB	ND D2 U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	ND JB		ND J	ND J	ND J	0.0308 JB	0.029 D2 J
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND	NA	0.00110 JB	ND D2 U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND JB	ND J	NA	0.000415 J	ND U
Fluoride	1	4 mg/L	ND	ND	ND J	ND JB	ND J	ND B	ND	ND JB		ND J	ND J	ND JB	0.102 J	0.2
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U
Lithium	0.05	0.040 mg/L	1.39	0.838	1.13	1.25	1.35	1.59	1.77	1.66		1.81	1.91	1.81	1.73	ND D2 V1 U
Mercury	0.0002	0.002 mg/L	0.00027	0.000224	ND J	0.000248	0.000302	0.000717	0.000825	0.000485		0.000824	0.000832	0.000680	0.000825	0.0004 V1 J
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND	ND	ND J	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Radium 226	1	5 pCi/L	1.26	0.592	ND	0.536	1.22	1.43	1.94	1.19		1.62	2.00	1.51	1.66	0.451
Radium 228	a a	5 POI/L	1.20	0.592		0.000	1.22	1.43	1.34	1.13		1.02	2.00	1.51	1.00	0.804
Selenium	0.01	0.05 mg/L	ND J	ND J	ND J	ND	ND J	ND	ND	ND J		ND J	ND	NA	0.00211 J	ND U
Thallium	0.001	0.002 mg/L	ND	ND	ND	ND J	ND	ND	ND	ND		ND	ND	NA	0.0000410 J	ND V1 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

H = Sample was prepped or analyzed beyond the specified holding time

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

U = Target analyte was analyzed for, but was below detection limit

										DATE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018	9/28/2018	4/22/2019	9/30/2019
						I	Baseline Events					Assessment	Re-Sampling		Assessm	ent
Boron	0.08		0.217	0.0896 J	0.216 J	0.214 J	0.222 JB	0.241 J	0.257 JB	0.276 B	0.262		0.207 J	0.263 JB	0.271	JB ND D2 U
Calcium	0.5		452	189 B	374	399	335	464	423	407 B	383		469	441 B	446	476 D1
Chloride	3		1630 B	521	688 B	755 B	734 B	722 B	945 B	779 B	608 B		941 B	1140 B	931	1500 D
Fluoride	1		ND J	ND	ND J	ND	ND J	ND JB	ND	3.69	ND J		ND J	ND JB	0.128	J 0.2
Sulfate	5		1760 HB	876	1780	1740 B	1880	1760 B	2060 B	1920	1600 B		1800	1890 B	1800	2990 D
pH (SU)	0.10		6.76	6.74	6.99	6.61	7.14	7.44	6.87	7.13	7.06	6.88	6.40	7.99	7.15	7.41 H3
Total Dissolved Solids	10		4210	1660	3470	3610	3680	4250	4130	4120	4390		4100	4540	4360	B 5320 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000700	JB ND V1 U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND JB	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000424	JB ND D2 U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0167	J 0.016 D2 J
Beryllium	0.002	0.004 mg/L	ND	ND	ND J	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Cadmium	0.001	0.005 mg/L	ND J	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND J	ND J	ND	ND J		0.00363 B	ND	NA	0.00159	JB 0.0033
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND	ND J	ND	ND J		ND JB	ND J	NA	0.000288	J ND U
Fluoride	1	4 mg/L	ND J	ND	ND J	ND	ND J	ND	ND	3.69		ND J	ND J	ND JB	0.128	J 0.2
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND J	ND J	NA	0.0000860	J ND V1 U
Lithium	0.05	0.040 mg/L	0.521	0.136	0.305	0.325	0.368	0.415	0.405	0.353		0.459	0.481	0.425	0.434	0.40 D1
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	0.00351	ND		ND	ND	ND	ND	ND V1 U
Molybdenum	0.01	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Radium 226	1	5 pCi/L	1.16	0.736	0.959	0.957	0.765	0.888	1.54	0.773		0.862	1.42	1.37	0.945	0.368
Radium 228				000	0.000	0.000				00					01010	0.730
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND J	ND J	ND	ND		ND J	ND	NA	0.000624	ND U
Thallium	0.001	0.002 mg/L	ND	ND	ND J	ND J	ND	ND J	ND	ND J		ND J	ND	NA	0.0000890	ND V1 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

- GWPS = Groundwater Protection Standard
- NA = Not Analyzed
- ND = Not Detected at or above Method Detection Limit
- pCi/L = picoCuries per Liter
- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- H = Sample was prepped or analyzed beyond the specified holding time
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

										DATE						
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018	9/28/2018	4/22/2019	9/30/2019
						E	Baseline Events	5				Assessment	Re-Sampling		Assessment	
Boron	0.08		0.156	0.137 J	0.193 J	0.168 J	0.173 B	0.179 J	0.167 JB	0.199 J	0.178		0.155 J	0.196 JB	0.194 JB	ND D2 U
Calcium	0.5		467	374 B	373	400	320	415	365	382 B	376		386	356 B	421	431 D1
Chloride	3		167 B	149 B	136 JB	150 B	125 B	129 B	128 B	123 B	138 B		147 B	142 B	142	230 D
Fluoride	1		ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J	ND J		ND J	ND JB	0.409 J	0.5
Sulfate	5		2250 HB	3340	2550	2610 B	2700	2600 B	2820 B	2490	2700 B		2120	2420	2200	3830 D
pH (SU)	0.10		6.66	6.65	6.96	6.6	6.92	6.97	6.76	6.95	6.86		6.50	7.94	6.86	7.15 H3
Total Dissolved Solids	10		4060	4280	4350	4470	4720	4700	4830	4890	4910		4500	4820	4780 B	4830 H1
APPENDIX IV CONSTITUENTS																
Antimony	0.002	0.006 mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB		ND JB	ND	NA	0.0000920 JB	ND V1 U
Arsenic	0.005	0.01 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB		ND JB	ND J	ND JB	0.000722 JB	ND V1 U
Barium	0.2	2 mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND J	ND J	ND J	0.0128 J	0.010 D2 J
Beryllium	0.002	0.004 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND D2 U
Cadmium	0.001	0.005 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	NA	ND	ND V1 U
Chromimum	0.003	0.1 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND	NA	0.00196 JB	ND U
Cobalt	0.005	0.006 mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J	NA	0.000276 J	ND U
Fluoride	1	4 mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J		ND J	ND J	ND JB	0.409 J	0.5
Lead	0.005	0.015 mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND		ND	ND J	NA	ND	ND V1 U
Lithium	0.05	0.040 mg/L	0.0475 J	0.0527	0.0555	0.0524	0.0607	0.0724	0.0589	0.0554		0.0650	0.0592	0.0558	0.0633	0.05 D2 V1 J
Mercury	0.0002	0.002 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND V1 U
Molybdenum	0.01	0.1 mg/L	ND J	ND J	ND J	ND B	ND J	ND J	ND J	ND J		ND J	ND J	NA	0.000972 J	ND D2 U
Radium 226	1	5 pCi/L	0.741	0.386	ND	0.751	ND	ND	0.462	ND		0.392	0.532	NDU	0.450	0.548
Radium 228	I	5 p0//L	0.741	0.000		0.751			0.402			0.552	0.002		0.400	0.698
Selenium	0.01	0.05 mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND J	ND	NA	0.00110 J	ND U
Thallium	0.001	0.002 mg/L	ND	ND J	ND	ND	ND	ND	ND	ND		ND	ND	NA	0.0000610 J	ND V1 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J or U = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

H = Sample was prepped or analyzed beyond the specified holding time

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

U = Target analyte was analyzed for, but was below detection limit

				DA	Έ		
APPENDIX III CONSTITUENTS	Detection Limit	GWPS	3/29/201	9 4/10/2	019	10/25/20)19
				Characte	rization	_	
Boron	0.08		0.1880	JB 0.27	0 JB	ND	D2, U
Calcium	0.5		465 I	B 50)2	505	D1
Chloride	3		1430	143	80 B	1610	D
Fluoride	1		ND	0.323	30 JB	0.4	
Sulfate	5		2870	28	30 B	2440	D
pH (Field Measurement)	0.10		6.88	6.9	99	6.86	
Total Dissolved Solids	10		6990	669	90	7330	
APPENDIX IV CONSTITUENTS							
Antimony	0.002	0.006 mg/L	0.0001	JB 0.00)1 JB	ND	U
Arsenic	0.005	0.01 mg/L	0.0022	J 0.002	21 J	0.0039	
Barium	0.2	2 mg/L	0.0243	J 0.02	6 JB	0.030	
Beryllium	0.002	0.004 mg/L	ND	N	D	ND	U
Cadmium	0.001	0.005 mg/L	ND	Ν	D	0.0004	J
Chromium	0.003	0.1 mg/L	0.0047	B 0.003	36	0.0066	
Cobalt	0.005	0.006 mg/L	0.0059 I	B 0.00	52	0.011	
Fluoride	1	4 mg/L	ND	0.323	30 JB	0.4	
Lead	0.005	0.015 mg/L	0.0011	J 0.00)2 J	0.003	
Lithium	0.05	0.040 mg/L	0.0281	J 0.02	36 J	0.02	
Mercury	0.0002	0.002 mg/L	ND	Ν	D ^	ND	U
Molybdenum	0.01	0.1 mg/L	0.0015	J 0.00	0 J	0.005	J
Radium 226	1	5 pCi/L	0.7760	0.3190	U	0.126	
Radium 228		5 po#L	0.7700	0.5190	0	1.52	
Selenium	0.01	0.05 mg/L	ND	N	D	ND	U
Thallium	0.001	0.002 mg/L	ND	N	D	ND	U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

ND = Not Detected at or above Method Detection Limit

pCi/L = picoCuries per Liter

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

U = Target analyte was analyzed for, but was below detection limit

1/16/2020

Appendix C Green Landfill Statistical Procedures and Results

1.0 GREEN LANDFILL STATISTICAL PROCEDURES AND RESULTS

The Appendix III and IV groundwater quality data for the Green Landfill were evaluated using an interwell approach that statistically compared constituent concentrations at downgradient compliance monitoring wells to those present at a background monitoring well. For the Green Landfill, monitoring well MW-1 is designated as the background well because it is located upgradient, whereas monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 are designated as compliance wells because they are located downgradient.

The statistical analyses were performed in accordance with the U.S. Environmental Protection Agency's Final CCR Rule 40 CFR Parts 257.93(f), 257.93(g), and 257.93(h) and the Groundwater Monitoring System and Statistical Methods Certification. Prediction limits (i.e., parametric or nonparametric) with 1 of 2 retesting were developed for each constituent based on the frequency of non-detect values and whether the background data for that constituent exhibited a normal, lognormal, or nonparametric distribution. For the statistical analysis, non-detect values were represented as one-half the detection limit. No outliers were identified in the background data. Analytical data from the background monitoring wells collected between March 2016 and October 2019 were used to develop an upper prediction limit (UPL) for the Appendix III and IV background data at 95 percent confidence. Data from the downgradient monitoring wells for the same time period were compared to the UPL to identify statistically significant increases (SSIs) over background. Mann-Kendall trend analysis was used to identify statistically significant increasing trends for constituents with SSIs. ProUCL Version 5.1 was used to store the data and run the statistical analyses. The results of the analyses, including the UPLs, are provided in **Tables C1** and **C2**.

The statistical analysis results indicate that Appendix III constituents calcium, chloride, sulfate, and total dissolved solids (TDS) at monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 have SSIs over background (**Table C3**) that were confirmed by subsequent sampling events. Boron, fluoride, and pH did not have any verified SSIs over background. pH at MW-6 had a verified SSI below the background lower prediction limit (LPL). Based on these results, assessment monitoring was conducted at the landfill. Statistical analysis of the April and October 2019 Appendix IV assessment monitoring results indicate that arsenic and barium at monitoring well MW-2, lithium at monitoring wells MW-3A, MW-4, MW-5, and MW-6, and mercury at monitoring well MW-4 have verified SSIs over background (**Table C4**).

The Appendix IV constituents with SSIs were further evaluated to determine whether they are present at statistically significant levels (SSLs) over the groundwater protection standards (GWPS) by calculating the lower confidence limit at 95% confidence (95LCL) for each well and constituent identified as a SSI using the baseline, detection, and assessment monitoring results collected to date. For a constituent to be present at a SSL over the GWPS, its 95LCL must be greater than the GWPS. **Table C5** provides a summary of the 95LCLs and GWPS for arsenic, barium, lithium, and mercury at monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6. The results indicate that lithium at monitoring wells MW-3A, MW-4, MW-5, and MW-6 (yellow highlight) is present as a SSL above the GWPS. The LCLs for the remaining wells and constituents (arsenic, barium, and mercury) are less than the GWPS and thus are not considered SSLs.

Parameter (Units)	Number of Samples	Percent Non-detects	Normal or Lognormal Distribution?	Statistical Test	Background Limit
Boron (mg/L)	13	0	Yes/Yes	Parametric	2.122
Calcium (mg/L)	13	0	Yes/Yes	Parametric	35
Chloride (mg/L)	13	0	Yes/No	Parametric	9.3
Fluoride (mg/L)	13	0	No/No	Nonparametric	0.89
pH (std units)	13	0	Yes/Yes	Parametric	6.99/7.93
Sulfate (mg/L)	13	0	Yes/Yes	Parametric	33
TDS (mg/L)	13	0	No/No	Nonparametric	636

Table C1. Well MW-1 Appendix III Constituents Background Upper Prediction Limits

Note: pH has both a lower prediction limit (LPL) and upper prediction limit (UPL); all other constituents are represented as UPLs

Parameter (Units)	Number of Samples	Percent Non- detects	Normal or Lognormal Distribution?	Statistical Test	Background Limit
Antimony (mg/L)	13	31	No/No	Nonparametric	0.003
Arsenic (mg/L)	12	0	No/No	Nonparametric	0.0026
Barium (mg/L)	12	0	Yes/Yes	Parametric	0.098
Beryllium (mg/L)	12	92	No/No	Nonparametric	0.002
Cadmium (mg/L)	12	92	No/No	Nonparametric	0.001
Chromium (mg/L)	12	62	Yes/Yes	Parametric	0.0024
Cobalt (mg/L)	12	8	Yes/Yes	Parametric	0.0014
Fluoride (mg/L)	13	0	No/No	Nonparametric	0.89
Lead (mg/L)	13	46	Yes/No	Parametric	0.0003
Lithium (mg/L)	12	8	Yes/Yes	Parametric	0.037
Mercury (mg/L)	13	100	No/No	Nonparametric	0.0002
Molybdenum (mg/L)	13	31	No/No	Nonparametric	0.01
Ra-226+228 (pCi/L)	12	0	No/Yes	Parametric	1.74
Selenium (mg/L)	12	85	No/No	Nonparametric	0.01
Thallium (mg/L)	13	61	No/No	Nonparametric	0.0006

Table C2. Well MW-1 Appendix IV Constituents Background Upper Prediction Limits

Note: The UPL for constituents with 100 percent nondetects (Be, Cd, and Hg) is established as the maximum laboratory analytical reporting limit.

Table C3. Big Rivers G	Green Landfill Appendix III SSI Summary

Well	Location	В	Ca	CI	F		H ′UPL)	SO4	TDS
MW-1	Upgradient	Р	Р	Р	NP	Р	Р	Р	NP
MW-2	Downgradient								
MW-3A	Downgradient								
MW-4	Downgradient								
MW-5	Downgradient								
MW-6	Downgradient								

Notes:

SSIs determined using interwell prediction limits; MW-8 is upgradient background well

P = parametric prediction limit; NP = nonparametric prediction limit

Less than or equal to background upper prediction limit (UPL) or greater than lower prediction limit (LPL) for pH

Statistically significant increase (SSI) over background UPL or below background LPL for pH

Table C4. Big Rivers Green Landfill Appendix IV SSI Summary

Well	Location	Sb	As	Ва	Ве	Cd	Cr	Co	F	Pb	Li	Hg	Мо	Ra-226+228	Se	ті
MW-1	Upgradient	NP	Np	Р	NP	NP	Р	Р	NP	Pb	Р	NP	NP	Р	NP	NP
MW-2	Downgradient															
MW-3A	Downgradient															
MW-4	Downgradient															
MW-5	Downgradient															
MW-6	Downgradient															
Notes:																<u> </u>

SSIs determined using interwell prediction limits; MW-8 is upgradient background well

P = parametric prediction limit; NP = nonparametric prediction limit

Less than or equal to background upper prediction limit (UPL) or greater than lower prediction limit (LPL) for pH

Statistically significant increase (SSI) over background UPL or below background LPL for pH

Table C5. Summary of LCLs and GWPS for Arsenic, Barium, Lithium, and Mercury

Well	Parameter	95%LCL (mg/L)	GWPS (mg/L)
MW-2	Arsenic	0.008	0.01
MW-2	Barium	0.25	2.0
MW-3A	Lithium	0.65	0.04
MW-3A	Mercury	0.0001	0.002
MW-4	Lithium	1.04	0.04
MW-5	Lithium	0.32	0.04
MW-6	Lithium	0.055	0.04

95%LCL = lower confidence limit at 95% confidence. Yellow highlighted results exhibit a statistically significant level (SSL) above the GWPS.

Appendix D Green Landfill – April 2020 Groundwater Analytical Data

Certificate of Analysis 0041376

Chad Phillips Big Rivers Electric Corporation Reid/Green Station PO Box 24 Henderson KY, 42419

Project Name: Green Landfill Semiannual Groundwater

Dear Chad Phillips

Enclosed are the analytical results for samples received at one of our laboratories on 04/07/2020 15:49.

Pace Analytical Services LLC Kentucky is a commercial laboratory accredited by various state and national authorities, including Indiana, Kentucky, Tennessee, and Virginia's National Environmental Laboratory Accreditation Program (NELAP). With the NELAP accreditation, applicable test results are certified to meet the requirements of the National Environmental Laboratory Accreditation Program.

If you have any questions concerning this report please contact the individual listed below.

Please note that this certificate of analysis may not be reproduced without the written consent of Pace Analytical Services, LLC Kentucky.

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

44-102032

04/30/2020 14:59

Rob Whittington, Project Manager

Workorder:

Customer ID:

Report Printed:

0041376

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
	onent Sample ID/Allas		Wattix	Date Conected	Date Necerveu	Campieu Dy
0041376-01	MW1/		Groundwater	04/06/2020 13:05	04/07/2020 15:49	Phillip Hill
0041376-02	MW2/		Groundwater	04/07/2020 11:40	04/07/2020 15:49	Phillip Hill
0041376-03	MW3A/		Groundwater	04/07/2020 13:55	04/07/2020 15:49	Phillip Hill
0041376-04	MW4/		Groundwater	04/07/2020 09:55	04/07/2020 15:49	Phillip Hill
0041376-05	MW5/		Groundwater	04/07/2020 10:10	04/07/2020 15:49	Phillip Hill
0041376-06	MW6/		Groundwater	04/06/2020 14:20	04/07/2020 15:49	Phillip Hill
0041376-07	DUPLICATE/		Groundwater	04/07/2020 10:20	04/07/2020 15:49	Phillip Hill
0041376-08	FIELD BLANK/		Water	04/07/2020 11:50	04/07/2020 15:49	Phillip Hill
LabNumber	Measurement	Value				
0041376-01	Field Conductance	867				
	Field pH	7.22				
	Field Temp (C)	18.23				
0041376-02	Field Conductance	1590				
	Field pH	6.92				
	Field Temp (C)	16.86				
0041376-03	Field Conductance	8090				
	Field pH	6.92				
	Field Temp (C)	16.86				
0041376-04	Field Conductance	6770				
	Field pH	6.70				
	Field Temp (C)	16.47				
0041376-05	Field Conductance	6250				
	Field pH	6.77				
	Field Temp (C)	14.85				
0041376-06	Field Conductance	5010				
	Field pH	6.36				
	Field Temp (C)	20.50				
0041376-07	Field Conductance	6770				
	Field pH	6.70				
	Field Temp (C)	16.47				

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 0041376-01 Description: MW1

Sample Collection Date Time: 04/06/2020 13:05 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Arsenic	0.0019		mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Barium	0.087		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Boron	1.69	D1, M3	mg/L	1.00	1.00	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:42	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Calcium	27.7	D1, M3	mg/L	4.00	1.30	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:42	DMH
Chromium	0.0011	J	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Iron	1.57		mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:39	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Lithium	0.03		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH
Sodium	206	D1, M3	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:46	DMH
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:13	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	8	8	HACH 8000	04/10/2020 13:13	04/10/2020 13:13	ALT
Specific Conductance (Lab)	962		umhos/cm	1	1	2510 B-2011	04/09/2020 15:52	04/09/2020 15:52	JLW
pH (Lab)	7.50	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:14	04/09/2020 16:14	GAT
Total Dissolved Solids	488		mg/L	50	50	2540 C-2011	04/13/2020 10:14	04/14/2020 12:26	MAG
Total Organic Carbon	1.0		mg/L	0.5		5310 C-2011	04/14/2020 10:27	04/14/2020 10:27	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.340	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.468	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	0.808	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result Fla	g Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	6.5	mg/L	2.0	1.3	SW846 9056	04/16/2020 00:56	04/16/2020 00:56	CSC
Fluoride	0.5	mg/L	0.2	0.1	SW846 9056	04/16/2020 00:56	04/16/2020 00:56	CSC
Sulfate	21	mg/L	1	0.5	SW846 9056	04/16/2020 00:56	04/16/2020 00:56	CSC

Lab Sample ID: 0041376-02 Description: MW2

Sample Collection Date Time: 04/07/2020 11:40 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Arsenic	0.0033		mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Barium	0.238		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:49	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Calcium	145	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:55	DMH
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Iron	0.459		mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:49	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Lithium	0.007	J	mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Molybdenum	0.002	J	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH
Sodium	66.5	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 16:55	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:16	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	12		mg/L	8	8	HACH 8000	04/10/2020 13:13	04/10/2020 13:13	ALT
Specific Conductance	1530		umhos/cm	1	1	2510 B-2011	04/09/2020 15:53	04/09/2020 15:53	JLW
(Lab) pH (Lab)	7.22	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:15	04/09/2020 16:15	CML
Total Dissolved Solids	806		mg/L	50	50	2540 C-2011	04/13/2020 10:18	04/14/2020 12:26	MAG
Total Organic Carbon	1.0		mg/L	0.5		5310 C-2011	04/14/2020 10:48	04/14/2020 10:48	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.513	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.016	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	0.529	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	120	D	mg/L	100	64.0	SW846 9056	04/16/2020 01:29	04/16/2020 01:29	CSC
Fluoride	0.2		mg/L	0.2	0.1	SW846 9056	04/16/2020 01:12	04/16/2020 01:12	CSC
Sulfate	85	D	mg/L	50	25	SW846 9056	04/16/2020 01:29	04/16/2020 01:29	CSC

