

BIG RIVERS ELECTRIC CORPORATION

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT FOR THE FEDERAL COAL COMBUSTION RESIDUALS RULE — SEBREE STATION

BIG RIVERS ELECTRIC CORPORATION SEBREE GENERATING STATION
GREEN LANDFILL AND SURFACE IMPOUNDMENT

PROJECT NO. 159154

JANUARY 26, 2024

CONTENTS

EXE	CUI	IVE SU	MMARY			
1.0	INT	RODUC	CTION	1-1		
	1.1					
		1.1.1	Green Landfill			
		1.1.2	Green Surface Impoundment	1-2		
	1.2	Green	Landfill CCR Program Monitoring Well System	1-3		
		1.2.1	Operating Permit Compliance Monitoring Wells	1-3		
		1.2.2	Characterization Monitoring Wells	1-3		
	1.3		Surface Impoundment CRR Rule Program			
			oring Well System			
	1.4		ary of Groundwater Monitoring Programs			
			Green Landfill Groundwater Monitoring Program	1-4		
		1.4.2	Green Surface Impoundment Groundwater Monitoring Program	1-7		
2.0	Gro	undwa	ter Monitoring Activities and Results			
2.0	2.1		dwater Sampling Activitiesd			
	2.2		cterization Monitoring Well Installation Activities			
		Or idi di				
7.0	Date	- Evely	ation .	7 1		
3.0			lation			
3.0	Data 3.1	Groun	dwater Flow	3-		
3.0		Ground 3.1.1	dwater FlowGreen Landfill	3-		
3.0	3.1	Ground 3.1.1 3.1.2	dwater FlowGreen LandfillGreen Surface Impoundment	3- 3- 3-		
3.0		Ground 3.1.1 3.1.2 Sampl	dwater FlowGreen LandfillGreen Surface Impoundmenting Results	3- 3- 3-		
3.0	3.1	Ground 3.1.1 3.1.2 Sampl	dwater FlowGreen LandfillGreen Surface Impoundment	3- 3- 3-		
3.0	3.1	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2	dwater Flow	3-1 3-1 3-1 3-1		
3.0	3.1	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground	dwater Flow	3-13-13-13-1		
3.0	3.1	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1	dwater Flow	3- 3- 3- 3- 3- 3-2		
3.0	3.1	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1 