Lab Sample ID: 0041376-03 Description: MW3A Sample Collection Date Time: 04/07/2020 13:55 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Barium	0.042		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Boron	0.26		mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:11	DMH
Cadmium	0.0001	J	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Calcium	425	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:17	DMH
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:11	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Lithium	0.68		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH
Sodium	352	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:17	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:20	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	160		mg/L	8	8	HACH 8000	04/10/2020 13:14	04/10/2020 13:14	ALT
Specific Conductance (Lab)	7660		umhos/cm	1	1	2510 B-2011	04/09/2020 15:54	04/09/2020 15:54	JLW
pH (Lab)	7.07	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:16	04/09/2020 16:16	CML
Total Dissolved Solids	5860		mg/L	50	50	2540 C-2011	04/13/2020 10:22	04/14/2020 12:26	MAG
Total Organic Carbon	ND	U	mg/L	0.5		5310 C-2011	04/14/2020 12:15	04/14/2020 12:15	HMF

Subcontracted Analyses

Analyte	Result F	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.603 _	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.460 _	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	1.06 _	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	3220	D	mg/L	200	128	SW846 9056	04/16/2020 02:02	04/16/2020 02:02	CSC
Fluoride	0.5		mg/L	0.2	0.1	SW846 9056	04/16/2020 01:45	04/16/2020 01:45	CSC
Sulfate	1840	D	mg/L	100	50	SW846 9056	04/16/2020 02:02	04/16/2020 02:02	CSC

Lab Sample ID: 0041376-04 Description: MW4

Sample Collection Date Time: 04/07/2020 09:55 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Barium	0.022		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Boron	0.83		mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:20	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Calcium	464	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:27	DMH
Chromium	0.0008	J	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:20	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Lithium	0.82		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Mercury	0.0003	J	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Molybdenum	0.002	J	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Selenium	0.023		mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH
Sodium	433	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:27	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:24	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	44		mg/L	8	8	HACH 8000	04/10/2020 13:14	04/10/2020 13:14	ALT
Specific Conductance (Lab)	6460		umhos/cm	1	1	2510 B-2011	04/09/2020 15:55	04/09/2020 15:55	JLW
pH (Lab)	7.10	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:17	04/09/2020 16:17	CML
Total Dissolved Solids	5120		mg/L	50	50	2540 C-2011	04/13/2020 10:26	04/14/2020 12:26	MAG
Total Organic Carbon	0.6		mg/L	0.5		5310 C-2011	04/14/2020 12:37	04/14/2020 12:37	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.476	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.787	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	1.26	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1560	D	mg/L	200	128	SW846 9056	04/16/2020 02:34	04/16/2020 02:34	CSC
Fluoride	0.2		mg/L	0.2	0.1	SW846 9056	04/16/2020 02:18	04/16/2020 02:18	CSC
Sulfate	4000	D	mg/L	100	50	SW846 9056	04/16/2020 02:34	04/16/2020 02:34	CSC

Lab Sample ID: 0041376-05 Description: MW5

Sample Collection Date Time: 04/07/2020 10:10 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Barium	0.014		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Boron	0.25		mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:30	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Calcium	464	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:36	DMH
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:30	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Lithium	0.38		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH
Sodium	217	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:36	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:28	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	463		mg/L	8	8	HACH 8000	04/10/2020 13:14	04/10/2020 13:14	ALT
Specific Conductance (Lab)	5950		umhos/cm	1	1	2510 B-2011	04/09/2020 15:56	04/09/2020 15:56	JLW
pH (Lab)	6.94	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:18	04/09/2020 16:18	CML
Total Dissolved Solids	4960		mg/L	50	50	2540 C-2011	04/13/2020 10:30	04/14/2020 12:26	MAG
Total Organic Carbon	0.6		mg/L	0.5		5310 C-2011	04/16/2020 21:48	04/16/2020 21:48	HMF

Subcontracted Analyses

Analyte	Result F	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.302	Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	1.18 _	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	1.48 _	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1860	D	mg/L	200	128	SW846 9056	04/16/2020 03:07	04/16/2020 03:07	CSC
Fluoride	0.2		mg/L	0.2	0.1	SW846 9056	04/16/2020 02:51	04/16/2020 02:51	CSC
Sulfate	3720	D	mg/L	100	50	SW846 9056	04/16/2020 03:07	04/16/2020 03:07	CSC

Lab Sample ID: 0041376-06 Description: MW6

Sample Collection Date Time: 04/06/2020 14:20 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Barium	0.011		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Boron	0.19		mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:49	DMH
Cadmium	0.0001	J	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Calcium	458	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:55	DMH
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Iron	0.078	J	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:49	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Lithium	0.05		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH
Sodium	435	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:55	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:32	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	22		mg/L	8	8	HACH 8000	04/10/2020 13:14	04/10/2020 13:14	ALT
Specific Conductance (Lab)	4960		umhos/cm	1	1	2510 B-2011	04/09/2020 15:57	04/09/2020 15:57	JLW
pH (Lab)	6.76	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:19	04/09/2020 16:19	CML
Total Dissolved Solids	4610		mg/L	50	50	2540 C-2011	04/13/2020 10:34	04/14/2020 12:26	MAG
Total Organic Carbon	2.0		mg/L	0.5		5310 C-2011	04/16/2020 22:11	04/16/2020 22:11	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.061	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.683	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	0.744	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	181	D	mg/L	100	64.0	SW846 9056	04/16/2020 04:13	04/16/2020 04:13	CSC
Fluoride	0.4		mg/L	0.2	0.1	SW846 9056	04/16/2020 03:57	04/16/2020 03:57	CSC
Sulfate	4650	D	mg/L	100	50	SW846 9056	04/16/2020 12:57	04/16/2020 12:57	CSC

Lab Sample ID: 0041376-07 Description: DUPLICATE

Sample Collection Date Time: 04/07/2020 10:20 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Barium	0.022		mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Boron	0.86		mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:58	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Calcium	503	D1	mg/L	40.0	13.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:05	DMH
Chromium	0.0009	J	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 17:58	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Lithium	0.84		mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Mercury	0.0003	J	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Molybdenum	0.003	J	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Selenium	0.025		mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH
Sodium	468	D1	mg/L	26.0	10.0	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:05	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:36	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	62		mg/L	8	8	HACH 8000	04/10/2020 13:14	04/10/2020 13:14	ALT
Specific Conductance (Lab)	6410		umhos/cm	1	1	2510 B-2011	04/09/2020 15:58	04/09/2020 15:58	JLW
pH (Lab)	7.12	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:20	04/09/2020 16:20	CML
Total Dissolved Solids	4700		mg/L	50	50	2540 C-2011	04/13/2020 10:38	04/14/2020 12:26	MAG
Total Organic Carbon	0.8		mg/L	0.5		5310 C-2011	04/16/2020 22:34	04/16/2020 22:34	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.371	_Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	1.10	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	1.47	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1480	D	mg/L	100	64.0	SW846 9056	04/21/2020 14:14	04/21/2020 14:14	CSC
Fluoride	0.2		mg/L	0.2	0.1	SW846 9056	04/16/2020 04:46	04/16/2020 04:46	CSC
Sulfate	4050	D	mg/L	100	50	SW846 9056	04/23/2020 12:44	04/23/2020 12:44	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 0041376-08 Description: FIELD BLANK

Sample Collection Date Time: 04/07/2020 11:50 Sample Received Date Time: 04/07/2020 15:49

Metals by SW846 6000 Series Methods

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Barium	ND	U	mg/L	0.004	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:08	DMH
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:08	DMH
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:08	DMH
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Lithium	ND	U	mg/L	0.02	0.005	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH
Sodium	ND	U	mg/L	0.26	0.10	SW846 6010 B	04/09/2020 07:40	04/12/2020 18:08	DMH
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	04/09/2020 07:40	04/12/2020 16:55	DMH

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	8	8	HACH 8000	04/10/2020 13:15	04/10/2020 13:15	ALT
Specific Conductance (Lab)	8		umhos/cm	1	1	2510 B-2011	04/09/2020 15:59	04/09/2020 15:59	JLW
pH (Lab)	7.62	H3	Std. Units	0.10	0.10	4500-H+ B-2000	04/09/2020 16:21	04/09/2020 16:21	CML
Total Dissolved Solids	ND	U	mg/L	50	50	2540 C-2011	04/13/2020 10:42	04/14/2020 12:26	MAG
Total Organic Carbon	ND	U	mg/L	0.5		5310 C-2011	04/16/2020 22:57	04/16/2020 22:57	HMF

Subcontracted Analyses

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Radium-226	0.224 _Sub	pCi/L			EPA 903.1	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium-228	0.262 _Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW
Radium	0.486 _Sub	pCi/L			EPA 904.0 Radium Sum Calc	04/30/2020 14:07	04/30/2020 14:09	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	ND	M1, U	mg/L	2.0	1.3	SW846 9056	04/16/2020 05:03	04/16/2020 05:03	CSC
Fluoride	ND	M1, U	mg/L	0.2	0.1	SW846 9056	04/16/2020 05:03	04/16/2020 05:03	CSC
Sulfate	ND	M1, U	mg/L	1	0.5	SW846 9056	04/16/2020 05:03	04/16/2020 05:03	CSC

Notes for work order 0041376

- Samples collected by MMLI personnel are done so in accordance with procedures set forth in MMLI field services SOPs.
- Results contained in this report are only representative of the samples received.
- MMLI does not provide interpretation of these results unless otherwise stated.
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

- _Sub See subcontractors report.
- D Results reported from dilution.
- D1 Sample required dilution due to high concentration of target analyte.
- D2 Sample required dilution due to matrix interference.
- H3 Sample received and analyzed past holding time.
- J Estimated value.
- M1 Matrix spike recovery was high; the method control sample recovery was acceptable.
- M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- U Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronymns

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery
RPD	Relative Percent Difference
> <	Greater than

Less than

		D ()		0."	0					
	D	Reporting	11	Spike	Source	0/ DE0	%REC	DED	RPD	Net
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B015276 - EPA 200.2										
Blank (B015276-BLK1)										
Prepared: 4/9/2020 7:40, Analyzed: 4/12/2020 16:05	5									
Molybdenum	ND	0.01	mg/L							U
Antimony	ND	0.005	mg/L							U
Mercury	ND	0.0005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Copper	ND	0.003	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
Blank (B015276-BLK2)										
Prepared: 4/9/2020 7:40, Analyzed: 4/12/2020 16:33	3									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
Iron	ND	0.100	mg/L							U
Sodium	ND	0.26	mg/L							U
LCS (B015276-BS1)										
Prepared: 4/9/2020 7:40, Analyzed: 4/12/2020 16:09	9									
Molybdenum	0.07	0.01	mg/L	0.0625		105	85-115			
Antimony	0.068	0.005	mg/L	0.0625		109	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		98.3	85-115			
Arsenic	0.0645	0.0010	mg/L	0.0625		103	85-115			
Barium	0.062	0.004	mg/L	0.0625		99.5	85-115			
Beryllium	0.0613	0.0020	mg/L	0.0625		98.1	85-115			
Cadmium	0.0621	0.0010	mg/L	0.0625		99.4	85-115			
Chromium	0.0641	0.0020	mg/L	0.0625		103	85-115			
Cobalt	0.064	0.004	mg/L	0.0625		102	85-115			
Copper	0.060	0.003	mg/L	0.0625		95.6	85-115			
Lead	0.062	0.002	mg/L	0.0625		98.7	85-115			
Lithium	0.06	0.02	mg/L	0.0625		96.9	85-115			
Selenium	0.065	0.003	mg/L	0.0625		104	85-115			
Thallium	0.0632	0.0020	mg/L	0.0625		101	85-115			

Metals by SW846 6000 Series Methods - Quality Control

Metals by SW846 6000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Analyte	Result	LIIIII	Onits	Level	Result		LIIIIII	INF D	LIIIII	NOLES
Batch B015276 - EPA 200.2										
LCS (B015276-BS2)										
Prepared: 4/9/2020 7:40, Analyzed: 4/12	/2020 16:36									
Boron	0.12	0.10	mg/L	0.125		94.1	85-115			
Calcium	5.92	0.40	mg/L	6.25		94.8	85-115			
Iron	6.27	0.100	mg/L	6.25		100	85-115			
Sodium	6.12	0.26	mg/L	6.25		97.9	85-115			
Matrix Spike (B015276-MS1)	Source: 0041376-01									
Prepared: 4/9/2020 7:40, Analyzed: 4/12	/2020 16:59									
Molybdenum	0.06	0.01	mg/L	0.0625	ND	102	80-120			
Antimony	0.066	0.005	mg/L	0.0625	ND	106	80-120			
Mercury	0.0023	0.0005	mg/L	0.00250	ND	93.6	80-120			
Arsenic	0.0634	0.0010	mg/L	0.0625	0.0019	98.3	80-120			
Barium	0.150	0.004	mg/L	0.0625	0.087	101	80-120			
Beryllium	0.0547	0.0020	mg/L	0.0625	ND	87.4	80-120			
Cadmium	0.0562	0.0010	mg/L	0.0625	ND	89.9	80-120			
Chromium	0.0656	0.0020	mg/L	0.0625	0.0011	103	80-120			
Cobalt	0.063	0.004	mg/L	0.0625	ND	101	80-120			
Copper	0.056	0.003	mg/L	0.0625	ND	89.6	80-120			
Lead	0.056	0.002	mg/L	0.0625	ND	90.2	80-120			
Lithium	0.09	0.02	mg/L	0.0625	0.03	95.1	80-120			
Selenium	0.055	0.003	mg/L	0.0625	ND	88.1	80-120			
Thallium	0.0579	0.0020	mg/L	0.0625	0.0001	92.5	80-120			
Matrix Spike (B015276-MS2)	Source: 0041376-01									
Prepared: 4/9/2020 7:40, Analyzed: 4/12										
Boron	1.85	1.00	mg/L	0.125	1.69	132	80-120			D2, M3
Calcium	34.4	4.00	mg/L	6.25	27.7	106	80-120 80-120			D2, 103
Iron	7.68	4.00	-	6.25	1.57	97.8	80-120 80-120			D2 D2
Sodium	205	2.60	mg/L mg/L	6.25	206	97.8 NR	80-120 80-120			D2, M3
Sourin		2.00	iiig/L	0.23	200	INIX	00-120			D2, 1013
Matrix Spike Dup (B015276-MSD1)	Source: 0041376-01									
Prepared: 4/9/2020 7:40, Analyzed: 4/12	/2020 17:03									
Antimony	0.071	0.005	mg/L	0.0625	ND	114	80-120	7.69	20	
Mercury	0.0025	0.0005	mg/L	0.00250	ND	99.2	80-120	5.81	20	
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120	4.09	20	
Arsenic	0.0677	0.0010	mg/L	0.0625	0.0019	105	80-120	6.64	20	
Barium	0.157	0.004	mg/L	0.0625	0.087	111	80-120	4.16	20	
Beryllium	0.0585	0.0020	mg/L	0.0625	ND	93.6	80-120	6.82	20	
Cadmium	0.0610	0.0010	mg/L	0.0625	ND	97.6	80-120	8.15	20	
Chromium	0.0684	0.0020	mg/L	0.0625	0.0011	108	80-120	4.12	20	
Cobalt	0.066	0.004	mg/L	0.0625	ND	106	80-120	4.34	20	
Copper	0.059	0.003	mg/L	0.0625	ND	94.0	80-120	4.78	20	
Lead	0.061	0.002	mg/L	0.0625	ND	97.1	80-120	7.36	20	
Lithium	0.09	0.02	mg/L	0.0625	0.03	98.1	80-120	2.10	20	
Selenium	0.061	0.003	mg/L	0.0625	ND	97.1	80-120	9.79	20	
Thallium	0.0613	0.0020	mg/L	0.0625	0.0001	97.8	80-120	5.64	20	

Metals by SW846 6000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	- Rooun	2000	Onito	20101	rtooun	, inceo	Linito		Luint	1000
Batch B015276 - EPA 200.2										
Matrix Spike Dup (B015276-MSD2)	Source: 0041376-01	I								
Prepared: 4/9/2020 7:40, Analyzed: 4/12/202	0 18:11									
Boron	1.80	1.00	mg/L	0.125	1.69	88.6	80-120	2.95	20	D2
Calcium	35.3	4.00	mg/L	6.25	27.7	121	80-120	2.64	20	D2, M3
Iron	8.28	1.00	mg/L	6.25	1.57	107	80-120	7.50	20	D2
Sodium	208	2.60	mg/L	6.25	206	23.5	80-120	1.56	20	D2, M3
Post Spike (B015276-PS1)	Source: 0041376-01	I								
Prepared: 4/9/2020 7:40, Analyzed: 4/12/202	0 17:06									
Antimony	65.3		ug/L	62.5	0.087	104	75-125			
Mercury	2.49		ug/L	2.50	0.0595	97.1	75-125			
Molybdenum	62.9		ug/L	62.5	1.02	99.0	75-125			
Arsenic	63.0		ug/L	62.5	1.92	97.7	75-125			
Barium	153		ug/L	62.5	87.2	105	75-125			
Beryllium	55.2		ug/L	62.5	-0.0177	88.4	75-125			
Cadmium	57.4		ug/L	62.5	0.0329	91.8	75-125			
Chromium	63.2		ug/L	62.5	1.10	99.4	75-125			
Cobalt	61.3		ug/L	62.5	0.695	96.9	75-125			
Copper	54.1		ug/L	62.5	-2.87	86.6	75-125			
Lead	56.6		ug/L	62.5	0.013	90.6	75-115			
Lithium	85.9		ug/L	62.5	28.0	92.7	75-125			
Selenium	56.3		ug/L	62.5	0.072	89.9	75-125			
Thallium	57.4		ug/L	62.5	0.118	91.7	75-125			
Post Spike (B015276-PS2)	Source: 0041376-01	I								
Prepared: 4/9/2020 7:40, Analyzed: 4/12/202	0 18:14									
Boron	1820		ug/L	125	1690	107	75-125			D2
Calcium	33800		ug/L	6250	27700	96.6	75-125			D2
Iron	7590		ug/L	6250	1570	96.4	75-125			D2
Sodium	202000		ug/L	6250	206000	NR	75-125			D2, M3

						-				
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B015432 - Default Prep Wet Chem										
Blank (B015432-BLK1)										
Prepared: 4/14/2020 1:48, Analyzed: 4/14/2020 1:48	5									
Total Organic Carbon	ND	0.5	mg/L							U
LCS (B015432-BS1)										
Prepared: 4/14/2020 2:09, Analyzed: 4/14/2020 2:09)									
Total Organic Carbon	4.8	0.5	mg/L	5.00		95.5	80-120			
Duplicate (B015432-DUP1) Sourc	e: 0040539-01									
Prepared: 4/14/2020 7:34, Analyzed: 4/14/2020 7:34	Ļ									
Total Organic Carbon	2.0	0.5	mg/L		2.0			1.22	25	
Duplicate (B015432-DUP2) Sourc	e: 0041286-01									
Prepared: 4/14/2020 12:59, Analyzed: 4/14/2020 12:5	9									
Total Organic Carbon	1.1	0.5	mg/L		1.1			5.36	25	
Matrix Spike (B015432-MS1) Sourc	e: 0040539-02									
Prepared: 4/14/2020 7:55, Analyzed: 4/14/2020 7:55	5									
Total Organic Carbon	3.6	0.5	mg/L	2.50	1.1	102	80-120			
Matrix Spike (B015432-MS2) Sourc	e: 0041286-02									
Prepared: 4/14/2020 13:20, Analyzed: 4/14/2020 13:2	20									
Total Organic Carbon	5.9	0.5	mg/L	5.00	0.9	100	80-120			
Batch B015433 - Default Prep Wet Chem										
Blank (B015433-BLK2)										
Prepared: 4/16/2020 20:16, Analyzed: 4/16/2020 20:1	6									
Total Organic Carbon	ND	0.5	mg/L							U
LCS (B015433-BS2)										
Prepared: 4/16/2020 20:39, Analyzed: 4/16/2020 20:3	9									
Total Organic Carbon	4.9	0.5	mg/L	5.00		98.4	80-120			
Duplicate (B015433-DUP1) Sourc	e: 0041409-01									
Prepared: 4/14/2020 23:44, Analyzed: 4/14/2020 23:4										
Total Organic Carbon	1.0	0.5	mg/L		1.0			2.11	25	
	-		5.							

Conventional Chemistry Analyses Madisonville - Quality Control

Conventional Chemistry Analyses Madisonville - Quality Control

		-								
	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B015433 - Default Prep Wet Cher	n									
Duplicate (B015433-DUP3)	Source: 0042383-01									
Prepared: 4/15/2020 12:23, Analyzed: 4	/15/2020 12:23									
Total Organic Carbon	2.2	0.5	mg/L		2.2			1.81	25	
Matrix Spike (B015433-MS1)	Source: 0041409-02									
Prepared: 4/15/2020 0:07, Analyzed: 4/	15/2020 0:07									
Total Organic Carbon	3.4	0.5	mg/L	2.50	0.9	99.6	80-120			
Matrix Spike (B015433-MS3)	Source: 0042383-02R	E1								
Prepared: 4/15/2020 12:46, Analyzed: 4	/15/2020 12:46									
Total Organic Carbon	6.4	0.5	mg/L	5.00	1.4	101	80-120			
Batch B015469 - Default Prep Wet Cher	n									
LCS (B015469-BS1)										
Prepared: 4/9/2020 16:08, Analyzed: 4/9	9/2020 16:08									
pH (Lab)	7.98		Std. Units	8.00		99.8	98.8-101.2			
LCS (B015469-BS2)										
Prepared: 4/9/2020 16:26, Analyzed: 4/9	9/2020 16:26									
pH (Lab)	8.04		Std. Units	8.00		100	98.8-101.2			
Duplicate (B015469-DUP1)	Source: 0041388-02									
Prepared: 4/9/2020 16:24, Analyzed: 4/9	9/2020 16:24									
pH (Lab)	7.29	0.10	Std. Units		7.27			0.275	10	
Duplicate (B015469-DUP2)	Source: 0060028-01									
Prepared: 4/9/2020 16:34, Analyzed: 4/9	9/2020 16:34									
pH (Lab)	7.77	0.10	Std. Units		7.76			0.129	10	
Batch B015470 - Default Prep Wet Cher	n									
Blank (B015470-BLK1)										
Prepared: 4/9/2020 15:46, Analyzed: 4/9	9/2020 15:46									
Specific Conductance (Lab)	ND	1	umhos/cm							U
		-								-

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B015470 - Default Prep Wet Chem										
LCS (B015470-BS1)										
Prepared: 4/9/2020 15:47, Analyzed: 4/9/2020 15	5:47									
Specific Conductance (Lab)	1410		umhos/cm	1410		99.9	80-120			
Duplicate (B015470-DUP1) S	ource: 0042630-01									
Prepared: 4/9/2020 16:02, Analyzed: 4/9/2020 16	6:02									
Specific Conductance (Lab)	202	1	umhos/cm		202			0.148	1.24	
Batch B015517 - Default Prep Wet Chem										
Blank (B015517-BLK1)										
Prepared: 4/10/2020 13:09, Analyzed: 4/10/2020	13:09									
Chemical Oxygen Demand	ND	8	mg/L							U
LCS (B015517-BS1)										
Prepared: 4/10/2020 13:09, Analyzed: 4/10/2020	13:09									
Chemical Oxygen Demand	116	8	mg/L	125		93.0	90-110			
Duplicate (B015517-DUP1) S	ource: 0041376-01									
Prepared: 4/10/2020 13:18, Analyzed: 4/10/2020	13:18									
Chemical Oxygen Demand	ND	8	mg/L		ND				25	U
Matrix Spike (B015517-MS1) S	ource: 0041376-01									
Prepared: 4/10/2020 13:18, Analyzed: 4/10/2020	13:18									
Chemical Oxygen Demand	262	8	mg/L	250	ND	105	90-110			
Matrix Spike Dup (B015517-MSD1) S	ource: 0041376-01									
Prepared: 4/10/2020 13:18, Analyzed: 4/10/2020	13:18									
Chemical Oxygen Demand	256	8	mg/L	250	ND	102	90-110	2.46	10	
Batch B016032 - Default Prep Wet Chem										
Blank (B016032-BLK1)										
Prepared: 4/13/2020 9:34, Analyzed: 4/14/2020	12:26									
Total Dissolved Solids	ND	25	mg/L							U

Conventional Chemist	y Analyses	Madisonville -	Quality Control
----------------------	------------	----------------	-----------------

	Re	porting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B016032 - Default Prep Wet Che	em									
LCS (B016032-BS1)										
Prepared: 4/13/2020 9:38, Analyzed: 4	4/14/2020 12:26									
Total Dissolved Solids	1480	25	mg/L	1500		98.7	80-120			
Duplicate (B016032-DUP1)	Source: 0040819-01									
Prepared: 4/13/2020 10:50, Analyzed:	4/14/2020 12:26									
Total Dissolved Solids	206	50	mg/L		226			9.26	10	
Duplicate (B016032-DUP2)	Source: 0041376-08									
Prepared: 4/13/2020 10:54, Analyzed:	4/14/2020 12:26									
Total Dissolved Solids	ND	50	mg/L		ND				10	U

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B016360 - Default Prep IC										
Blank (B016360-BLK1)										
Prepared: 4/16/2020 0:39, Analyzed: 4/16/2020	20 0:39									
Chloride	ND	2.0	mg/L							U
Fluoride	ND	0.2	mg/L							U
Sulfate	ND	1	mg/L							U
LCS (B016360-BS1)										
Prepared: 4/16/2020 0:23, Analyzed: 4/16/2020	20 0:23									
Fluoride	9.5		mg/L	10.0		95.0	90-110			
Chloride	9.5		mg/L	10.0		94.9	90-110			
Sulfate	10		mg/L	10.0		98.1	90-110			
Matrix Spike (B016360-MS1)	Source: 0041376-08									
Prepared: 4/16/2020 5:20, Analyzed: 4/16/2020	20 5:20									
Fluoride	13.2		mg/L	10.0	0.0	132	75-125			M1
Chloride	13.1		mg/L	10.0	0.1	130	75-125			M1
Sulfate	14		mg/L	10.0	0.1	139	75-125			M1
Matrix Spike Dup (B016360-MSD1)	Source: 0041376-08									
Prepared: 4/16/2020 5:37, Analyzed: 4/16/2020	20 5:37									
Chloride	12.3		mg/L	10.0	0.1	122	75-125	6.11	15	
Fluoride	12.5		mg/L	10.0	0.0	125	75-125	5.37	15	
Sulfate	13		mg/L	10.0	0.1	125	75-125	10.7	15	
Batch B016418 - Default Prep IC										
Blank (B016418-BLK1)										
Prepared: 4/16/2020 12:41, Analyzed: 4/16/20	020 12:41									
Sulfate	ND	1	mg/L							U
LCS (B016418-BS1)										
Prepared: 4/16/2020 12:24, Analyzed: 4/16/20	020 12:24									
Sulfate	10		mg/L	10.0		98.8	90-110			
			v							

Ion Chromatography Madisonville - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B01641	18 - Default Prep IC										
Matrix Spike	(B016418-MS1)	Source: 0043228-0	2								
Prepared: 4/1	6/2020 14:36, Analyzed: 4/1	6/2020 14:36									
Sulfate		30		mg/L	10.0	17	121	75-125			
Matrix Spike I	Dup (B016418-MSD1)	Source: 0043228-0	2								
Prepared: 4/1	6/2020 14:52, Analyzed: 4/1	6/2020 14:52									
Sulfate		30		mg/L	10.0	17	130	75-125	2.87	15	M1
	lyses included in this Repor										
Analyte		Certifications									
2510 B-2011 i Specific Cor	i n Water nductance (Lab)	KY Drinking Water Md	v (00030)								
2540 C-2011 i Total Dissol		KY Drinking Water Md	v (00030)								
4500-H+ B-20 pH (Lab)		KY Drinking Water Md		Drinking W	/ater (02819)	I.					
5310 C-2011 i Total Organi		KY Drinking Water Md	v (00030)								
HACH 8000 in Chemical O	n Water xygen Demand	KY Wastewater Mdv (i	00030)								
SW846 6010	B in Water										
					Sam	ple Acce	ptance C	hecklist	for Work	Order 00	41376
	Shipped By: Client					-	e: 1.90° C				
	Condition										
	Check if Custody Sea	als are Present/Intac	t								
	Check if Custody Sig	natures are Present								V	
	Check if Collector Sig	nature Present								V	
	Check if bottles are in		_							\checkmark	
	Check if bottles are c									Ø	
	Check if bottles have									\blacksquare	
	Check if samples rec									_ ☑	
	Check if VOA headsp										
	Check if samples rec										
			··								

 \square

Pace Analytical Services LLC Kentucky P.O. Box 907							
Madisonville, KY 42431	Scheduled for	: <u>04/01/2020</u>					
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater	Report To: Big Rivers Electric Co Station Chad Phillips PO Box 24 Henderson, KY 42419		Invoice To: Big Rivers E Chad Phillip PO Box 24 Henderson,				
Please Print Legibly	Phone: <u>(270) 844-600</u> PWS ID#: State:	<u>0</u>	PO#:				
Collected by (Signature):	~			ance Monitoring? Yes <u>V</u> No			
27 C *required into		-		es Chlorinated? Yes No			
*For composite samples please indicate begin time, end	• • • •						
Influent: Start Date Start time Effluent: Start Date Start time							
			anp (0C)				
MMLI USE ONLY *required information* Workorder # Date Collection	ners						
0041376 (mm/dd/yy): Time (24 hr): Bottle a Sample ID#	nd Preservative	Sample Description	Composite	Sample Analysis Requested			
0041376-01 A 4/6/20 1705 Plastic	500mL pH<2 1 w/HNO3	MW1	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum			
Preserva	tion Check: pH :			Tot 6020 Sodium Tot 6010B			
	: 500mL pH<2 1 w/HNO3 tion Check: pH :	MW1	g / c _.	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B			
0041376-01 C 4/6/20 1305 F	Plastic 1L 1	MW1	g / c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056			
Preservation Check Performed by:							
Field data collected by:	Res CI (mg/L)	Tot CI (mg/L) DO (mg/L)	Fre				
		— —					
Relinquished by: (Signature) R	Received by: (Signature)	A	Date (mm/	dd/yy) Time (24 hr)			
Trai bud	Me free	1.97	<u> </u>	20 1549			

,

Page 21 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	Chain of C Scheduled for			
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Co Station	rporation Reid/Green	•	Electric Corporation Reid/Green Statio
Project: Green Landfill Semiannual Groundwater	Chad Phillips PO Box 24 _. Henderson, KY 42419)	Chad Phillip PO Box 24 Henderson,	
Please Print Legibly	Phone: <u>(270) 844-600</u> PWS ID#: State: K <i>Y</i>	0	PO#:	
Collected by (Signature):				iance Monitoring? Yes 🗹 No
*For composite samples please indicate begin time, end t		time below:		es Chlorinated? Yes No
Influent: Start Date Start time	End Date Er	nd Time Te	emp (oC)	
Effluent: Start Date Start time	End Date E	nd Time To	emp (oC)	
MMLI USE ONLY *required information* Workorder # Date Collection 0041376 (mm/dd/yy): Time (24 hr): Bottle ar Sample ID#	nd Preservative	Sample Description	Composite	Sample Analysis Requested
w	c 500mL pH<2 1 v/H2SO4 tion Check: pH :	MW1	g / c	COD TOC
Rad	L pH<2 w/HNO3 1 d 226 (Sub) tion Check: pH :	MW1	g / c	Radium 226 (sub)
Bad	L pH<2 w/HNO3 1 d 228 (Sub) tion Check: pH :	MW1	g / c	Radium 228 (sub)
Rad	L pH<2 w/HNO3 1 d 228 (Sub) tion Check: pH :	MW1	g / c	Radium 228 (sub)
w	250mL pH<2 1 v/H2SO4 tion Check: pH :	MW1	g / c	тос
				v
Preservation Check Performed by:			、	
Field data collected by: Phillip Hill	Date (mm/dd/yy)	Time (24 hr)		
pH 7.22 Cond (umbo) 0.867		Tot Cl (mg/L)		ee CI (mg/L)
Temp (oC) <u>18.23</u> or (oF) <u>St</u>	tatic Water Level			urb. (NTU)

Flow (MGD) or (CFS)	or (g/min)		
		1	
Relinquished by: (Signature)	Received by: (Signature)	Date (mm/dd/yy) 4/7/20	Time (24 hr)
Trai hand	-fre	- 4-7-20	1549

Page 22 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907	Chain	of Custody				
Madisonville, KY 42431	Scheduled	d for: <u>04/01/2020</u>				
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Elec Station	ctric Corporation Reid/Green		Invoice To: Big Rivers Electric Corporation Reid/Green Statior		
Project: Green Landfill Semiannual Groundwater	Chad Phillips PO Box 24 Henderson, KY	(42419	Chad Phillip PO Box 24 Henderson,			
	Phone: (270) 8					
Please Print Legibly	PWS ID#:	KY	PO#: Quote#			
Collected by (Signature):	7/	· · · · · · · · · · · · · · · · · · ·		ance Monitoring? Yes V No		
*For composite samples please indicate begin time, end) at end time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start time			Temp (oC)			
Effluent: Start Date Start time	_ End Date	End Time	Temp (oC)	<u> </u>		
	and Preservative	s e te Sample Description	Composite			
Sample ID# 0041376-02 A 4/7/2 1/40 Plast	ic 500mL pH<2	<u>0</u> 1 MW2	g/c	Sample Analysis Requested Beryllium Tot 6020 Cadmium Tot		
// Preserv	w/HNO3 ation Check: pH : _			6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
	ic 500mL pH<2 w/HNO3	1 MW2	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
	ation Check: pH : _					
	Plastic 1L	1 MW2	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride		
	ic 500mL pH<2 w/H2SO4 ation Check: pH : _	1 MW2	g / c	9056 COD TOC		
Preservation Check Performed by:						
Field data collected by: Phillip Hill	Date (mm/dd/\u)	4/7/a: Time (24 hr)	1100			
		Tot CI (mg/L)		ee Ci (ma/L)		
1101		DO (mg/L)				
Flow (MGD) , or (CFS) c				t i		
Relinguished by: (Signature)	Received by: (Signa	ture)	Date (mm/	dd/yy) Time (24 hr)		
W MAK	"prai/	nel	<u> </u>	20 1443		
Iner Sunt	A	d .	4-7	-20 1549		
	<i>v</i>					
· · · · · · · · · · · · · · · · · · ·						

, f

 Page 23 of 51

~

Pace Analytical Services LLC Kentucky P.O. Box 907	Chain	of Custody				
Madisonville, KY 42431	Scheduled	l for: <u>04/01/2020</u>				
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundw	Station Chad Phillips	tric Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Chad Phillips PO Box 24 Henderson, KY 42419			
	Phone: <u>(270) 8</u> PWS ID#:	44-6000	PO#:			
Please Print Legibly	State:	<u>KY</u>	Quote#			
Collected by (Signature):	721- red information*		Compli	ance Monitoring? Yes $\stackrel{\checkmark}{\smile}$ No		
*For composite samples please indicate begin tir	me, end time and temp(oC)	at end time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start time	End Date	End Time 1	ſemp (oC)			
Effluent: Start Date Start time	End Date	End Time	Гетр (oC)			
0041376-02 F 4/7/20 1140	Bottle and Preservative Plastic 1L pH<2 w/HNO3 Rad 226 (Sub) Preservation Check: pH : _ Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH : _	1 MW2	Composite g / c g / c	Sample Analysis Requested Radium 226 (sub) Radium 228 (sub)		
	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH : _	1 MW2	g / c	Radium 228 (sub)		
	AG 250mL pH<2 w/H2SO4 Preservation Check: pH : _	1 MW2	g / c	тос		
0041376-03 A <u>4/7/26</u> <u>1355</u> P	Plastic 500mL pH<2 w/HNO3 Preservation Check: pH : _	1 MW3A	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
Preservation Check Performed by:	LH					
				<u> </u>		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>4/7/26</u> Time (24 hr)				
		Tot CI (mg/L)		ł		
Temp (oC) <u>//6,89</u> or (oF) Flow (MGD) or (CFS)		DO (mg/L)	Ti	Jrb. (NTU)		
Relinquished by (Signature)	Received by: (Signa	lure)	Date (mm/ 4/7/2 	20 1443		

Page 24 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907	Chain	of Custody				
Madisonville, KY 42431	Scheduled	for: <u>04/01/2020</u>				
Client: Big Rivers Electric Corporation Reid/Green Station	<b>Report To:</b> Big Rivers Elec Station Chad Phillips	tric Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Chad Phillips			
Project: Green Landfill Semiannual Groundwater	PO Box 24 Henderson, KY	[′] 42419	PO Box 24 Henderson,	KY 42419		
Please Print Legibly	Phone: <u>(270) 8</u> PWS ID#: . State:	<u>44-6000</u> K-Y	PO#:	· · · · · · · · · · · · · · · · · · ·		
Collected by (Signature):	formation*		Compli	iance Monitoring? Yes <u>V</u> No		
*For composite samples please indicate begin time, er		at end time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start time			emp (oC)			
Effluent: Start Date Start time						
	and Preservative	Sample Description	Composite	Sample Analysis Requested		
/ / Preser	stic 500mL pH<2 w/HNO3 vation Check: pH : _	1 MW3A	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
0041376-03 C 4/7/20 1355	Plastic 1L	1 MW3A	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride		
	stic 500mL pH<2 w/H2SO4 vation Check: pH : _	1 MW3A	g / c	9056 COD TOC		
F	: 1L pH<2 w/HNO3 Rad 226 (Sub) vation Check: pH : _	,	g / c	Radium 226 (sub)		
. F	: 1L pH<2 w/HNO3 Rad 228 (Sub) vation Check: pH : _		g / c	Radium 228 (sub)		
Preservation Check Performed by:	<u>+</u>			· · · · · · · · · · · · · · · · · · ·		
Field data collected by: <u>Phillip Hil</u>	_ Date (mm/dd/yy)	4/7/20 Time (24 hr)	1355			
pH <u>6.86</u> Cond <del>(umho) 8.09</del>		Tot CI (mg/L)				
Temp (oC) <u>16.32</u> or (oF) Flow (MGD) or (CFS)		DO (mg/L)	т	urb. (NTU)		
Relinquishee by: (Signature)	Received by: (Signa	ture)	Date (mm/ 4/7/	/dd/yy) Time (24 hr) 20 1442		
Smi Land		1.4	4-7-	-20 1549		

.

Page 25 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	r	f Custody for: <u>04/01/2020</u>	Invoice To: Big Rivers Electric Corporation Reid/Green Station			
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Station	c Corporation Reid/Green				
Project: Green Landfill Semiannual Groundwater	Chad Phillips PO Box 24 Henderson, KY 42	2419	Chad Phillip PO Box 24 Henderson,			
	Phone: <u>(270) 844-</u> PWS ID#:	- <u>6000</u> V	PO#:			
Please Print Legibly	State:	<u> </u>	Quote#			
Collected by (Signature):	ormation*		Compli	ance Monitoring? Yes 🗹 No		
*For composite samples please indicate begin time, end				es Chlorinated? Yes No		
Influent: Start Date Start time	End Date	_ End Time T	emp (oC)			
Effluent: Start Date Start time	End Date	End Time 1	ēmp (oC)			
MMLI USE ONLY       *required information*         Workorder #       Date       Collection         0041376       (mm/dd/yy):       Time (24 hr):       Bottle a         Sample ID#       Date       Date       Date       Date	and Preservative	Sample Description	Composite	Sample Analysis Requested		
0041376-03 G <u>4/7/20 1758</u> Plastic Ra	1L pH<2 w/HNO3 1 d 228 (Sub)	- MW3A	g / c	Radium 228 (sub)		
0041376-03 H 4/7/20 1355 AG	ation Check: pH : 250mL pH<2 1 w/H2SO4 ation Check: pH :	MW3A	g / c	тос		
	ic 500mL pH<2 1 w/HNO3	MW4	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
Preservation Check Performed by:CLH						
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)				
pH 6.86 Cond (umho) 8.09	Res Cl (mg/L)	Tot CI (mg/L)	Fre	ee Ci (mg/L)		
		DO (mg/L)				
Flow (MGD) or (CFS) c						
Relinquished by: (Signature)	Received by: (Signatur	9	Date (mm/	dd/yy) Time (24 hr)		
J. MD	Jen' S		4/7/	20 1447		
Traibuel .	A	t -	4-7-			
PACE- Check here if trip charge applied to as	sociated COC	Printed: 3	/25/2020 2:51:	08PM Page 26 of 51		

á

Page 26 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431			of Custody for: <u>04/01/2020</u>				
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater		Report To: Big Rivers Electr Station Chad Phillips PO Box 24 Henderson, KY 4	ic Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Chad Phillips PO Box 24 Henderson, KY 42419			
		Phone: <u>(270) 844</u> PWS ID#:	<u>-6000</u> レ	PO#:			
Please Print Legibly	$\frac{2}{m^{-1}}$	State:	<u></u>	Quote#			
Collected by (Signature):	required infor	mation*			ance Monitoring? Yes 🗹 No		
*For composite samples please indicate	e begin time, end t	ime and temp(oC) a	t end time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start t	ime	End Date	End Time T	Temp (oC)			
Effluent: Start Date Start t	ime	End Date	End Time	Temp (oC)			
MMLI USE ONLY *required informat Workorder # Date Collec 0041376 (mm/dd/yy): Time (2 Sample ID#	ction	d Preservative	Sample Description	Composite	Sample Analysis Requested		
0041376-04 B 4/7/20 95		500mL pH<2 1 //HNO3		g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium 6020 Chromium Tot 6020 Cobalt 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybden Tot 6020 Sodium Tot 6010B		
		ion Check: pH : astic 1L   1		g / c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluori 9056		
0041376-04 D <u>4/7/20 955</u>	w	500mL pH<2  1 /H2SO4 ion Check: pH :	MW4	g/c	COD TOC		
0041376-04 E <u>4/7/a 95</u>	Rad	. pH<2 w/HNO3 1 226 (Sub) ion Check: pH :	MW4	g / c	Radium 226 (sub)		
0041376-04 F <u>4/7/20 95</u>	Rad	. pH<2 w/HNO3 1 228 (Sub) ion Check: pH :	MW4	g / c	Radium 228 (sub)		
Preservation Check Performed by:	CLH						
Field data collected by:	Hil	Date (mm/dd/yy) _4	17/26 Time (24 hr)	955	· · · · · · · · · · · · · · · · · · ·		
•			Tot CI (mg/L)		ee CI (mg/L)		
			DO (mg/L)				
Flow (MGD) or (CFS)							
Betinquished by: (Signature)	Re	eceived by: (Signatu	nd	Date (mm/ 4/7/ 4/-7-	20 1443		
PACE- Check here if trip char	ge applied to ass		Drintod: 2		09DM		
	as applied to ass		Printed: 3	<i>12012</i> 020 2:51:	Page 27 of		

Page 27 of 51

•

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	Chain of Scheduled fo	Custody or: <u>04/01/2020</u>	Invoice To: Big Rivers Electric Corporation Reid/Green Station			
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric ( Station	Corporation Reid/Green				
Project: Green Landfill Semiannual Groundwater	Chad Phillips PO Box 24 Henderson, KY 424		Chad Phillip PO Box 24 Henderson,			
	Phone: <u>(270) 844-61</u> PWS ID#:	<u>, 000</u>	PO#:			
Please Print Legibly	State: <u>4-</u> 9		Quote#	······································		
Collected by (Signature):*required	Information*		Compli	ance Monitoring? Yes <u></u> No		
*For composite samples please indicate begin time,	end time and temp(oC) at e	nd time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start time	End Date	End Time To	emp (oC)			
Effluent: Start Date Start time	End Date	End Time T	emp (oC)			
MMLI USE ONLY       *required information*         Workorder #       Date       Collection         0041376       (mm/dd/yy):       Time (24 hr):       Bot         Sample ID#       /       /	ย อะเฮ tle and Preservative ชีย อ บ บ	Sample Description	Composite	Sample Analysis Requested		
	tic 1L pH<2 w/HNO3 1 Rad 228 (Sub) ervation Check: pH :	MW4	g / c	Radium 228 (sub)		
	AG 250mL pH<2  1 w/H2SO4 ervation Check: pH :	MW4	g / c	тос		
	astic 500mL pH<2 1 w/HNO3	MW5	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
Preservation Check Performed by:				ee Cl (mg/L)		
	_ Static Water Level			urb. (NTU)		
Flow (MGD) or (CFS)						
Relinquished by: (Signature)	Received by: (Signature)	nd	Date (mm/ 4/7/ <b>1-7</b> -	dd/yy) Time (24 hr) 30 1447 728 1549		
PACE- Check here if trip charge applied to	associated COC	Printed: 3/	25/2020 2:51:	08PM Page 28 of 51		

\$

Page 28 of 51

Pace Analytical P.O. Box 907 Madisonville, K		Kentucky				Custody r: <u>04/01/2020</u>	]				
Client: Big Rivers Electric Corporation Reid/Green Station				Report To: Big Rivers Ele Station	ectric C	Corporation Reid/Gree		Invoice To: Big Rivers Electric Corporation Reid/Green Statior			
Project: Greer	n Landfill Semi	annual Groun	dwater	Chad Phillips PO Box 24 Henderson, K	Y 424	19	Chad Phillip PO Box 24 Henderson,				
				Phone: <u>(270)</u> PWS ID#:	844-60 V	<u>&gt;&gt;&gt;</u> シン	PO#:				
Please Print L	<u> </u>	<del>N</del>	mal	State:		~/	Quote#				
Collected by (Si	ignature):	rec	uired infor	mation*					oring? Yes 1/No		
*For composite	samples please	e indicate begin	time, end t	ime and temp(oC	c) at er	nd time below:	, Sampl	es Chlorinate	ed? Yes No		
Influent: Start D	Date	Start time		End Date		End Time	_ Temp (oC)				
						End Time					
MMLI USE ONI Workorder # 0041376	Date	information* Collection Time (24 hr):	Bottle ar	nd Preservative	Containers	Sample Descriptio	n Composite	0	la Anglusia Damuadad		
Sample ID# 0041376-05 B	4/7/20	1010		500mL pH<2 v/HNO3	<u>8</u> 1	MW5	g / c	Beryllium 6020 Calci 6020 Chro 6020 Arse 6010B Cop Tot 6020 L 6020 Merc	le Analysis Requested Fot 6020 Cadmium Tot um Tot 6010B Barium Tot mium Tot 6020 Cobalt Tot nic Tot 6020 Boron Tot oper Tot 6020 Antimony ead Tot 6020 Lithium Tot ury Tot 6020 Molybdenum		
0041376-05 C	<u>4/1/au</u>	1010.		ion Check: pH : lastic 1L	1	MW5	g / c	pH (Lab) C Sulfate 90	odium Tot 6010B Conductivity (Lab) TDS 56 Chloride 9056 Fluoride		
0041376-05 D	4/1/20	<u> 0  0</u>	w	500mL pH<2 /H2SO4 ion Check: pH :	1	MW5	g / c	9056 COD TOC			
0041376-05 E	<u>4/7/20</u>	1010	Rad	_ pH<2 w/HNO3 226 (Sub) ion Check: pH :		MW5	g / c	Radium 22	26 (sub)		
0041376-05 F	4/7/20	[010	Rad	. pH<2 w/HNO3 228 (Sub) ion Check: pH :		MW5	g / c	Radium 22	28 (sub)		
Preservation C	heck Performe	ed by:	CLH								
Field data colled	ted by: <u>Ph</u>	Nip Hill		Date (mm/dd/yy)	4	2/20 Time (24 hr)	1010				
рн 💪	<u>~77_</u>	nd (umho) _ C.	_			Tot CI (mg/L)	•	ee Cl (ma/L)			
Temp (oC)	1.85 or					DO (mg/L)					
Flow (MGD)	or	(CFS)									
Relinquished by	(Signature)	1	R(		ature)	L	Date (mm	au	Time (24 hr)		
"Jral	<u> </u>	L		M				-20			
PACE-	Check here if t	rip charge app	lied to ass	ociated COC	•	Printed	: 3/25/2020 2:51	:08PM	Page 29 of 51		

Page 29 of 51

Pace Analytical Services LLC Ker P.O. Box 907 Madisonville, KY 42431	itucky	r	Chain of Custody Scheduled for: <u>04/01/2020</u>						
Client: Big Rivers Electric Cor Reid/Green Station Project: Green Landfill Semian	Station Chad Phillips	ctric Corporatio	n Reid/Green	Invoice To: Big Rivers E Chad Phillip PO Box 24		ition Reid/Green Statio			
		Henderson, K` Phone: <u>(270) {</u>			Henderson,	KY 42419			
Please Print Legibly		PWS ID#: State:	KY						
Collected by (Signature):	1 ma						g? Yes∠ No		
*For composite samples please in	-	ed information*	) at end time be	low:			? Yes No		
Influent: Start Date	Start time	End Date	End Time		Temp (oC)				
Effluent: Start Date									
MMLI USE ONLY *required inf Workorder # Date 0041376 (mm/dd/yy): 7 Sample ID#	Collection	Bottle and Preservative	Containers Containers Containers	e Description	Composite	Sample /	Analysis Requested		
0041376-05 G <u>4/7/20</u>		lastic 1L pH<2 w/HNO3 Rad 228 (Sub) eservation Check: pH :	1	MW5	g / c	Radium 228	(sub)		
0041376-05 н <u>4/7/ао</u>	1010	AG 250mL pH<2 w/H2SO4 eservation Check: pH :	1	MW5	g / c	TOC			
0041376-06 A <u>4/6(20</u> _	<u>1420</u> Pr	Plastic 500mL pH<2 w/HNO3	1	MW6	g / c	6020 Calciun 6020 Chromi 6020 Arsenic 6010B Coppe Tot 6020 Lea 6020 Mercury	6020 Cadmium Tot n Tot 6010B Barium Toi um Tot 6020 Cobalt Toi Tot 6020 Boron Tot er Tot 6020 Antimony d Tot 6020 Lithium Tot y Tot 6020 Molybdenun ium Tot 6010B		
Preservation Check Performed         Field data collected by:	lip Hill (umbo)_6.2	Static Water Level	T	ot CI (mg/L) _	Fre				
Relinguished by: (Signature)	el	Received by: (Sign	ature Sece	l		(dd/yy) 20 -20	Time (24 hr) 1443 1549		
PACE- Check here if tri	charge applie	d to associated COC		Printed:	3/25/2020 2:51	:08PM	Page 30 of 51		

Page 30 of 51

Madisonville, KY 42431			of Custody a for: <u>04/01/2020</u>	]				
Client: Big Rivers Electric Co Reid/Green Station		Station Chad Phillips	tric Corporation Reid/Greer		Invoice To: Big Rivers Electric Corporation Reid/Green Station			
Project: Green Landfill Semia	nnual Groundv	PO Box 24 Henderson, KY	⁷ 42419	PO Box 24 Henderson, KY 42419				
Please Print Legibly	ß	Phone: <u>(270) 8</u> PWS ID#: State:	<u>44-6000</u> KY	PO#:				
Collected by (Signature):	<del>].</del> M	77-	······································		iance Monitoring? Yes $\mathcal{U}$ No			
		ired information*	·	Sample	es Chlorinated? Yes No			
*For composite samples please Influent: Start Date	-			Temp (oC)				
Effluent: Start Date	_							
				_ Temp (6C)				
MMLI USE ONLY *required in			ទា					
Workorder #Date0041376(mm/dd/yy):Sample ID#/ /	Collection Time (24 hr):	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested			
0041376-06 В <u>И/6/ 20</u>	<u>1420</u>	Plastic 500mL pH<2 w/HNO3 Preservation Check: pH : _	1 MW6	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B			
0041376-06 C <u>4/6/20</u>	1420	Plastic 1L	1 MW6	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride			
0041376-06 D <u>4/6/as</u>	1420	Plastic 500mL pH<2 w/H2SO4 Preservation Check: pH : _	1 MW6	g / c	9056 COD TOC			
0041376-06 E <u>4/6/20</u>		Plastic 1L pH<2 w/HNO3 Rad 226 (Sub) Preservation Check: pH : _		g / c	Radium 226 (sub)			
0041376-06 F <u>4/4/20</u>		Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH : _		g / c	Radium 228 (sub)			
Preservation Check Performe	d by:	LH						
Field data collected by:		- 1	4/6/20 Time (24 hr)	1420				
pH <u>6.76</u> Cor			Tot CI (mg/L)					
		Static Water Level _		T	「urb. (NTU)			
Flow (MGD) or	(CFS)	or (g/min) _						
Relinquished by: (Signature)		Received by: (Signa	V //	Date (mm 4/2/				
"mar bu	l		and	<u> </u>	······································			
	<u> </u>	<u>/</u>						

L

Page 31 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907				Chair	n of C	Custody					
Madisonville, K	Y 42431			Scheduled for: <u>04/01/2020</u>							
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater				Report To: Big Rivers Electric Corporation Reid/Green Station Chad Phillips PO Box 24 Henderson, KY 42419			Big Rivers E				
				Phone: <u>(270)</u> PWS ID#:	844-600 VV	<u>10</u> /					
Please Print L		N. m	nt.	State:	~/		Quote#	B.4			
Collected by (S	ignature):	*rec	fuired infor	mation*		_					
*For composite	samples please	e indicate begir	n time, end t	ime and temp(oC	C) at end	time below:	Sample	es Chiorinated	? Yes No		
Influent: Start [	Date	_ Start time _		End Date	E	nd Time	Temp (oC)				
Effluent: Start I	Date	_ Start time _		End Date	E	nd Time	Temp (oC)				
MMLI USE ON Workorder # 0041376 Sample ID# 0041376-06 G	Date	information* Collection Time (24 hr):	Plastic 11	nd Preservative - pH<2 w/HNO3 228 (Sub)	L Containers	Sample Description	Composite g / c	Sample / Radium 228	Analysis Requested (sub)		
	. [ ]	(	Preservat	ion Check: pH :							
0041376-06 H	4/6/20	1420	w	50mL pH<2 /H2SO4 ion Check: pH :	1	MW6	g / c	тос			
0041376-07 A	<u>4/7/20</u>	1020	v	500mL pH<2 //HNO3		DUPLICATE	g / c	6020 Calciun 6020 Chromi 6020 Arsenic 6010B Coppe Tot 6020 Lea 6020 Mercun	6020 Cadmium Tot n Tot 6010B Barium Tot um Tot 6020 Cobalt Tot Tot 6020 Boron Tot er Tot 6020 Antimony d Tot 6020 Lithium Tot y Tot 6020 Molybdenum ium Tot 6010B		
Preservation C			24			/					
	6.36 co	nd <del>(umho)</del>	<u></u> St	Res CI (mg/L atic Water Level	)	2	Fre		11		
Relinquishertoy	(Signature) MDJ	Ĺ	R.	eceived by: (Sign		yel	Date (mm/ 4/7 4/-7	lao	Time (24 hr) /4/4 <u>7</u> /5/49		
PACE-	Check here if t	rip charge an	plied to ass	sociated COC		Printed	3/25/2020 2.51	08PM			

L

Page 32 of 51

.

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431		of Custody d for: <u>04/01/2020</u>					
Client: Big Rivers Electric Corporation Reid/Green Station	<b>Report To:</b> Big Rivers Elec Station	ctric Corporation Reid/Green	Invoice To: Big Rivers E	Invoice To: Big Rivers Electric Corporation Reid/Green Station			
Project: Green Landfill Semiannual Groundwater	Chad Phillips PO Box 24 Henderson, KY	Y 42419	Chad Phillip PO Box 24 Henderson,				
•	Phone: <u>(270) 8</u> PWS ID#:	344-6000	PO#:	·			
Please Print Legibly	State:	<u>KP</u>	Quote#				
Collected by (Signature):	Formation*		Compli	ance Monitoring? Yes <u></u> No			
*For composite samples please indicate begin time,	end time and temp(oC)	) at end time below:	Sample	es Chlorinated? Yes No			
Influent: Start Date Start time	End Date	End Time *	Temp (oC)				
Effluent: Start Date Start time	End Date	End Time	Temp (oC)				
MMLI USE ONLY *required information* Workorder # Date Collection 0041376 (mm/dd/yy): Time (24 hr): Bot Sample ID#	tle and Preservative	s eci to Sample Description	Composite	Sample Analysis Requested			
0041376-07 B 4/7/20 PI	astic 500mL pH<2 w/HNO3	T DUPLICATE	g / c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B			
0041376-07 C <u>4/7/as</u> 1020	ervation Check: pH : _ Plastic 1L	1 DUPLICATE	g / c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056			
/ / Prese	astic 500mL pH<2 w/H2SO4 ervation Check: pH : _	1 DUPLICATE	g / c	COD TOC			
	tic 1L pH<2 w/HNO3 Rad 226 (Sub) ervation Check: pH : _	<i>.</i>	g / c	Radium 226 (sub)			
	tic 1L pH<2 w/HNO3 Rad 228 (Sub) ervation Check: pH : _		g / c	Radium 228 (sub)			
Preservation Check Performed by:	H						
Field data collected by:		4/2/20 Time (24 hr)	1020				
pH <u>6.70</u> Cond <del>(umho</del> ) <u>6.77</u>	Res CI (mg/L)	Tot CI (mg/L)	Fre	ee Cl (mg/L)			
Temp (oC) <u>16,47</u> or (oF)	_ Static Water Level	DO (mg/L)	т	urb. (NTU)			
Flow (MGD) or (CFS)	_ or (g/min) _	· · · ·					
Relinquished by: (Signature)	Received by: (Signa	ature	Date (mm	/dd/yy) Time (24 hr)			
Mr. MINK	Sna' /	Luch	4/7/	20 1443			
"Ina' Such		1 C	-4-7				
PACE- Check here if trip charge applied to	D associated COC	Printed: 3	3/25/2020 2:51	:08PM Page 33 of 51			

Page 33 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	Chain of Scheduled for		·		
Client: Big Rivers Electric Corporation Reid/Green Station	Station	orporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Statior		
Project: Green Landfill Semiannual Ground	Iwater Chad Phillips PO Box 24 Henderson, KY 4241	9	Chad Phillip PO Box 24 Henderson,		
Please Print Legibly	Phone: <u>(270) 844-60</u> PWS ID#: 	<u>00</u> /	PO#: Quote#		
Collected by (Signature):	by free information*	<u> </u>	Compli	ance Monitoring? YesNo	
*For composite samples please indicate begin		d time below:	Sample	es Chlorinated? Yes No	
Influent: Start Date Start time	End Date E	End Time Te	emp (oC)		
Effluent: Start Date Start time	End Date	End Time To	emp (oC)		
MMLI USE ONLY *required information* Workorder # Date Collection 0041376 (mm/dd/yy): Time (24 hr): Sample ID#	हा अन्य Bottle and Preservative O	Sample Description	Composite	Sample Analysis Requested	
0041376-07 G <u>4/7/a· 1000</u>	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH :	DUPLICATE	g / c	Radium 228 (sub)	
0041376-07 H <u>4/7/20 [020</u>	AG 250mL pH<2 1 w/H2SO4 Preservation Check: pH :	DUPLICATE	g / c	тос	
0041376-08 A <u>4/7/20</u> <u>1/5</u>	Plastic 500mL pH<2 1 w/HNO3	FIELD BLANK	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B	
	Preservation Check: pH :				
Preservation Check Performed by:	<u>cut</u>				
Field data collected by:	51( Date (mm/dd/yy) <u>4/7</u>	ろの Time (24 hr) _/	odo		
pH <u>6.70</u> Cond-(umho) 6.	7) Res Cl (mg/L)	Tot CI (mg/L)	Fre	ee CI (mg/L)	
Temp (oC) <u>16,47</u> or (oF)	Static Water Level	DO (mg/L)	т	urb. (NTU)	
Flow (MGD) or (CFS)	or (g/min)				

Relinquished by (Signature)	Received by: (Signature)	Date (mm/dd/yy)	Time (24 hr)
Call, MIZY	The bud	Ulalan	1447
a for the second		<u></u>	1175
- mar Auch		<u> </u>	1544
_	P		

Flow (MGD)

Page 34 of 51

Pace Analytical Services LLC Kentucky P.O. Box 907		Custody		
Madisonville, KY 42431	Scheduled fe	or: <u>04/01/2020</u>		
Client: Big Rivers Electric Corporation Reid/Green Station		Corporation Reid/Green	Invoice To: Big Rivers E	Electric Corporation Reid/Green Station
Project: Green Landfill Semiannual Groundw	Station Chad Phillips ater PO Box 24 Henderson, KY 42	419	Chad Phillip PO Box 24 Henderson,	
	Phone: (270) 844-6			
Please Print Legibly	PWS ID#: State:	/	PO#: Quote#	
Collected by (Signature):				iance Monitoring? Yes <u></u> No
requi	red information*	and time holes:		es Chlorinated? Yes No
*For composite samples please indicate begin tir Influent: Start Date Start time			femn (oC)	
Effluent: Start Date Start time				
	Bottle and Preservative	Sample Description	Composite	
Sample ID# 0041376-08 B //2/2 0 // J D -	Plastic 500mL pH<2 1	FIELD BLANK	g/c	Sample Analysis Requested Beryllium Tot 6020 Cadmium Tot
// P	reservation Check: pH :	-,	y, c	6020 Calcium Tot 6020 Cadmin Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B
0041376-08 C <u>4/7/20</u> <u>1/50</u>	Plastic 1L 1	FIELD BLANK	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056
0041376-08 D <u>4///20 //50</u> // P	Plastic 500mL pH<2 1 w/H2SO4 reservation Check: pH :		g / c	COD TOC
	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub) reservation Check: pH :		g / c	Radium 226 (sub)
	Plastic 1L pH<2 w/HNO3  1 Rad 228 (Sub) reservation Check: pH :		g / c	Radium 228 (sub)
6	114			
Preservation Check Performed by:		11		
Field data collected by: <u>Phillip Hill</u>				
pH Cond (umho)				
	Static Water Level		T	urb. (NTU)
Flow (MGD) or (CFS)	or  (g/min)	·····		
Relinquished by: (Signature)	Received by: (Signature	0	Date (mm/	/dd/yy) Time (24 hr)
W- MAK	_ Jrai'/	Synch	<u> </u>	20 <u>144</u> 3
Mun Sand		<u>k</u>	4-7	-20 1549
			_	

Pace Analytical Services LLC Kentucky P.O. Box 907	Chain	of Custody		
Madisonville, KY 42431	Schedule	d for: <u>04/01/2020</u>		
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundw	Station Chad Phillips PO Box 24 Henderson, K		Invoice To: Big Rivers E Chad Phillip PO Box 24 Henderson,	
Please Print Legibly	Phone: <u>(270) ;</u> PWS ID#: State:	<u>844-6000</u> KK	PO#:	
Collected by (Signature);	red information*		Compli	ance Monitoring? YesNo
*For composite samples please indicate begin ti		;) at end time below:	Sample	es Chlorinated? Yes No
Influent: Start Date Start time			Temp (oC)	
Effluent: Start Date Start time				
	Bottle and Preservative Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)		Composite g / c	Sample Analysis Requested Radium 228 (sub)
0041376-08 H 47/20 1150	Preservation Check: pH : AG 250mL pH<2 w/H2SO4	1 FIELD BLANK	g / c	тос
n an	Preservation Check: pH :			Ber Constant to 320 Cadmium for 60 Constant Control Content Tot 60 Constant Control Content Tot 10 Constant to 1000 Content Tot 10 Constant to 6020 Andmony 10 Constant Constant Content State 6020 Metrod
- F	Preservation Check: pH :			ອິບ20 Chdium ເດັ່ນບໍ່ເດີສີ
Preservation Check Performed by:	LLH	۹.		
Field data collected by: <u>アんこう </u> Hし pH Cond (umho) Temp (oC) or (oF) Flow (MGD) or (CFS)	Res Cl (mg/L)	DO (mg/L)	Fre	
Relinguished by: (Signature)	Received by: (Sign		Date (mm/ 4/7/ 4-7	(dd/yy) Time (24 hr) 20 1443 20 1549
PACE- Check here if trip charge appli	ed to associated COC	Printed:	3/25/2020 2:51	:08PM Page 36 of 51

Page 36 of 51



April 30, 2020

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville, KY 42431

RE: Project: 41376 Pace Project No.: 30358430

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on April 10, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carino a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville



## **REPORT OF LABORATORY ANALYSIS**



#### CERTIFICATIONS

 Project:
 41376

 Pace Project No.:
 30358430

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

#### **REPORT OF LABORATORY ANALYSIS**



### SAMPLE SUMMARY

 Project:
 41376

 Pace Project No.:
 30358430

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30358430001	0041376-01	Water	04/06/20 13:05	04/10/20 09:15
30358430002	0041376-02	Water	04/07/20 11:40	04/10/20 09:15
30358430003	0041376-03	Water	04/07/20 13:55	04/10/20 09:15
30358430004	0041376-04	Water	04/07/20 09:55	04/10/20 09:15
30358430005	0041376-05	Water	04/07/20 10:10	04/10/20 09:15
30358430006	0041376-06	Water	04/06/20 14:20	04/10/20 09:15
30358430007	0041376-07	Water	04/07/20 10:20	04/10/20 09:15
30358430008	0041376-08	Water	04/07/20 11:50	04/10/20 09:15

**REPORT OF LABORATORY ANALYSIS** 



## SAMPLE ANALYTE COUNT

 Project:
 41376

 Pace Project No.:
 30358430

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
30358430001	0041376-01	EPA 903.1		1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430002	0041376-02	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430003	0041376-03 EPA 903.1 M		MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430004	0041376-04	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430005	0041376-05	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430006	0041376-06	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430007	0041376-07	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
30358430008	0041376-08	EPA 903.1	MK1	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	

PASI-PA = Pace Analytical Services - Greensburg

**REPORT OF LABORATORY ANALYSIS** 



Qual

Qual

	ANAL	TICAL RESULTS - RADIOC	HEMISTRY		
Project: 413	376				
Pace Project No.: 303	358430				
Sample: 0041376-01 PWS:	Lab ID: 303 Site ID:	58430001 Collected: 04/06/20 13 Sample Type:	3:05 Received:	04/10/20 09:15 N	latrix: Water
• Upon rec		not present on the sample containers itric acid were added to the sample to		e preservation requi	rement of pH
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.
	Pace Analytica	I Services - Greensburg			
Radium-226	EPA 903.1	0.340 ± 0.473 (0.799) C:NA T:94%	pCi/L	04/30/20 11:27	13982-63-3
	Pace Analytica	I Services - Greensburg			
Radium-228	EPA 904.0	0.468 ± 0.409 (0.828) C:72% T:87%	pCi/L	04/28/20 11:04	15262-20-1
	Pace Analytica	I Services - Greensburg			
Total Radium	Total Radium Calculation	0.808 ± 0.882 (1.63)	pCi/L	04/30/20 14:19	7440-14-4
Sample: 0041376-02	Lab ID: 303	58430002 Collected: 04/07/20 11	1:40 Received:	04/10/20 09:15 N	latrix: Water
PWS:	Site ID:	Sample Type:			
Upon rec		not present on the sample containers tric acid were added to the sample to		preservation requi	rement of pH
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.
	Pace Analytica	I Services - Greensburg			
Radium-226	EPA 903.1	0.513 ± 0.402 (0.472) C:NA T:88%	pCi/L	04/30/20 11:27	13982-63-3
	Pace Analytica	I Services - Greensburg			
Radium-228	EPA 904.0	0.0161 ± 0.343 (0.794) C:70% T:88%	pCi/L	04/28/20 11:04	15262-20-1
	Pace Analytica	I Services - Greensburg			
Total Radium	Total Radium Calculation	0.529 ± 0.745 (1.27)	pCi/L	04/30/20 14:19	7440-14-4
Sample: 0041376-03 PWS:	Lab ID: 303 Site ID:	58430003 Collected: 04/07/20 13 Sample Type:		04/10/20 09:15 N	latrix: Water

Comments: • Sample collection dates and times were not present on the sample containers. . . . . ... _ .

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.603 ± 0.577 (0.878) C:NA T:77%	pCi/L	04/30/20 11:27	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.460 ± 0.444 (0.914) C:68% T:85%	pCi/L	04/28/20 11:04	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.06 ± 1.02 (1.79)	pCi/L	04/30/20 14:19	7440-14-4	

## **REPORT OF LABORATORY ANALYSIS**



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 41376

Pace Project No.: 30358430

Sample: 00 PWS:	041376-04	Lab ID: 30358 Site ID:	430004 Collected: 04/07/20 09:55 Sample Type:	5 Received:	04/10/20 09:15 N	Aatrix: Water	
Comments:		the laboratory, 5 mls of nitri	t present on the sample containers. c acid were added to the sample to m	neet the samp	le preservation requi	irement of pH	
	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	Services - Greensburg	2			
Radium-226		EPA 903.1	0.476 ± 0.455 (0.693) C:NA T:95%	pCi/L	04/30/20 11:27	13982-63-3	
		Pace Analytical S	Services - Greensburg				
Radium-228		EPA 904.0	0.787 ± 0.428 (0.770) C:74% T:84%	pCi/L	04/28/20 11:04	15262-20-1	
		Pace Analytical S	Services - Greensburg				
Total Radiun	n	Total Radium Calculation	1.26 ± 0.883 (1.46)	pCi/L	04/30/20 14:19	7440-14-4	
Sample: 00 PWS:	041376-05	Lab ID: 30358 Site ID:	430005 Collected: 04/07/20 10:10 Sample Type:	) Received:	04/10/20 09:15 N	Aatrix: Water	
Comments:		the laboratory, 5 mls of nitri	t present on the sample containers. c acid were added to the sample to m	neet the samp	le preservation requi	irement of pH	
	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	Gervices - Greensburg				
Radium-226		EPA 903.1	0.302 ± 0.371 (0.605) C:NA T:95%	pCi/L	04/30/20 11:27	13982-63-3	
		Pace Analytical S	Services - Greensburg				
Radium-228		EPA 904.0	1.18 ± 0.498 (0.824) C:71% T:90%	pCi/L	04/28/20 11:05	15262-20-1	
			Services - Greensburg				
Total Radiun	n	Total Radium Calculation	1.48 ± 0.869 (1.43)	pCi/L	04/30/20 14:19	7440-14-4	
Sample: 00 PWS:	041376-06	Lab ID: 30358 Site ID:	430006 Collected: 04/06/20 14:20 Sample Type:	Received:	04/10/20 09:15 N	Aatrix: Water	
Comments:		the laboratory, 5 mls of nitri	t present on the sample containers. c acid were added to the sample to m	neet the samp	le preservation requi	irement of pH	
	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	Services - Greensburg				
Radium-226		EPA 903.1	0.0612 ± 0.279 (0.166) C:NA T:90%	pCi/L	04/30/20 11:27	13982-63-3	
		Doog Applytical S	Services - Greensburg				
		Face Analytical S	Criticia Creensburg				

## **REPORT OF LABORATORY ANALYSIS**



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 4137						
Pace Project No.: 3035 Sample: 0041376-06 PWS:	58430 Lab ID: 3035843 Site ID:	30006 Collected: 04/06/20 14:20 Sample Type:	Received:	04/10/20 09:15	Matrix: Water	
Upon rece	ellection dates and times were not p ipt at the laboratory, 5 mls of nitric chemistry analysis.	present on the sample containers. acid were added to the sample to me	eet the samp	le preservation requ	irement of pH	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.744 ± 0.757 (1.11)	pCi/L	04/30/20 14:19	9 7440-14-4	
Sample: 0041376-07 PWS:	Lab ID: 3035843 Site ID:	<b>30007</b> Collected: 04/07/20 10:20 Sample Type:	Received:	04/10/20 09:15	Matrix: Water	
Comments: • Sample co	ellection dates and times were not p	present on the sample containers.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.371 ± 0.345 (0.455) C:NA T:83%	pCi/L	04/30/20 11:27	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	1.10 ± 0.486 (0.817) C:74% T:84%	pCi/L	04/28/20 11:05	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	1.47 ± 0.831 (1.27)	pCi/L	04/30/20 14:19	7440-14-4	
Sample: 0041376-08 PWS:	Lab ID: 3035843 Site ID:	30008 Collected: 04/07/20 11:50 Sample Type:	Received:	04/10/20 09:15	Matrix: Water	
Comments: • Upon rece		acid were added to the sample to me	eet the samp	le preservation requ	irement of pH	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se					
Radium-226	EPA 903.1	0.224 ± 0.515 (0.933) C:NA T:94%	pCi/L	04/30/20 11:40	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.262 ± 0.427 (0.928) C:74% T:84%	pCi/L	04/28/20 11:05	15262-20-1	
	Pace Analytical Se	rvices - Greensburg				
Total Radium	Total Radium Calculation	0.486 ± 0.942 (1.86)	pCi/L	04/30/20 14:19	9 7440-14-4	

**REPORT OF LABORATORY ANALYSIS** 

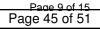


#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project:	41376					
Pace Project No.:	303584	430				
QC Batch:	3920	89	Analysis Method:	EPA 904.0		
QC Batch Method:	Batch Method: EPA 904.0		Analysis Description	on: 904.0 Radium 22	28	
Associated Lab Sar	nples:	30358430001, 30358 30358430008	Laboratory: 430002, 30358430003, 303584		Services - Greensbur 0358430006, 303584	0
METHOD BLANK:	18985	25	Matrix: Wate	r		
Associated Lab Sar	nples:	30358430001, 303584 30358430008	430002, 30358430003, 303584	130004, 30358430005, 3	0358430006, 303584	430007,
Parar	neter	ŀ	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.230 ± 0.3	29 (0.705) C:78% T:76%	pCi/L	04/28/20 11:05	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**




#### **QUALITY CONTROL - RADIOCHEMISTRY**

Project:	41376					
Pace Project No.:	30358	430				
QC Batch:	3920	88	Analysis Method:	EPA 903.1		
QC Batch Method:	C Batch Method: EPA 903.1		Analysis Description	n: 903.1 Radium-2	26	
Associated Lab Sar	mples:	30358430001, 303584 30358430008	Laboratory: 430002, 30358430003, 3035843		Services - Greensbu 30358430006, 30358	0
METHOD BLANK:	18985	23	Matrix: Water			
Associated Lab Sa	mples:	30358430001, 303584 30358430008	430002, 30358430003, 3035843	80004, 30358430005, 3	0358430006, 30358	430007,
Para	meter	Ą	ct ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226 0.176 ± 0.3		66 (0.660) C:NA T:95%	pCi/L	pCi/L 04/30/20 11:27		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**





#### QUALIFIERS

 Project:
 41376

 Pace Project No.:
 30358430

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

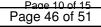
Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### SAMPLE QUALIFIERS


Sample: 30358430007

[2] Upon receipt at the laboratory, 5 mls of nitric acid were added to the sample to meet the sample preservation requirement of pH <2 for radiochemistry analysis.</p>

#### Sample: 30358430008

[1] Sample collection dates and times were not present on the sample containers.

#### **REPORT OF LABORATORY ANALYSIS**



cal * 			30358430				<b></b>	LAB USE ONLY	į Š	81	<b>W</b> 3	+8	<b>05</b>	000	5	1 0 8 0 1					Y or N		Daro 1 of 1
Pace Analytical	Requested Analysis		W0#:3035	-		30358430												Comments			Sample Intac	provided on this CC	
4/7/2020		ola) m				40 T	· 00₫.		X X									Date/Time	4/10/2020015		on Ice Y br N	signature may not be l itory.	
nual Owner Received Date:	1	ensburg P <i>F</i>				Preserved Containers	Matrix	Dimens & Co	Water		(	HUNS 4		Received on Ice Y	<b>***</b> In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this CO This chain of custody is considered complete as is since this information is available in the owner laboratory.								
Green Landfill Semiannual	t To:	Pace Analytical Services LLC Greensburg P4	Town Rd Suite 2,3,4	t, PA 15601	615		Lab ID		IR44-McCoy		<u>حَ</u> ر	NICORCY		Seal Y or (N)	e of the sampling site information is availal								
Workorder Name: (	Subcontract To:	Pace Analyt	1638 Rosey Town	Greensburg, PA 15601	(724) 850-5615		Collect Date/Time		04/06/20 13:05	04/07/20 11:40	04/07/20 13:55	04/07/20 09:55	04/07/20 10:10	04/06/20 14:20	04/07/20 10:20	04/07/20 11:50		Date/Time			°C Custody Seal Y	ality, location/nam ete as is since this	
Ň							Sample Type														leceipt 4.7	considered compl	
Chain of Custody Workorder: 41376	t To:	McCoy & McCoy Labs	07 907	Madisonville, KY 42409	270-821-7375	r.whittington@mccoylabs.com	Sample ID	•	0041376-01	0041376-02	0041376-03	0041376-04	0041376-05	0041376-06	0041376-07	0041376-08		Transfers Released By			Cooler Temperature on Receipt	order to maintair hain of custody is	
Chain	Report To:	McCo	P.O. Box 907	Madis	270-8	r.whit	Item S		2	3	4	5 (	6 (	7 (0	8 (0	9 0	10	Trans	1 ~	3	Cooler	***In This c	

#### SUBCONTRACT ORDER

#### Pace Analytical Services, LLC Kentucky

## 0041376

# - 3 0 3 5 8 4 3 0

Page 48 of 51

#### SENDING LABORATORY:

,

Pace Analytical Services, LLC Kentucky PO BOX 907 Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904 Project Manager: Rob Whittington

## **RECEIVING LABORATORY:**

Pace Analytical Services LLC Greensburg PA 1638 Rosey Town Rd Suite 2,3,4 Greensburg, PA 15601 Phone :(724) 850-5615 Fax:

## Please return shipping cooler to return address on shipping label.

Analysis		Expires	Laboratory ID (	Comments	
Sample ID: 0041376-01	Water	Sampled:04/06/2020 13:05	Specific Method	······································	
Radium 228 (sub)		10/03/2020 13:05	EPA 904.0 Radium Sum C		
Radium Total (sub)		10/03/2020 13:05	EPA 904.0 Radium Sum C		
Radium 226 (sub)		10/03/2020 13:05	EPA 903.1		
Sample ID: 0041376-02	Water	Sampled:04/07/2020 11:40	Specific Method		
Radium 226 (sub)		10/04/2020 11:40	EPA 903.1		
Radium 228 (sub)		10/04/2020 11:40	EPA 904.0 Radium Sum C		
Radium Total (sub)		10/04/2020 11:40	EPA 904.0 Radium Sum C		
Sample ID: 0041376-03	Water	Sampled:04/07/2020 13:55	Specific Method		
Radium Total (sub)		10/04/2020 13:55	EPA 904.0 Radium Sum C		
Radium 226 (sub)		10/04/2020 13:55	EPA 903.1		
Radium 228 (sub)		10/04/2020 13:55	EPA 904.0 Radium Sum C		
Sample ID: 0041376-04	Water	Sampled:04/07/2020 09:55	Specific Method		
Radium 226 (sub)		10/04/2020 09:55	EPA 903.1		
Radium 228 (sub)		10/04/2020 09:55	EPA 904.0 Radium Sum C		
Radium Total (sub)		10/04/2020 09:55	EPA 904.0 Radium Sum C		
Sample ID: 0041376-05	Water	Sampled:04/07/2020 10:10	Specific Method		
Radium 228 (sub)		10/04/2020 10:10	EPA 904.0 Radium Sum C		
Radium Total (sub)		10/04/2020 10:10	EPA 904.0 Radium Sum C		
Radium 226 (sub)		10/04/2020 10:10	EPA 903.1		
Sample ID: 0041376-06	Water	Sampled:04/06/2020 14:20	Specific Method		
Radium 226 (sub)		10/03/2020 14:20	EPA 903.1		
Radium 228 (sub)		10/03/2020 14:20	EPA 904.0 Radium Sum C		
Radium Total (sub)		10/03/2020 14:20	EPA 904.0 Radium Sum C		
Non Year	, ¹⁴	1.09.20			
Released By	<u>_</u> ( <u>/</u>		Received By	Date	
Released By	<u></u>	Date	Received By	Date	
			-		Page 1 of 2

#### SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky

#### 0041376

Analysis		Expires	Laboratory ID	Comments	
Sample ID: 0041376-07	Water	Sampled:04/07/2020 10:20	Specific Method		
Radium 226 (sub)		10/04/2020 10:20	EPA 903.1	•	
Radium 228 (sub)		10/04/2020 10:20	EPA 904.0 Radium S	Sum C	
Radium Total (sub)		10/04/2020 10:20	EPA 904.0 Radium S	Sum C	
Sample ID: 0041376-08	Water	Sampled:04/07/2020 11:50	Specific Method		
Radium Total (sub)		10/04/2020 11:50	EPA 904.0 Radium S	Sum C	
Radium 226 (sub)		10/04/2020 11:50	EPA 903.1		
Radium 228 (sub)		10/04/2020 11:50	EPA 904.0 Radium S	Sum C	

4 Corge 1 Released By f

04.09.20 Date

Received By

Date

# 30358430

Released By

6

1

Date

Date

Page 2 of 2 Page 49 of 51

#### Sample Custody

## # 30350430

By Nancy Yeager Printed 04/09/2020 09:05

Lab ID	Container	Cooler	Last	OwnBepartmeb6cationHome	LocatBinatus DispositicQustody Date
0041376-0	1 Elastic 1L pH<2 w/HNO3 Rad 226	(Sterfze)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
/	1 Plastic 1L pH<2 w/HNO3 Rad 228			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	2 Elastic 1L pH<2 w/HNO3 Rad 226			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	2 Plastic 1L pH<2 w/HNO3 Rad 228	(Sefa)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	3 Elastic 1L pH<2 w/HNO3 Rad 226	(Sefa)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	03 Plastic 1L pH<2 w/HNO3 Rad 228			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	04 Elastic 1L pH<2 w/HNO3 Rad 226			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	04 Plastic 1L pH<2 w/HNO3 Rad 228			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	05 Elastic 1L pH<2 w/HNO3 Rad 226	(Seefag)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	05 Plastic 1L pH<2 w/HNO3 Rad 228			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	06 Elastic 1L pH<2 w/HNO3 Rad 226			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	6 Plastic 1L pH<2 w/HNO3 Rad 228	(Seefaa)ult C		Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	7 Elastic 1L pH<2 w/HNO3 Rad 226	(Senfan)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	)7 Plastic 1L pH<2 w/HNO3 Rad 228			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
	08 Elastic 1L pH<2 w/HNO3 Rad 226			Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05
0041376-0	08 Plastic 1L pH<2 w/HNO3 Rad 228	(Seafae)ult C	ooleNDY	Wet Chem In-Transit	Batched Active (Out)04/09/2020 09:05

Relinquished By

÷

Date

Date

Date

Received By

Date

Pittsburgh Lab Sample Condit	ion l	Jpor	n Re	ceipt
Pace Analytical' Client Name:	Ma		<u>y</u>	+ McCay Project # <u># 30358</u> 430
Courier: Pred Ex UPS USPS Client Tracking #: 10133861178		omme	rcial	Deace Other Label OM
Custody Seal on Cooler/Box Present:yes	<b>√</b> n	- 0	Seals	s intact: yes no
Thermometer Used	Туре	of ice:	Wet	Blue None
Cooler Temperature Observed Temp 5		°C	Corre	ection Factor: "0.4 °C Final Temp: 4,7 °C
Temp should be above freezing to 6°C		-		
				pH paper Lot#     Date and Initials of person examining       10:D03011     contents: <u>NMR 41012</u>
Comments:	Yes	No	N/A	
Chain of Custody Present:				1.
Chain of Custody Filled Out:			+	2.
Chain of Custody Relinquished:				3.
Sampler Name & Signature on COC:		$\vdash$		$\frac{4}{2}$
Sample Labels match COC:	Ļ	/	]	5. no date à time
-Includes date/time/ID Matrix: W		1	T	on labels
Samples Arrived within Hold Time:	$\vdash$			6.
Short Hold Time Analysis (<72hr remaining):	+	$\vdash$	<u> </u>	7.
Rush Turn Around Time Requested:	+->			8.
Sufficient Volume:	$\vdash$			9.
Correct Containers Used:	$\vdash$			10.
-Pace Containers Used:	$\vdash$			
Containers Intact:			$\vdash$	
Orthophosphate field filtered			$\left  \right\rangle$	12.
Hex Cr Aqueous sample field filtered			$\vdash$	13.
Organic Samples checked for dechlorination:			$\vdash$	14.
Filtered volume received for Dissolved tests All containers have been checked for preservation.			<b> </b>	$\frac{15}{15}$
exceptions: VOA, coliform, TOC, O&G, Phenolics,	Radon	I	<u> </u>	16. added 5. OML HNO3 to
Non-aqueous matrix				each sample
All containers meet method preservation requirements.		/		Initial when MMR Date/time of HIO 2020 1610
				Lot # of added DL20-0362
Headspace in VOA Vials ( >6mm):	1		//	17.
Trip Blank Present:				18.
Trip Blank Custody Seals Present			/	
Rad Samples Screened < 0.5 mrem/hr	$\checkmark$			completed: NMP Date: 4/10/2020
Client Notification/ Resolution:				
Person-Contacted:			-Date/	Time:Contacted-By:
Comments/ Resolution:				· · · · · · · · · · · · · · · · · · ·
				······································
				· · · · · · · · · · · · · · · · · · ·
A check in this box indicates that addit	tional	inform	natior	n has been stored in ereports.
	-			-

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

J:\QAQC\Master\Document Management\Sample Mgt\Sample Condition Upon Receipt Pltsburgh (C056-9 5April2019)

## Appendix E Remedy Selection Evaluation Criteria

# **TABLE E-1.** Summary of Evaluation CriteriaGroundwater Remedy SelectionBig Rivers Electric Corporation - Green Landfill

40 CFR 257.97	Corrective Measure	Corrective Measure Alternat			native
Reference	Evaluation Criteria under 40 CFR 257.97	Alt 2a	Alt 3	Alt 4	Alt 5
	Threshold Criteria				
(b)(1)	Be protective of human health and the environment	1	3	3	3
(b)(2)	Attain the Groundwater Protection Standards	1	3.5	2	3.5
(b)(3)	Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment	1	3	2	4
(b)(4)	Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems	1	3	2	4
(b)(5)	Comply with standards for management of wastes as specified in Section 257.98(d)	2.5	2.5	2.5	2.5
	Balancing Criteria				
(c)(1)	The long and short-term effectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful based on a consideration of the following:				
(c)(1)(i)	Magnitude of reduction of existing risks	1	4	3	2
(c)(1)(ii)	Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy	1	3.5	3.5	2
(c)(1)(iii)	The type and degree of long-term management required, including monitoring, operation, and maintenance	1	2.5	2.5	4
(c)(1)(iv)	Short-term risks that might be posed to the community or the environment				
	during implementation of such a remedy, including potential threats to human health and the environment associated with excavation,	1	3	2	4
( ) ( 4 ) ( )	transportation, and re-disposal of contaminant				
(c)(1)(v)	Time until full protection is achieved Potential for exposure of humans and environmental receptors to	1	3	2	4
(c)(1)(vi)	remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment;	1	3	2	4
(c)(1)(vii)	Long-term reliability of the engineering and institutional controls	1	3	2	4
(c)(1)(viii)	Potential need for replacement of the remedy	4	2	1	3
(c)(2)	The effectiveness of the remedy in controlling the source to reduce further				
	releases based on consideration of the following factors:				
(c)(2)(i)	The extent to which containment practices will reduce further releases	1	3	2	4
(c)(2)(ii)	The extent to which treatment technologies may be used	1	4	3	2
(c)(3)	The ease or difficulty of implementing a potential remedy(s) based on consideration of the following types of factors				
(a)(2)(i)	Degree of difficulty associated with constructing the technology	4	<b>^</b>	4	2
(c)(3)(i)	Expected operational reliability of the technologies	4 4	2 2	1	3 3
(c)(3)(ii)	Need to coordinate with and obtain necessary approvals and permits from		2	-	-
(c)(3)(iii)	other agencies	2.5	2.5	2.5	2.5
(c)(3)(iv)	Availability of necessary equipment and specialists	4	2	1	3
(c)(3)(v)	Available capacity and location of needed treatment, storage, and disposal services	1	2	3	4
	Modifying Criteria				
(c)(4)	The degree to which community concerns are addressed by a potential remedy(s)				
NA (Agreed Order)		1	3.5	3.5	2
(c)(4)	Community Acceptance	1	3.5	3.5	2
	Total Score =	37	63.5	50	69.5

# **TABLE E-2.** Threshold Criteria EvaluationGroundwater Remedy SelectionBig Rivers Electric Corporation - Green Landfill

	native	sure Alter	ctive Meas	Corre	Corrective Measure	40 CFR 257.97
Benefit	Alt 5	Alt 4	Alt 3	Alt 2a	Evaluation Criteria under 40 CFR 257.97	Reference
ria	hold Crite	Thres				
All 4 alternatives are expected to be protective of HH&E. Alt be required to achieve the CAOs, with the other 3 alternatives upon natural attenuation to achieve and ultimately meet the C other 3 alternatives are expected to be protective of HH&E to		3	3	1	Be protective of human health and the environment (HH&E)	(b)(1)
All 4 alternatives are expected to meet the GWPS, however the degree to which the alternative employs an active component implement. Alt 2a employs no active remedial component an control measures (included with Alt 3 and Alt 5) is viewed as to time frame. Addition of hydraulic/physical containment technomic and Alt 4 will required additional engineering and pilot testing would require enhanced engineering and testing compared to alternatives are likely to attain the GWPS in the shortest time	3.5	2	3.5	1	Attain the Groundwater Protection Standards (GWPS)	(b)(2)
All 4 alternatives are expected to reduce or eliminate further in the minimum corrective action that would be required to achie degree upon Alt 2a. However Alt 2a relies upon natural atten been scored lowest for this criteria. Alt 3 and Alt 4 incorporate environment. Given that Alt 3 and Alt 4 incorporate an ex-situ releases into the environment compared with Alt 5. Given tha than Alt 4. Alt 5 will prevent further releases by removing sou represent as much of a environmental risk via a release to sur-		2	3	1	Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment	(b)(3)
All 4 alternatives are expected to remove contamination from and has been scored lowest of all. Both Alt 3 and Alt 4 incorp environment, but incorporate engineering and ex-situ compon ecosystems and have been scored lower compared to Alt 5. the South Sediment Basin and other source control measures lack of an ex-situ component, Alt 5 has been scored highest c	4	2	3	1	Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems	(b)(4)
All 4 alternatives are expected to comply with waste manager equally.		2.5	2.5	2.5	Comply with standards for management of wastes as specified in Section 257.98(d) ^[See Notes]	(b)(5)
	17	11.5	15	6.5	SUBTOTALS	

notes:

1) Alternative #2a (A2a): CiP, ICs, and Groundwater Monitoring

2) Alternative #3 (A3): CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring

3) Alternative #4 (A4): CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

4) Alternative #5 (A5): CiP, Other Source Control, ICs, and Groundwater Monitoring

5) Ranking scores range from 1 to 4; 1 = lowest ranking score; 4 = highest ranking score

6) When alternatives are all equivalent the ranking is assigned as the average value of all possible ranking (i.e., (1+2+3+4)/4 = 2.5)

#### fit Analysis

**It 2a** is considered to be the minimum corrective action that would es building to some degree upon Alt 2a. However Alt 2a relies CAOs and therefore has been scored lower for this criteria. The to the same degree and have been scored equally.

the time frame for attainment is expected to vary based upon the nt and how long the active component will take to design and and has been scored lowest. Implementation of other source is the corrective measure likely to provide a benefit in the shortest mologies combined with ex-situ treatment associated with **Alt 3** ng, likely extending the time required for implementation. **Alt 4** to **Alt 3** so it was ranked lower than **Alt 3**. The **Alt 3** and **Alt 5** he frame and have been scored highest.

r releases of Appendix IV constituents. Alt 2a is considered to be nieve the CAOs, with the other 3 alternatives building to some enuation to achieve ultimately meet the CAOs and therefore has the active remedial components to remove COCs from the tu component, both represent slightly higher potential for furthers hat Alt 3 contains a source control component it scores higher pource material from the South Sediment Basin and is not seen to surface water receptors as Alt 3 and Alt 4.

m the environment. Alt 2a employs no active remedial component rporate an active remedial component to remove COCs from the onents, representing a slight probability of impacting sensitive . Both Alt 3 and Alt 5 incorporate removing source material from es, in addition to addressing groundwater impacts. Due to the t of all.

ement standards to the same degree and have been scored

# **TABLE E-3. Balancing Criteria Evaluation**Groundwater Remedy Selection

Big Rivers Electric Corporation - Green Landfill

40 CFR 257.97	Corrective Measure	Corre	ctive Mea	sure Altei	native	_	
Reference	Evaluation Criteria under 40 CFR 257.97	Alt 2a	Alt 3	Alt 4	Alt 5	Benefi	
		-		Balan	cing Crite	ria	
(c)(1)	The long and short-term effectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful based on a consideration of the following:		-				
(c)(1)(i)	Magnitude of reduction of existing risks	1	4	3	2	All 4 alternatives are expected to result in a reduction of exist action that would be required to achieve the CAOs, with the o However Alt 2a relies upon natural attenuation to ultimately a criteria. Alt 3 and Alt 4 incorporate an active remedial compor to be effective at reducing existing risks. Given that Alt 4 inco existing risk than Alt 3. Alt 5 on its own provides for some re- South Sediment Basin, but scores lower than Alt 3 and Alt 4.	
(c)(1)(ii)	Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy ^[See Note]	1	3.5	3.5	2	All 4 alternatives are expected to result in a reduction of resid place indefinitely. <b>Alt 2a</b> employs no active component for co <b>3</b> will reduce further releases due to the hydraulic containment treatment to remove COCs from the environment. <b>Alt 4</b> will re containment and treatment of groundwater to remove COCs for the environment, but due to the uncertainty with regard to the <b>4</b> are considered to be equal with regard to this criteria.	
(c)(1)(iii)	The type and degree of long-term management required, including monitoring, operation, and maintenance ^[See Note]	1	2.5	2.5	4	Alt 2a will only achieve the established CAO at the end of the estimated to be at least 100 years after CiP construction. As has been scored lowest of all. Although the source control comaintenance, both Alt 3 and Alt 4 incorporate treatment com energy during construction, implementation, and long-term op alternatives. Alt 3 and Alt 4 are considered to be equal with	
(c)(1)(iv)	Short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and re-disposal of contaminant	1	3	2	4	All 4 alternatives contain some level of short-term risk. Alt 2a lowest of all. Given that Alt 3 and Alt 4 incorporate an ex-situ releases into the environment compared with Alt 5. Given that than Alt 4. Alt 5 does require removing source material from risk to the environment during excavation compared to Alt 3 a	
(c)(1)(v)	Time until full protection is achieved	1	3	2	4	Alt 2a will achieve the established CAO at the end of the Unit source loading to groundwater, and further allow unimpacted attainment of Alt 2a is estimated to be at least 100 years after Unit after hydraulic containment eliminates the offsite migratic pathway. The time period for attainment is relatively short (i.e with the established CAO after cap construction at the end of the South Sediment Basin which will end the source loading t aquifer. Alt 4 would attain the established CAO for the landfill migration of impacted groundwater, thereby eliminating the ex- construction of the grout curtain and groundwater extraction s will maintain compliance with the established CAO after cap of end the source loading to the groundwater, as unimpacted gr established CAO for the Unit after removing sourcce material loading to groundwater, as unimpacted groundwater flushes to The time period for attainment via Alt 5 is relatively short. In the CAO after cap construction at the end of the Unit operational the source control measures is underway as required by the A	

#### fit Analysis

sting risks. Alt 2a is considered to be the minimum corrective e other 3 alternatives building to some degree upon Alt 2a. achieve the CAOs and therefore has been scored lowest for this onent to remove COCs from the environment, which is considered corporates an ex-situ component, it does represent slightly higher reduction of existing risks by removing source material from the 4.

idual risks due to further releases but allow for CCR to remain in containing further releases and has been scored lowest of all. **Alt** ent provided by a groundwater extraction system and the ability of reduce further releases due to the implementation of physical s from the environment. **Alt 5** would also reduce further releases to be impacts observed at MW-3A scored slightly lower. **Alt 3** and **Alt** 

he Unit operational lifecycle after cap construction, which As a result, **Alt 2a** will require the most long-term management and component included with **Alt 5** will require some longer term omponents requiring considerable expenditure of resources and operation. Therefore, **Alt 5** has been scored highest of all the th regard to this criteria.

2a employs no active remedial component and has been scored tu component, both represent slightly higher potential for furthes that Alt 3 contains a source control component it scores higher m the South Sediment Basin but is not seen to represent as much 3 and Alt 4.

it operational lifecycle after cap construction, which would hault ed groundwater to flush through the aquifer. The time period for ter CiP construction. Alt 3 would attain the established CAO for the tion of impacted groundwater, thereby eliminating the exposure .e., <30 years). In the long term, Alt 3 will maintain compliance of the Unit operational lifecycle, and removing sourcce material of to groundwater, as unimpacted groundwater flushes through the ill after physical containment and extraction eliminates the offsite exposure pathway. The time period for attainment is based on system and is expected to be protracted. In the long term, Alt 4 construction at the end of the Unit operational lifecycle, which will groundwater flushes through the aquifer. Alt 5 would attain the al from the South Sediment Basin which will end the source through the aquifer, thereby eliminating the exposure pathway. the long term, Alt 5 will maintain compliance with the established al lifecycle. Alt 5 has been scored higher than Alt 3, as design of AO.

# **TABLE E-3.** Balancing Criteria EvaluationGroundwater Remedy Selection

Big Rivers Electric Corporation - Green Landfill

40 CFR 257.97	Corrective Measure	Corre	ctive Mea	sure Alte	rnative		
Reference	Evaluation Criteria under 40 CFR 257.97	Alt 2a	Alt 3	Alt 4	Alt 5	Benefit	
				Balancing Criter		ria	
(c)(1)(vi)	Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment;	1	3	2	4	All 4 alternatives allow for CCR to remain in place indefinitely. scored lowest of all. Given that Alt 3 and Alt 4 incorporate an furthers releases into the environment compared with Alt 5. C higher than Alt 4. Alt 5 does require removing source materia much risk to the environment during excavation compared to	
(c)(1)(vii)	Long-term reliability of the engineering and institutional controls	1	3	2	4	All 4 alternatives incorporate institutional controls. Alt 2a is carequired to achieve the CAOs, relying upon natural attenuation scored lowest for this criteria. Given that Alt 3 and Alt 4 inco higher reliability concerns compared with Alt 5. Given that Alt Alt 4.	
(c)(1)(viii)	Potential need for replacement of the remedy	4	2	1	3	With the exception of <b>Alt 2a</b> , each alternative employs treatmerequiring replacement, and has been scored highest of all. Be remove COCs from the environment, including engineering an <b>Alt 3</b> incorporates source control measures, and has been sc	
(c)(2)	The effectiveness of the remedy in controlling the source to reduce further releases based on consideration of the following factors:						
(c)(2)(i)	The extent to which containment practices will reduce further releases	1	3	2	4	All 4 alternatives are expected to reduce or eliminate further r the minimum corrective action that would be required to achie degree upon Alt 2a. However Alt 2a relies upon natural atten been scored lowest for this criteria. Alt 3 and Alt 4 incorporate environment. Given that Alt 3 and Alt 4 incorporate an Ex-Situ releases into the environment than Alt 5. Given that Alt 3 con 5 will prevent further releases by removing source material from much risk to the environment as Alt 3 and Alt 4.	
(c)(2)(ii)	The extent to which treatment technologies may be used	1	4	3	2	With the exception of <b>Alt 2a</b> , each alternative employs treatment and has been scored lowest of all. Both <b>Alt 3</b> and <b>Alt 4</b> incom- environment, including engineering and ex-situ components, a source control measures, and has been scored highest of all.	
(c)(3)	The ease or difficulty of implementing a potential remedy(s) based on consideration of the following types of factors						
(c)(3)(i)	Degree of difficulty associated with constructing the technology	4	2	1	3	With the exception of Alt 2a, each alternative employs treatme and has been scored highest of all. Alt 3 would pose some of The proximity to the river will require substantially higher extra proximity to the river may pose accessibility issues and result is expected to pose some challenges with respect to the insta perimeter of the Landfill. The proximity to the river may pose equipment may be able to meet the depth required for an effe of all options with regard to the criteria. Draining and lining th construction efforts. Both Alt 3 and Alt 4 incorporate an active including engineering and ex-situ components, and have been	
(c)(3)(ii)	Expected operational reliability of the technologies	4	2	1	3	With the exception of <b>Alt 2a</b> , each alternative employs treatmerequiring operation, and has been scored highest of all. Both remove COCs from the environment, including engineering an <b>Alt 3</b> incorporates source control measures, and has been sc	
(c)(3)(iii)	Need to coordinate with and obtain necessary approvals and permits from other agencies ^[See Note]	2.5	2.5	2.5	2.5	All 4 alternatives are expected to require permitting and appro equally.	

#### fit Analysis

ly. Alt 2a employs no active remedial component and has been n ex-situ component, both represent slightly higher potential for Given that Alt 3 contains a source control component it scores rial from the South Sediment Basin but is not seen to represent as to Alt 3 and Alt 4.

s considered to be the minimum corrective action that would be tion to achieve ultimately meet the CAOs and therefore has been corporate an engineering component, both represent slightly **Alt 3** contains a source control component it scores higher than

ment technologies. Alt 2a employs no active remedial component Both Alt 3 and Alt 4 incorporate an active remedial component to and ex-situ components, and have been scored lower than Alt 5. scored higher than Alt 4.

r releases of Appendix IV constituents. Alt 2a is considered to be hieve the CAOs, with the other 3 alternatives building to some enuation to achieve ultimately meet the CAOs and therefore has ate active remedial components to remove COCs from the Situ component, both represent slightly higher potential for furthers ontains a source control component it scores higher than Alt 4. Alt from the South Sediment Basin and is not seen to represent as

ment technologies. **Alt 2a** employs no active remedial component orporate an active remedial component to remove COCs from the s, and have been scored higher than **Alt 5**. **Alt 3** incorporates II.

ment technologies. Alt 2a employs no active remedial component challenges to the installation and operation of the extraction wells. Attraction rates in order to provide hydraulic containment. The ult in inflated costs. Alt 4 would be very difficult to implement and stallation of the grout curtain and extraction system along the se accessibility issues and result in inflated costs. Trenching ffective Physical Containment barrier. Alt 4 has been scored lowest the South Sediment Basin requires nominal engineering and ve remedial component to remove COCs from the environment, een scored lower than Alt 5.

tment technologies. Alt 2a employs no active remedial component th Alt 3 and Alt 4 incorporate an active remedial component to and ex-situ components, and have been scored lower than Alt 5. scored higher than Alt 4.

proval from KDWM to the same degree and have been scored

# **TABLE E-3. Balancing Criteria Evaluation**Groundwater Remedy SelectionBig Rivers Electric Corporation - Green Landfill

40 CFR 257.97	Corrective Measure	Corre	ctive Mea	sure Alter	native	
Reference	Evaluation Criteria under 40 CFR 257.97	Alt 2a	Alt 3	Alt 4	Alt 5	Benefi
				Balan	cing Crite	ria
(c)(3)(iv)	Availability of necessary equipment and specialists	4	2	1	3	With the exception of <b>Alt 2a</b> , each alternative employs treatmed requiring operation, and has been scored highest of all. Both remove COCs from the environment, including engineering ar <b>Alt 4</b> would be very difficult to implement and is expected to p curtain and extraction system along the perimeter of the Land specialists and has been scored lowest of all.
(c)(3)(v)	Available capacity and location of needed treatment, storage, and disposal services	1	2	3	4	With the exception of <b>Alt 2a</b> , each alternative employs treatmorequiring operation, and has been scored lowest of all. Both A remove COCs from the environment, including engineering ar due to the need for treatment. <b>Alt 3</b> is expected to require the <b>Alt 4</b> .
	SUBTOTALS	28.5	41.5	31.5	48.5	

notes:

1) Alternative #2a (A2a): CiP, ICs, and Groundwater Monitoring

2) Alternative #3 (A3): CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring

3) Alternative #4 (A4): CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

4) Alternative #5 (A5): CiP, Other Source Control, ICs, and Groundwater Monitoring

5) Ranking scores range from 1 to 4; 1 = lowest ranking score; 4 = highest ranking score

6) When alternatives are all equivalent the ranking is assigned as the average value of all possible ranking (i.e., (1+2+3+4)/4 = 2.5)

#### fit Analysis

tment technologies. Alt 2a employs no active remedial component oth Alt 3 and Alt 4 incorporate an active remedial component to and ex-situ components, and have been scored lower than Alt 5. pose some challenges with respect to the installation of the grout ndfill. Alt 4 is expected to require the most equipment and

tment technologies. **Alt 2a** employs no active remedial component th **Alt 3** and **Alt 4** incorporate an active remedial component to and ex-situ components, and have been scored lower than **Alt 5** the most treatment requirements and has been scored lower than

# **TABLE E-4.** Modifying Criteria EvaluationGroundwater Remedy SelectionBig Rivers Electric Corporation - Green Landfill

40 CFR 257.97	Corrective Measure	Corre	ective Mea	isure Alter	native	
Reference	Evaluation Criteria under 40 CFR 257.97	Alt 2a	Alt 3	Alt 4	Alt 5	Benefit
				Modif	ying Crite	ria
(c)(4)	The degree to which community concerns are addressed by a potential remedy(s)					
NA (Agreed Order)		1	3.5	3.5	2	Alt 2a is expected to be met with limited state acceptance due minimize the potential impacts to the receptors upon impleme would be relatively straightforward following the completion of overall remedy. Alt 5 is expected to receive moderate accepta potential sources of groundwater contamination.
(c)(4)	Community Acceptance ^[See Notes]	1	3.5	3.5	2	Alt 2a is expected to be met with limited community acceptan in place but provides for active, short-term effective measures community. Alt 4 would likely meet with moderate acceptance the addition of the grout curtain and extraction system; howev groundwater may be an issue. Alt 5 would potentially meet wi time frame, which will be complete only after completion of the more acceptable to the community compared to Alt 2a due to
	SUBTOTALS	2	7	7	4	

<u>notes:</u>

1) Alternative #2a (A2a): CiP, ICs, and Groundwater Monitoring

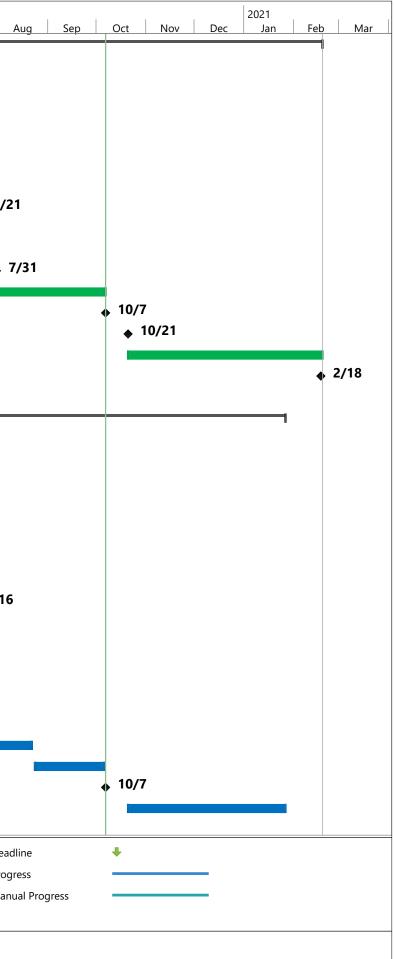
2) Alternative #3 (A3): CiP, Hydraulic Containment, Other Source Control (consisting of seepage collection and treatment), Ex-Situ Treatment, ICs, and Groundwater Monitoring

3) Alternative #4 (A4): CiP, Physical Containment, Ex-Situ Treatment, ICs, and Groundwater Monitoring

4) Alternative #5 (A5): CiP, Other Source Control, ICs, and Groundwater Monitoring

5) Ranking scores range from 1 to 4; 1 = lowest ranking score; 4 = highest ranking score

6) When alternatives are all equivalent the ranking is assigned as the average value of all possible ranking (i.e., (1+2+3+4)/4 = 2.5)


#### fit Analysis

lue to the protracted remedy time frame. **Alt 3** and **Alt 4** will both nentation of the extraction system, and the potential for permitting of the design, thus increasing the regulatory acceptance of the potence from the state with respect to additional control of other

ance due to the protracted remedy time frame. **Alt 3** leaves waste res that would likely meet with moderate acceptance from the acceptance from the community with respect to the established CAO and ever, the remedy timeframe and the discharge of treated with limited acceptance from the community due to the remedy the Landfill's operational lifecycle. However **Alt 5** is expected to be to the inclusion of an active corrective measure component.

## Appendix F Remedy Implementation Schedule

D	Tas Mo	sk ode	Task Name	Start	Finish	2020 ec Jan Feb Mar Apr May Jun Jul	
1			Green Landfill - Perimeter Seepage Control Design	Wed 1/15/20	Thu 2/18/21		<i>F</i>
2	*	•	AEC-000: Purchase Order Received by AECOM	Wed 1/15/20	Wed 1/15/20	♦ 1/15	
3	*		AEC-010: Develop 60% Civil Design	Wed 1/15/20	Wed 4/15/20		
4	*		AEC-40: Submit 60% Draft Civil Design and Specifications	Wed 4/15/20	Wed 4/15/20	♦ 4/15	
5	*		CLI-10: Client Review of 60% Civil Design	Thu 4/16/20	Wed 4/22/20	-	
6	*		AEC-020: Submit Perimeter Seepage Design to Agency	Fri 6/19/20	Fri 6/19/20	♦ 6/19	
7	*	•	AEC-30: Develop 90% Draft Civil Design and Specifications	Fri 6/19/20	Tue 7/21/20		
8	*		AEC-40: Submit 90% Draft Civil Design and Specifications	Tue 7/21/20	Tue 7/21/20	•	. 7/2 [.]
9	*		CLI-020: Prepare Bid Documents	Wed 5/20/20	Fri 5/29/20	-	
10	*		CLI-030: Bid Period	Mon 6/1/20	Thu 7/30/20		
11	*		CLI-040: Bids Due	Fri 7/31/20	Fri 7/31/20		<b>♦</b> 7/
12	*		CLI-050: Negotiate Award	Fri 7/31/20	Tue 10/6/20		
13	*	•	CLI-060: Award Contract	Wed 10/7/20	Wed 10/7/20		
14	*		CLI-070: Construction Start	Wed 10/21/20	Wed 10/21/20		
15	*	•	CLI-080: Construction	Wed 10/21/20	Thu 2/18/21		
16	*		CLI-090: Construction Complete	Thu 2/18/21	Thu 2/18/21		
17	*	,					
18	-9		<b>Green Landfill - Groundwater Remedy Selection</b>	Mon 2/24/20	Tue 1/26/21		
19	*	•	1: Receive Big Rivers concurrence on tasks/schedule	Fri 3/6/20	Fri 3/6/20	♦ 3/6	
20	*	•	2: Data Gap Evaluation	Mon 2/24/20	Tue 3/31/20		
21	*	•	3: Preparation for Public Meeting	Wed 4/1/20	Tue 6/30/20		
22	*	•	4: Notice for Public Meeting in local newspaper and on BREC CCR website	Wed 7/8/20	Wed 7/8/20	♦ 7/2	8
23	*		5: Submit PowerPoint Presentation for client review	Mon 4/13/20	Mon 4/13/20	♦ 4/13	
24	*		6: Client review of PowerPoint Presentation	Mon 4/13/20	Tue 6/30/20		
25	*		7: Revise PowerPoint Presentation	Tue 6/30/20	Thu 7/2/20		
26	*	•	8: Public Meeting to present ACM results (40 CFR 257.96(e))	Thu 7/16/20	Thu 7/16/20	•	7/16
27	*	•	9: Develop Final Remedy Selection Report (FRSR)	Mon 3/30/20	Fri 5/15/20		
28	*		10: Submit FRSR for client review	Fri 5/15/20	Fri 5/15/20	♦ 5/15	
29	*		11: Client review of FRSR	Mon 5/18/20	Thu 6/11/20		
30	*		12: Incorporate client comments in FRSR	Fri 6/12/20	Thu 6/18/20	-	
31	*		13: Submit FRSR for KDEP Review	Fri 6/19/20	Fri 6/19/20	♦ 6/19	
32	*		14: KDEP Review of FRSR	Fri 6/19/20	Fri 8/21/20		
33	*	•	15: Address KDEP comments on FRSR	Mon 8/24/20	Mon 10/5/20		
34	*	•	16: Post Final FRSR to CCR Website	Wed 10/7/20	Wed 10/7/20		
35	*	•	17: Groundwater Remedy Implementation (within 90 days of selecting a remedy under 40 CFR 257.97)	Wed 10/21/20	Tue 1/26/21		
!	;;		Task Project Summary		Manual Task	Start-only C	Deadl
Project:	Green	LF_Per	i Seep+GW Split Inactive Task		Duration-only	Finish-only	Progr
Date: W			Milestone	e 🔷	Manual Summary Rollu		Manu
			Summary Inactive Summary		Manual Summary	External Milestone	
					Page		



AECOM 525 Vine Street Cincinnati, OH 45202 www.aecom.com

# Semi-Annual Remedy Selection Progress Report

388

Reid/HMP&L Surface Impoundment Sebree Generating Station Webster County, Kentucky

Prepared for:



Big Rivers Electric Corporation Sebree Generating Station 9000 Highway 2096 Robards, KY 42452

Prepared by:

AECOM Technical Services 525 Vine Street, Suite 1800 Cincinnati, Ohio 45202

AECOM PN 60656816

December 2021

## Quality information

Prepared by		Checked b	ру	Verified I	Verified by			
Tim O	Doud	Å	2=	Joseph B. Sahre				
Timothy P. O'Dowd, PG Project Manager		Dennis P. (	Connair, PG	Joseph B	. Suhre			
		Principal G	Geologist	Principal	Engineer			
Revision His	tory							
Revision	<b>Revision date</b>	Details	Authorized	Name	Position			
1	12-10-21							
Distribution L	₋ist							
# Hard Copies	PDF Required	Association	/ Company Name					
	1	Big Rivers Ele	ectric Corporation					

## **Table of Contents**

Execu	utive S	ummary	5
1.	Introd	uction	1
2.	Site B	ackground	2
	2.1	Site Description	2
	2.2	Groundwater Investigation Summary	2
	2.3	Conceptual Site Model	3
	2.3.1	Physical Setting	4
	2.3.2	Geology	4
	2.3.3	Groundwater Hydrogeology	4
	2.3.4	Constituents of Concern	5
	2.3.5	Impacted Media	5
	2.3.6	Distribution of COCs	5
	2.3.7	Potential Receptors/Exposure Pathways	6
	2.4	Interim Corrective Measures	6
	2.5	Assessment of Corrective Measures Summary	6
3.	Reme	dy Selection Progress	9
	3.1	Potential Corrective Action Alternatives	9
	3.1.1	Alternative #2a – CiP, ICs, and Groundwater Monitoring	9
	3.1.2	Alternative #3 – CiP, ICs, Hydraulic Containment, Ex-Situ Treatment, and Groundwater	
		Monitoring	9
	3.1.3	Alternative #4 – CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater	4.0
	~ ~	Monitoring	
	3.2	Remedy Evaluation	
4.		usion	
5.	Refer	ences	13

## **Figures**

Figure 1	Site Location Map
----------	-------------------

- Figure 2 Well Location Map
- Figure 3 Groundwater Surface Map September 2021
- Figure 4 Groundwater Conditions Map 2020-2021 Analytical Results

## **Tables**

Table 1	Reid/HMP&L Constituents of Concern
Table 2	Reid/HMP&L – Characterization Sample Results
Table 3	Reid/HMP&L – September/October 2021 Groundwater Elevation Data
Table 4	Reid/HMP&L – September/October 2021 Lithium Analytical Results
Table 5	Potential Corrective Measures Options for Groundwater Impacts

### **Executive Summary**

Title 40 of the Code of Federal Regulations Part 257.97(a) requires that progress reports be prepared on a semi-annual basis describing progress made in selecting and designing a remedy to address groundwater impacts resulting from a release of coal combustion residuals (CCR) into the environment. Big Rivers Electric Corporation (BREC) is in the process of selecting a remedy for groundwater impacts at the Reid/Henderson Municipal Power & Light Surface Impoundment (the Unit) at the Sebree Generating Station located in Webster County, Robards, Kentucky.

BREC performed an Assessment of Corrective Measures (ACM) to identify applicable remedial technologies to address lithium impacts in groundwater in 2019. A report summarizing the results of the ACM was posted to BREC's publicly-accessible CCR reporting website on July 11, 2019. Currently, BREC is evaluating three (3) potential corrective action alternatives as options to address groundwater impacts at the Unit. To evaluate each alternative, additional data collection will be required.

BREC anticipates that Alternative #2a (Closure-in-place, institutional controls, and groundwater monitoring) will be selected as the preferred remedy and is working to establish a comprehensive list of data collection needs to proceed forward with remedy evaluation and selection in 2022. BREC anticipates providing additional information in future semi-annual remedy selection progress reports.

#### 1. Introduction

In accordance with provisions of the United States Environmental Protection Agency's (USEPA) coal combustion residual (CCR) rule, Title 40 of the Code of Federal Regulations (CFR) Part 257.97, Big Rivers Electric Corporation (BREC) is in the process of selecting a remedy for groundwater impacts at the Reid/Henderson Municipal Power & Light (Reid/HMP&L) Surface Impoundment (the Unit) at the Sebree Generating Station located in Webster County, Kentucky (Figure 1).

Assessment monitoring results indicate the presence of lithium at a Statistically Significant Level (SSL) above the Ground Water Protection Standard (GWPS) in one monitoring well (MW-10) at the Unit. A map illustrating the site with locations of all program monitoring wells is presented as **Figure 2**.

In response to the SSL exceedance, BREC evaluated the nature and extent of groundwater impacts as required by Title 40 CFR Part 257.95(g) for characterization monitoring. In addition, BREC performed an Assessment of Corrective Measures (ACM) to identify applicable remedial technologies to address lithium impacts in groundwater pursuant to Tile 40 CFR Part 257.96. A notice of ACM initiation dated January 14, 2019 was posted to BREC's publicly-accessible CCR reporting website. A report summarizing the results of the ACM (AECOM, June 2019) was posted to BREC's publicly-accessible CCR reporting website on June 14, 2019.

Title 40 CFR Part 257.97(a) requires that progress reports be prepared on a semi-annual basis describing progress made in selecting and designing a remedy. The fourth semi-annual *Remedy Selection Progress Report* (AECOM, June 2021) was posted to BREC's publicly-accessible CCR reporting website in July, 2021. In alignment with the CCR rule requirement, the following sections included within this semi-annual progress report provide an overview of BREC's activities previously performed, currently underway, and planned in the future to select a remedy that meets the requirement of Title 40 CFR Part 257.97 (b) as follows:

- (1) Be protective of human health and the environment;
- (2) Attain the GWPS as specified pursuant to Section 257.95(h);
- (3) Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of Appendix IV constituents into the environment;
- (4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems;
- (5) Comply with standards for management of wastes as specified in Section 257.98(d).

### 2. Site Background

#### 2.1 Site Description

BREC operates the Sebree Station, which is a coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/HMP&L Station. BREC owns Green and Reid Stations, while the City of Henderson owns HMP&L Station 2. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 began commercial operation in 1966 and was retired on September 30, 2020. HMP&L Station 2, Units 1 and 2 began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 and 2 began commercial operation in 1973 and 1974 respectively.

The location of the Reid/HMP&L Station Surface Impoundment is illustrated in **Figure 2**. The Surface Impoundment has been in place for more than 40 years and was used previously for the placement of CCR material. As stated in the published CCR monitoring well network certification, available on the BREC website, the Reid/HMP&L Station Surface Impoundment is a combined incised/dike earthen embankment structure. It is diked on the west, south and east sides, while the north side is incised. The south dike has the greatest height, reaching approximately 20 feet. Most of the central portion of the south dike was constructed on a subdued ridge.

#### 2.2 Groundwater Investigation Summary

Monitoring wells were installed around the perimeter of the Unit in December 2015 prior to the implementation of the CCR Rule. These wells meet the requirements of Title 40 CFR Part 257.90 of the CCR Rule for installation of a groundwater monitoring system. Under these requirements monitoring wells must adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The existing wells are located along the perimeter of the footprint for the Unit. One upgradient monitoring well (MW-7) and three downgradient monitoring wells (MW-8, MW-9, and MW-10) were installed adjacent to the Unit to determine the general direction of groundwater movement and to monitor groundwater impacts. The monitoring wells were installed in the uppermost saturated portion of the sandstone bedrock aquifer.

Nine rounds of Baseline groundwater sampling for Appendix III constituents were conducted between March 2016 and October 2017. Statistical evaluation of Appendix III constituents monitored for Detection monitoring indicated that statistically significant increases (SSIs) over background have occurred, and therefore, Assessment monitoring was triggered. Monitoring activities and data are presented in the annual reports that have been prepared to date (AECOM 2018, 2019, and 2020).

As part of Assessment monitoring, upgradient and downgradient wells for the Unit were sampled for Appendix IV constituents in April, July, and September 2018. GWPS were established for the Appendix IV constituents occurring at SSIs (lithium only), and statistical evaluation of the lithium concentrations indicated exceedances of GWPSs at SSLs, as detailed in **Table 1** below.

Monitoring Well	Parameter
(Date)	Lithium GWPS 0.04 (mg/L)
MW-10 (Apr 2018)	0.694
MW-10 (Jul 2018)	0.630
MW-10 (Sep 2018)	0.570

#### Table 1 – Reid/HMP&L Surface Impoundment Constituents of Concern

GWPSs are the greater of the site-specific background concentrations, the USEPA primary drinking water standard maximum contaminant limits (MCL), or GWPS provided in 40 CFR 257.95(3)(h)(2)

An additional characterization well, MW-110, was subsequently installed to estimate the downgradient extent of impacted groundwater. Sample collection for Appendix III and IV parameters took place from 2019 through 2021. The analytical results for lithium in MW-110 were below the GWPS. The additional characterization data are summarized in **Table 2** below.

	Parameter
Monitoring Well (Date)	Lithium GWPS 0.04 (mg/L)
MW-110 (March 2019)	0.0299
MW-110 (April 2019)	0.0303
MW-110 (October 2019)	0.02
MW-110 (April 2020)	0.02
MW-110 (October 2020)	0.02
MW-110 (May 2021)	0.02
MW-110 (October 2021)	0.02

Table 2 – Reid/HMP&L Surface Impoundment Characterization Sample Results

The results from these characterization sampling events helped to confirm the downgradient (southwestern) extent of COC impacts above GWPS at the Unit.

Semi-annual Assessment monitoring continued at the Unit in 2019 through 2021 in accordance with 40 CFR Part 257.95.

#### 2.3 Conceptual Site Model

Development and refinement of a Conceptual Site Model (CSM) is necessary to support remedy selection for the Unit. A CSM is based on a set of working hypotheses regarding how contaminants of concern (COCs) entered the environment at a site, how they were and continue to be transported to various media, what the potential routes of exposure are, and who may be exposed, including both human and ecological receptors. As such, the CSM is a "living" model. As new data become available or site conditions change, a CSM should be evaluated and updated as necessary.

The CSM for the Unit was first provided in the June 2019 ACM for the Unit (AECOM 2019). The CSM presents the physical setting of the Unit (adjacent to the Green River), the unconsolidated and bedrock geologic strata underlying the Unit, the occurrence and movement of groundwater, the distribution of COCs in groundwater, and the potential receptors (or lack thereof) for impacted groundwater. These

elements are described in detail below and have been updated with new information for this report as appropriate.

#### 2.3.1 Physical Setting

The Unit is located within the Interior Low Plateaus physiographic province. The province is part of the Interior Plains division of the United States. Characteristic features of the province include unglaciated rolling limestone plains with alluvial valleys and entrenched rivers and streams. Several large rivers are in the region, including the Green, Ohio, Kentucky, Tennessee, and the Cumberland Rivers. The geology underlying the Unit consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastic and carbonate bedrock consisting primarily of sandstone and shale. The unconsolidated materials also include fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium.

The Unit is located on upland area near the west bank of the Green River. The uppermost edge of the earthen embankment is situated at an elevation of approximately 429 feet above mean sea level (amsl). Although the Green River is located less than 0.5 miles from the site, the structure does not extend significantly into the floodplain. Underlying preconstruction soils consisted of Loring-Grenada, Loring-Zanesville-Wellston (Henderson County) and Loring-Wellston-Zanesville (Webster County) soil associations which are generally characterized as well drained to moderately well drained soils on nearly level to sloping uplands (Associated Engineers 2016, Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan). The immediate watershed that drains to the unit, and in which the unit is considered to be located, is unnamed and 25.45 acres in size. The unnamed watershed discharges from the Unit outflow structure and is routed, under a Kentucky Pollution Discharge and Elimination System permit, to the Green River.

#### 2.3.2 Geology

The Unit lies in the Western Kentucky Coalfields section, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. Near the Unit, maximum topographic relief is on the order of 80 feet. The geologic quadrangle (Geologic map of the Robards quadrangle, Henderson and Webster Counties, Kentucky, 1973) for the area published by the Kentucky Geologic Survey (KGS) shows the surficial material in portions of the western half of the Unit to be unconsolidated loess representing the Pleistocene geologic epoch. The loess consists of sandy and clayey silt. Underlying the loess deposits and exposed at the surface on the eastern half of the Unit are broadly distributed Pleistocene and Holocene alluvium deposits consisting of intermixed and interlensing clay, silt, sand, and gravel. In close proximity to the Unit, the alluvium is generally a low permeability unit that forms terraces along the Green River at elevations of roughly 380 and 395 ft., amsl. The unconsolidated surficial materials range from approximately 24 feet (MW-7) to 47 feet (MW-110) in thickness surrounding the Unit.

The unconsolidated materials are underlain by bedrock of the Upper Pennsylvanian Shelburn Formation [formerly identified as the Lisman Formation (Fairer, 1973)] and the Middle Pennsylvanian Carbondale Formation. The Shelburn and Carbondale formations consist of cyclic sequences of sandstones, shales, siltstones and coals. These sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the lithologic units tend to be lenticular bodies rather than continuous sheet-like strata. Gradational and abrupt horizontal changes in lithology are often encountered.

#### 2.3.3 Groundwater Hydrogeology

For purposes of compliance with the CCR Rule groundwater monitoring requirements, the interbedded sandstone and shale of the Shelburn Formation is considered the uppermost aquifer underlying the Unit. The uppermost aquifer is hydraulically confined and first encountered at an elevation of approximately 428 ft., amsl at the northeast end (at MW-7), and 389 ft. amsl at the west end of the Unit (at MW-9).

Groundwater elevation data collected during the 2nd semi-annual monitoring event of 2021 are summarized on **Table 3** below. These data were utilized to construct a piezometric surface map illustrating groundwater flow conditions for the uppermost aquifer (see **Figure 3**). Flow direction beneath

the Unit is to the southwest towards an unnamed tributary to Groves Creek located west-southwest of the impoundment.

Monitoring Well	Top of Casing Elevation (ft) ¹	Depth to Groundwater (ft)	Groundwater Elevation (ft, amsl)
MW-7	444.43	19.70	424.73
MW-8	394.29	5.97	388.32
MW-9	395.40	7.73	387.67
MW-10	422.27	30.67	391.60
MW-110	388.70	6.04	382.66

# Table 3. Reid/HMP&L Surface Impoundment – September/October 2021 Groundwater Elevation Data

 Reference elevation of monitoring wells surveyed by Associated Engineers, Inc., Madisonville, Kentucky, January 2015. Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, NAD27 datum.

Slug tests were performed between April 24, 2019 and April 25, 2019 at monitoring wells MW-10, and MW-110 to assess the hydraulic characteristics of the uppermost aquifer. The estimated hydraulic conductivity of the monitoring wells tested ranged from  $3 \times 10^{-6}$  to  $5 \times 10^{-4}$  centimeters per second (cm/sec).

Although previous site-specific investigations have noted the presence of perched zones of saturation in the overlying unconsolidated materials, these discontinuous zones do not qualify as an uppermost aquifer under the CCR Rule because they do not produce usable quantities of groundwater.

#### 2.3.4 Constituents of Concern

Current groundwater analytical data and statistical analysis indicate that the only COC detected at SSLs above its GWPS in groundwater at the Unit is lithium. Lithium has been detected at SSLs in the monitoring well MW-10 southwest of the Unit.

#### 2.3.5 Impacted Media

Groundwater is the single impacted media of concern identified as requiring corrective measures at the Unit.

#### 2.3.6 Distribution of COCs

Groundwater sampling was performed at the Unit most recently from September 29 through October 1, 2021. The additional lithium data collected during this event are summarized below in **Table 4**.

	Parameter		
Monitoring Well (Date)	Lithium GWPS 0.04		
	(mg/L)		
MW-7	0.03		
MW-8	0.04		
MW-9	0.005		
MW-10	0.49		
MW-110	0.02		

#### Table 4. Reid/HMP&L Surface Impoundment – September/October 2021 Lithium Analytical Results

**Figure 4** illustrates the distribution of COCs and other groundwater quality constituents in groundwater at the Unit. This distribution of COCs in groundwater suggests that impacts to groundwater likely originate as seepage from beneath the surface impoundment, however there is currently no feasible means of directly tracing that potential under the footprint of the Unit.

#### 2.3.7 Potential Receptors/Exposure Pathways

Contact with water (e.g., shallow groundwater or surface water) impacted by COCs at levels above GWPS or Water Quality Criteria is regarded as the potential pathway for exposure of potential receptors. Based on data published by KGS, there are no known groundwater wells used for drinking water within a 1-mile radius of the Unit, thus limiting the potential receptors to the surface water, i.e., the Green River and its tributary, Groves Creek. The pathways to these receptors include seepage of water from the Unit through manmade and natural hydraulic conduits.

Other potential exposure pathways (e.g., soil or vapor) are not considered complete as the CCR material is isolated in the Unit. This isolation prevents direct access by individuals that might result in direct contact or ingestion. In addition, the inherent non-volatile nature of the Unit-specific COCs eliminates the potential for a complete vapor pathway (i.e., vapor intrusion to indoor air).

#### 2.4 Interim Corrective Measures

No interim corrective measures have been performed at the Unit for groundwater impacts.

#### 2.5 Assessment of Corrective Measures Summary

In June 2019, BREC performed an ACM for the Unit to identify remedial alternatives to address groundwater impacts. Title 40 CFR Part 257.96(c) requires that the ACM include an analysis of the effectiveness of potential corrective measures in meeting the objectives for remedies identified under Section 257.97(b), by addressing at least the following:

- 1) The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- 2) The time required to begin and complete the remedy; and
- 3) The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy(s).

As part of the groundwater ACM, several potential corrective measures technologies were evaluated to identify which ones could be carried forward as components of corrective measures alternatives. The results of the corrective measures technology evaluation are presented below in **Table 5**.

Potentially Applicable Technology	Status	Description/Overview		
No Action	Not retained as standalone technology, but carried forward for baseline comparisons	This technology has been included in the preliminary evaluation/screening but is not retained because it will not meet the established CAOs.		
Institutional Controls (ICs)	Retained as supplement to corrective measures alternatives	The use of ICs (i.e., Environmental Covenants, groundwater use restrictions, etc.) is retained as a useful technology. However, it is noted the ICs are not anticipated to be used as a stand-alone technology. Environmental Covenants, groundwater use restrictions, etc., are expected to be combined with other applicable technologies as part of corrective measures alternatives.		
Groundwater Monitoring (Assessment and Detection modes)	Retained as supplement to corrective measures alternatives	The use of groundwater monitoring (Assessment and/or Detection modes as appropriate) when combined with other applicable technologies as part of any proposed corrective measures alternative is retained to address the CAO and to track the effectiveness of the overall remedy. However, it is not retained as a stand-alone technology.		
Hydraulic Containment	Retained	The use of hydraulic containment is retained because it is an effective means of preventing off-site migration of soluble contaminants. Hydraulic containment requires management and potential ex-situ treatment of extracted groundwater, so it is not a stand-alone technology. The CSM will guide the design of any groundwater extraction system to optimize the total discharge of groundwater needed to provide hydraulic containment.		
Physical Containment	Retained	The use of physical containment is retained because it can be an effective means of managing groundwater flow. Physical containment often requires pairing with hydraulic containment and/or in-situ treatment (funnel and gate style) to manage the flux of groundwater flow into the system. The CSM will guide the design of any physical barrier system, but technology limitations may increase implementation difficulty with scale.		
Ex-situ Physical/Chemical/Biological Treatment	Retained	Ex-situ treatment technologies are retained as a way of removing contaminants from extracted groundwater from a hydraulic containment system. Ex-situ treatment may be paired with wastewater treatment, non-groundwater release treatment systems, or with permitted discharge to manage groundwater contamination. The CSM and data gaps investigations will guide the design of any ex-situ treatment.		
Closure in Place (CiP) (of the regulated unit)	Retained	The use of CiP as a source control technology and is amenable with respect to CAO attainment.		

Potentially Applicable Technology	Status	Description/Overview		
Closure by Removal (CbR) (of the regulated unit)	Retained	The use of CbR as a source control technology is amenable with respect to CAO attainment.		
Other Source Control Technologies	Retained	Control of source area non-groundwater related releases. For the purposes of this groundwater ACM, management of non-groundwater releases are not included in the alternatives evaluation. Engineering measures, including leachate collection, lining of trenches and/or ponds, and other isolation methods are regarded as part of closure technologies selected by other means.		

Note: Technologies that were retained may be used as components of a corrective action alternative, but when evaluated in conjunction with other available technologies any single technology may not be utilized.

Preliminary assembly of corrective measures alternatives was performed based on site-specific and regional geology and groundwater conditions. For the Reid/HMP&L Station Surface Impoundment, five corrective measures alternatives were developed from this list of applicable corrective measures technologies:

- Alternative #1 No Action, and Groundwater Monitoring
- Alternative #2a Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3 CiP, ICs, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, and Groundwater Monitoring
- Alternative #4 CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

The assembly of corrective measures alternatives presented in the ACM was considered preliminary and subject to revision following additional evaluation during the remedy selection process and/or following comment from the regulatory community and public. Further evaluation of the alternatives is discussed in the following sections.

## 3. Remedy Selection Progress

The ACM performed for the Unit in June 2019 identified a total of five (5) corrective measures alternatives to be carried forward into the remedy selection process. In December 2019, BREC provided a *Semi-annual Remedy Selection Progress Report* (AECOM, December 2019) as required under 40 CFR Part 257.97(a). As part of this submittal, two (2) corrective measures alternatives were eliminated from further consideration, including:

- Alternative #1 (No Action and Groundwater Monitoring) This alternative does not control or remove COCs from the environment and therefore does not achieve the RAOs.
- Alternative #2b (CbR, ICs, and Groundwater Monitoring) Implementing a CbR approach is considered cost prohibitive. In addition, any CbR approach would require relocating waste to an existing disposal unit or construction of a new waste disposal unit, which does not align with the one of the fundamental goals of RCRA (conserving energy and natural resources).

Three (3) potential corrective measures alternatives have been identified by BREC as viable options to address lithium impacts in groundwater at the Unit, including:

- Alternative #2a: CiP, ICs, and Groundwater Monitoring
- Alternative #3: CiP, ICs, Hydraulic Containment, Ex-Situ Treatment, and Groundwater Monitoring
- Alternative #4: CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

Each of the remaining 3 corrective measures alternatives is discussed in more detail below.

#### 3.1 **Potential Corrective Action Alternatives**

#### 3.1.1 Alternative #2a – CiP, ICs, and Groundwater Monitoring

Alternative #2a as currently envisioned would employ a combination of three corrective measures technologies:

- CiP source control, which consists of Reid/HMP&L Surface Impoundment closure activities;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater monitoring (Assessment) to document the effectiveness of the corrective measures.

Alternative #2a is recommended for further evaluation.

# 3.1.2 Alternative #3 – CiP, ICs, Hydraulic Containment, Ex-Situ Treatment, and Groundwater Monitoring

Alternative #3 builds on Alternative #2a to also include the addition of Hydraulic Containment and Ex-Situ Treatment of groundwater:

- CiP source control, which consists of Surface Impoundment closure activities;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes;
- Hydraulic Containment using one or more vertical wells designed to prevent the movement of impacted groundwater past the limits of the unit to the downgradient groundwater environment and potential points of exposure;

- Ex-Situ Treatment of groundwater extracted for hydraulic containment, which involves aboveground physical/chemical treatment methods and/or permitted discharge until the CAOs are achieved;
- Implementation of ICs designed to restrict the property to industrial use and to prohibit groundwater use for potable purposes; and
- Groundwater Monitoring (Assessment mode) to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection-mode monitoring and ultimately to cessation of corrective measures.

Alternative #3 is recommended for further evaluation.

# 3.1.3 Alternative #4 – CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

Alternative #4 consists of BREC's unit closure activities, physical containment of impacted groundwater via installation of a funnel-gate system, and ex-situ treatment of contained groundwater via an extraction well installed at the containment gate. Impacted groundwater would be contained by grout curtain constructed in a funnel-and-gate arrangement that directs the flow of groundwater to an extraction point. The grout curtain would be installed by drilling two lines of grout injection points that extend northwestward and northeastward from the southeast corner of the unit. The length of each limb of the barrier would be 500 feet, and the target depth would be approximately 325 ft-amsl. A single extraction well would be installed at the "gate" with a screened interval of 50 to 100 ft-bgs and a pumping capacity of up to 20 gpm. Groundwater will be pumped and conveyed to an existing surface water impoundment at the Sebree Station, which will allow for compliance with discharge permits through an established NPDES outfall.

CiP via ash stabilization and capping would control the source of COCs and thereby reduce contaminant loading to the extraction system. Concentrations downgradient of the physical barrier would be expected to decrease over time through several natural attenuation mechanisms including advection, dilution, and dispersion. Groundwater Monitoring (Assessment) would continue to track the effectiveness of the corrective measures and to identify conditions that allow the return to Detection monitoring and ultimately closure.

Alternative #4 is recommended for further evaluation.

#### 3.2 Remedy Evaluation

Currently BREC considers the (3) potential corrective action alternatives as viable options to address groundwater impacts at the Unit, including:

- Alternative #2a;
- Alternative #3; and
- Alternative #4

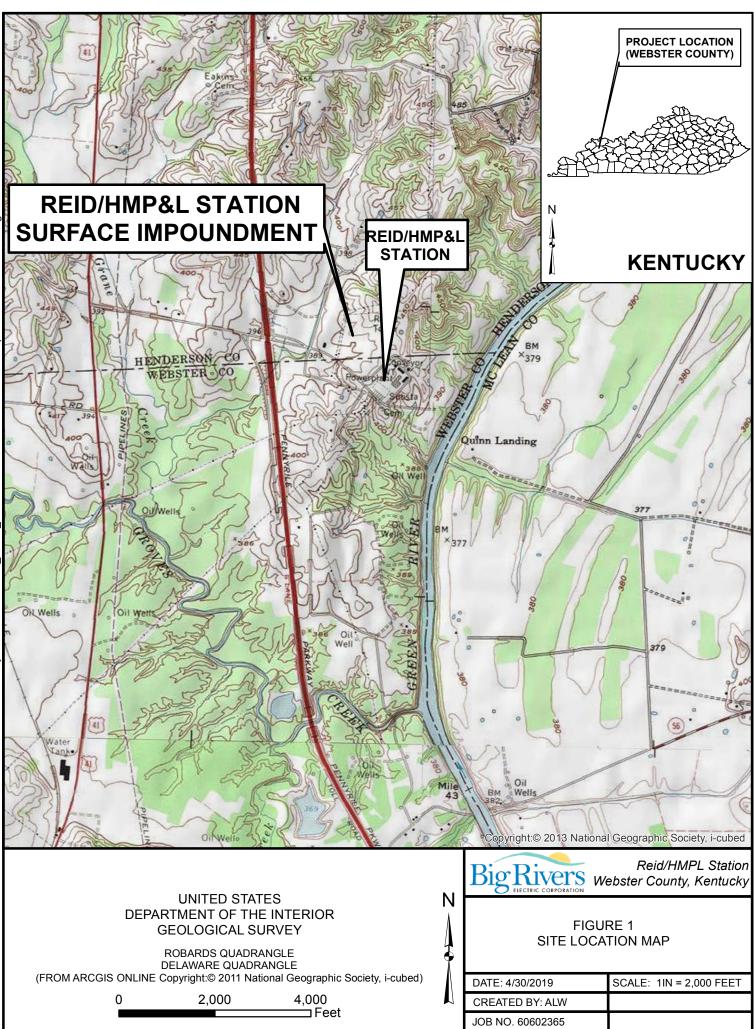
To evaluate each alternative, additional data collection will likely be required. BREC is currently evaluating data collection needs in the following areas to assist with remedy selection:

- 1) Nature and Extent groundwater trends, influence of non-groundwater remedies, etc.
- 2) Physical Characteristics available data on the physical characteristics of the retention pond
- 3) Engineering feasibility, cost estimates, etc.

BREC anticipates that Alternative #2a (Closure-in-place, institutional controls, and groundwater monitoring) will be selected as the preferred remedy and is working to establish a comprehensive list of

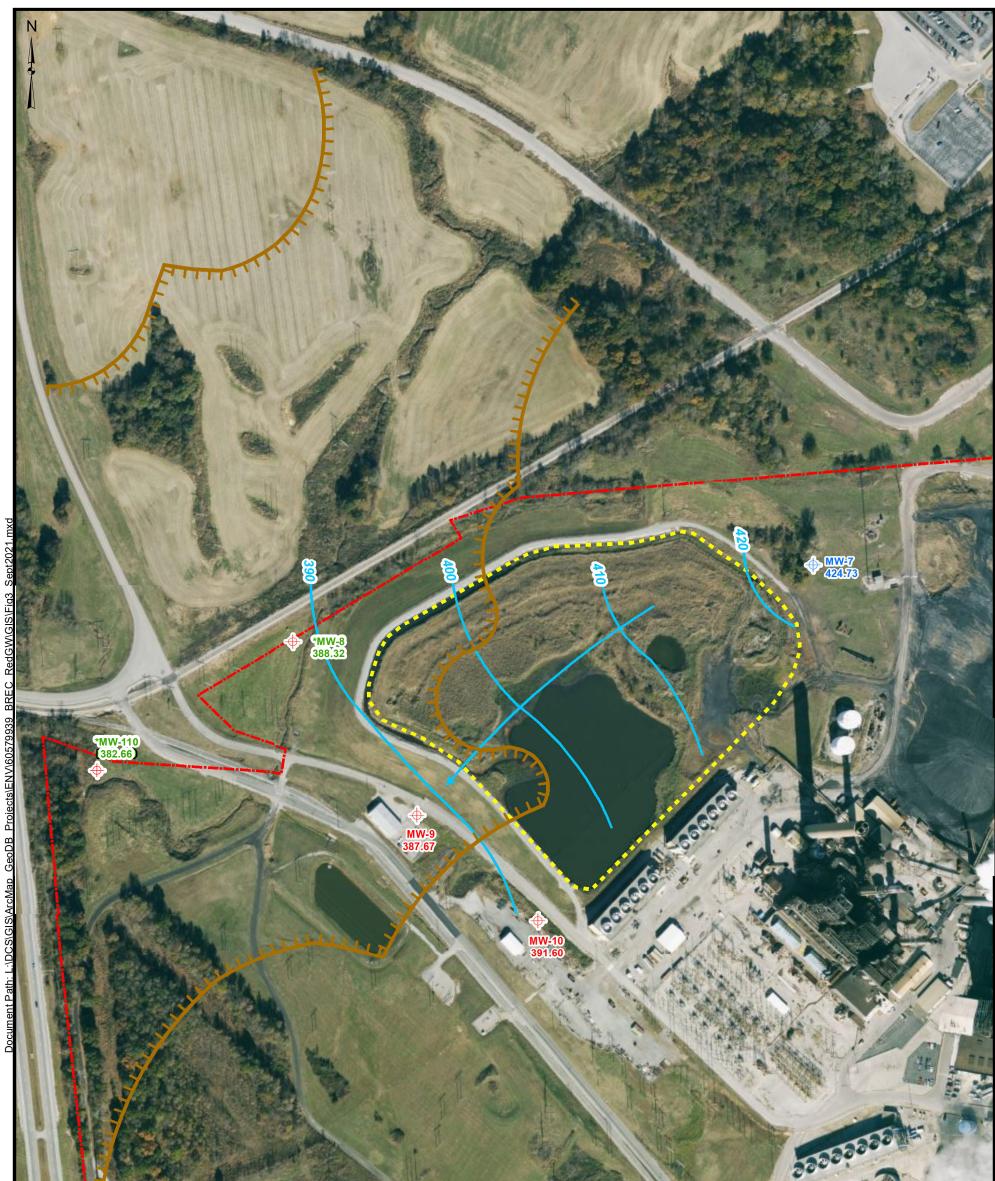
data collection needs to proceed forward with remedy evaluation and selection in 2022. BREC anticipates providing additional information in future semi-annual remedy selection progress reports.

### 4. Conclusion


Additional updates regarding remedy selection, including any additional corrective measures being considered, will be presented twice a year in future remedy selection progress reports. Once sufficient data has been collected to select an effective comprehensive remedy for the Unit, a public meeting will be held 30 days prior to formal remedy selection, followed by a detailed Remedy Selection Report describing the remedy and proposed schedule for implementation.

The next remedy selection progress report for the Unit is expected in June 2022.

#### 5. References


- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Sebree Generating Station, Webster County, Kentucky.
- AECOM, 2019. Annual Groundwater Monitoring and Corrective Action Report, 2018; Sebree Generating Station, Webster County, Kentucky.
- AECOM, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky.
- AECOM, 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky.
- Associated Engineers 2016. Hydrologic and Hydraulic Capacity Assessment and Initial Inflow Design Flood Control System Plan.
- EPA, 40 CFR Part 257. [EPA-HQ-RCRA-2015-0331; FRL-9928-44-OSWER]. RIN-2050-AE81. Technical Amendments to the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities—Correction of the Effective Date. Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.

**Figures** 





bin		© 2021 Microsoft C	Eorporation © 2021 Maxar @CN	ES (2021) Distribution Airbus DS
Legend	Downgradient Monitoring - Characterization Well			/PL Surface Impoundment Webster County, Kentucky
<b></b>	Well		FIG	GURE 2
<b></b>	Upgradient Monitoring Well		MONIT	ORING WELL TION MAP
	Unit Boundary	0 300 6	500 DATE: 11/30/2021	SCALE: 1IN = 200 FEET
<u>[]</u>	Property Line		CREATED BY: TCC	
		Feet	JOB NO. 60579939	



Sen

<complex-block>         Vertical Structure       Partical Structure       Partical</complex-block>	Af Water Table Contour (Inferred from Zuno)	Area a series a ser	FIGL GROUNDWATER	URE 3 R SURFACE MAP BER 2021
shown on this map with green labels September 29, 2021			DATE: 11/30/2021	SCALE: 1IN = 200 FEET
MW-110 data was collected on 10-1-2021	0 300	600	CREATED BY: TCC	COALE. IN 2001LET
	Feet		JOB NO. 60579939	

MW-8					
APPENDIX III	GWPS	4/16/2020	9/24/2020	4/21/2021	9/29/2021
Boron	NA	1.56	1.41	1.42	1.50
Calcium	NA	292	257	281	267
Chloride	NA	47.3	49.2	45.8	61.4
Fluoride	4	0.4	0.4	0.3	0.4
Sulfate	NA	1130	1400	1090	2320
pH (SU)	NA	6.78	6.58	6.64	6.12
Total Dissolved Solids	NA	1930	1940	2000	2090
APPENDIX IV					
Antimony	0.006	<0.005	<0.005	<0.005	<0.005
Arsenic	0.01	<0.0010	<0.0010	<0.0010	<0.0010
Barium	2	0.017	0.016	0.018	0.020
Beryllium	0.004	<0.0020	<0.0020	<0.0020	<0.0020
Cadmium	0.005	<0.0010	<0.0010	<0.0010	<0.0010
Chromium	0.1	<0.0020	<0.0020	<0.0020	<0.0020
Cobalt	0.006	<0.004	<0.004	< 0.004	< 0.004
Fluoride	4	0.4	0.4	0.3	0.4
Lead	0.015	<0.002	<0.002	< 0.002	<0.002
Lithium	0.040	0.03	0.03	0.03	0.04
Mercury	0.002	<0.0005	<0.0005	<0.0005	<0.0005
Molybdenum	0.1	0.01	0.01	0.01	0.01
Radium 226 (pCi/L)	E pC:/I	1.93	0.366	1.94	1.72
Radium 228 (pCi/L)	5 pCi/L	1.93	0.300	1.94	1.72
Selenium	0.05	<0.003	<0.003	<0.003	<0.003
Thallium	0.002	<0.0020	<0.0020	<0.0020	<0.0020

the same				NUX 4	
••••••	<u>V=110</u>				
		MW-11	LO		

MW-110												
APPENDIX III	GWPS	4/17/2020	10/1/2020	5/26/2021	10/1/2021							
Boron	NA	0.54	0.53	0.54	0.52							
Calcium	NA	181	162	163	155							
Chloride	NA	22.1	19.9	21.8	21.1							
Fluoride	4	0.3	0.3	0.3	0.3							
Sulfate	NA	460	411	428	853							
pH (SU)	NA	7.17	7.56	7.25	6.69							
Total Dissolved Solids	NA	1150	1060	1140	1090							
APPENDIX IV												
Antimony	0.006	<0.005	<0.005	<0.005	<0.005							
Arsenic	0.01	0.0012	0.0004	<0.0010	<0.0010							
Barium	2	0.065	0.056	0.055	0.049							
Beryllium	0.004	<0.0020	<0.0020	<0.0020	<0.0020							
Cadmium	0.005	<0.0010	<0.0010	<0.0010	<0.0010							
Chromium	0.1	0.0047	0.0016	0.0009	<0.0020							
Cobalt	0.006	< 0.004	<0.004	<0.004	<0.004							
Fluoride	4	0.3	0.3	0.3	0.3							
Lead	0.015	0.002	0.0008	<0.002	<0.002							
Lithium	0.040	0.02	0.02	0.02	0.02							
Mercury	0.002	0.0002	<0.0005	<0.0005	<0.0005							
Molybdenum	0.1	<0.01	<0.01	<0.01	<0.01							
Radium 226 (pCi/L)	5 pCi/L	1.371	0.941	_	0.652							
Radium 228 (pCi/L)	5 pci/L	1.371	0.341		0.032							
Selenium	0.05	<0.003	<0.003	< 0.003	<0.003							
Thallium	0.002	<0.0020	<0.0020	<0.0020	<0.0020							

MW-7									
APPENDIX III	GWPS	4/16/2020	9/24/2020	4/21/2021	9/29/2021				
Boron	NA 0.34		0.33	0.34	1.77				
Calcium	NA	45.7	41.8	43.4	27.0				
Chloride	NA	4.1	3.3	4.9	6.5				
Fluoride	4	0.3	0.3	0.3	0.5				
Sulfate	NA	15	12	15	34				
pH (SU)	NA	6.86	6.56	7.75	7.08				
Total Dissolved Solids	NA	1930	114	280	610				
APPENDIX IV									
Antimony	0.006	<0.005	< 0.005	< 0.005	<0.005				
Arsenic	0.01	0.0025	0.0015	0.0026	<0.0010				
Barium	2	0.087	0.075	0.082	0.074				
Beryllium	0.004	<0.0020	<0.0020	<0.0020	<0.0020				
Cadmium	0.005	<0.0010	< 0.0010	<0.0010	<0.0010				
Chromium	0.1	<0.0020	<0.0020	0.0007	<0.0020				
Cobalt	0.006	<0.004	< 0.004	< 0.004	< 0.004				
Fluoride	4	0.3	0.3	0.3	0.5				
Lead	0.015	<0.002	< 0.002	< 0.002	<0.002				
Lithium	0.04	0.007	0.008	0.008	0.03				
Mercury	0.002	<0.0005	0.0005	<0.0005	<0.0005				
Molybdenum	0.1	0.006	0.006	0.005	<0.01				
Radium 226 (pCi/L)	5 pCi/L	1.83	0.968	0.703	0.912				
Radium 228 (pCi/L)	5 pCI/L	1.05	0.908	0.705	0.912				
Selenium	0.05	<0.003	0.003	< 0.003	< 0.003				
Thallium	0.002	<0.0020	<0.0020	<0.0020	<0.0020				

			and and the state of the second				
		MW-9	)				
APPENDIX III	GWPS	4/16/2020	9/24/2020	4/21/2021	9/29/2021		
Boron	NA	0.32	0.22	0.23	<0.10		
Calcium	NA	71.2	65.3	66.9	59.4		
Chloride	NA	22.8	19.9	22.5	7.2		
Fluoride	4	0.3	0.3	0.2	0.2		
Sulfate	NA	<1	<1	<1	<1		
pH (SU)	NA	7.04 6.67		7.12	6.23		
Total Dissolved Solids	NA	320	308	422	264		
APPENDIX IV							
Antimony	0.006	<0.005	<0.005	< 0.005	< 0.005		
Arsenic	0.01	< 0.0010	<0.0010	<0.0010	< 0.0010		
Barium	2	1.06	0.730	0.782	0.248		
Beryllium	0.004	<0.0020	<0.0020	<0.0020	<0.0020		
Cadmium	0.005	< 0.0010	<0.0010	<0.0010	< 0.0010		
Chromium	0.1	<0.0020	<0.0020	<0.0020	<0.0020		
Cobalt	0.006	< 0.004	<0.004	< 0.004	< 0.004		
Fluoride	4	0.3	0.3	0.2	0.2		
Lead	0.015	<0.002	<0.002	<0.002	< 0.002		
Lithium	0.040	0.01	0.009	0.01	0.005		
Mercury	0.002	<0.0005	<0.0005	<0.0005	<0.0005		
Molybdenum	0.1	<0.01	<0.01	< 0.01	<0.01		
Radium 226 (pCi/L)	5 pCi/L	2.9	3.44	3.99	1.13		
Radium 228 (pCi/L)	5 pcl/L	2.9	5.44	5.99	1.13		
Selenium	0.05	<0.003	< 0.003	<0.003	< 0.003		
Thallium	0.002	<0.0020	<0.0020	<0.0020	<0.0020		
				Las	ALC: A DICH.		

Antimony	0.006	< 0.005	< 0.005	< 0.005	<0.005			100	<b>V</b>	4 6 2		NYC .	2.2	1 - 1 - C	12 1 4 1 5	
Arsenic	0.01	0.0012	0.0004	<0.0010	<0.0010			MW-1	0			MW-1	0			3
Barium	2	0.065	0.056	0.055	0.049			The second	1. 16	APPENDIX III	GWPS	4/16/2020	9/24/2020	4/21/2021	9/29/2021	141
Beryllium	0.004	<0.0020	< 0.0020	<0.0020	<0.0020				atta to	Boron	NA	0.54	0.51	0.54	0.54	- Fris
Cadmium Chromium	0.005	<0.0010 0.0047	<0.0010 0.0016	<0.0010 0.0009	<0.0010 <0.0020				Carlos -	Calcium	NA	12.5	8.80	7.95	8.25	
Cobalt	0.1	<0.0047	<0.0016	< 0.0009	<0.0020		and in the		Nº 6	Chloride	NA	21.5	21.4	21.4	20.7	
Fluoride	4	0.3	0.3	0.3	0.3				Charter 1	Fluoride	4	0.5	0.5	0.5	0.5	1 /
Lead	4 0.015	0.002	0.0008	<0.002	<0.002			100	RIC	Sulfate	NA	58	62	52	61	BY
Lithium	0.013	0.002	0.0008	0.02	0.02			1000	10.011	pH (SU)	NA	8.87	8.74	9.88	8.26	1
Mercury	0.040	0.002	< 0.0005	< 0.0005	<0.0005			and the second	11 la	Total Dissolved Solids	NA	466	436	530	514	
Molybdenum	0.1	< 0.01	<0.01	<0.01	<0.01				11 11	APPENDIX IV						
Radium 226 (pCi/L)				(0.01						Antimony	0.006	<0.005	< 0.005	< 0.005	<0.005	Call X 2
Radium 228 (pCi/L)	5 pCi/L	1.371	0.941	-	0.652			1		Arsenic	0.01	0.0019	0.0019	0.0018	0.0017	And the second second
Selenium	0.05	< 0.003	< 0.003	< 0.003	<0.003					Barium	2	0.093	0.084	0.089	0.096	MARINE E
Thallium	0.002	< 0.0020	< 0.0020	<0.0020	<0.0020					Beryllium	0.004	<0.0020	<0.0020	<0.0020	<0.0020	
	Centra 2	.0.0020		-0.0020						Cadmium	0.005	<0.0010	<0.0010	<0.0010	<0.0010	and the second second
		ASS C. C.S.								Chromium	0.1	<0.0020	0.0006	0.0007	0.0006	
And the state of the second										Cobalt	0.006	<0.004	<0.004	<0.004	<0.004	The last
A DECK STATES					- Mary					Fluoride	4	0.5	0.5	0.5	0.5	- 10 C
		A REAL								Lead	0.015	<0.002	<0.002	<0.002	<0.002	
State State		- Maria								Lithium	0.040	0.49	0.56	0.57	0.49	F
										Mercury	0.002	0.0002	0.0002	0.0003	0.0002	an les
	S. 611									Molybdenum	0.1	0.006	0.007	0.007	0.007	1 1 20
										Radium 226 (pCi/L)	5 pCi/L	1.24	0.594	0.769	0.692	
	100				10000000	a March St	A MARCE			Radium 228 (pCi/L)						100
				Salar a						Selenium Thallium	0.05	<0.003 <0.0020	<0.003 <0.0020	<0.003 <0.0020	<0.003 <0.0020	17
▶ bing						- and there				) 201 8 Microsoft C	orporal	ion © 2018		NAU Dea OCNES	s (2018) Di	stribution Airbu
Unit Bounda	•			Ye	llow high	lighted val	lues indica	oer liter (m ate GWPS icate SSL	exceed		noted	Big	Rivers ELECTRIC COMPORATION			ace Impound County, Ken
<ul> <li>Property Line</li> <li>Downgradie</li> </ul>	nt CC		-	SS SS	SL = Stati	stically Sig	gnificant L					Ņ		NDWATE		
Upgradient (			•	NA	A = Not A	pplicable				- 1 i		<b>\</b>				RESULTS
			14/11	NII.	i = NOT	etected at	f or above	Method Γ	Jerection	nımıt			- 12/8/202	1		41NI - 200 EE

+ Proposed Characterization Well

ND = Not Detected at or above Method Detection Limit pCi/L = picoCuries per Liter 0 300 600 

Feet

DATE: 12/8/2021 SCALE: 1IN = 200 FEET CREATED BY: SEL

**MW-7** 

JOB NO. 60656816

AECOM 525 Vine Street Cincinnati, OH 45202 www.aecom.com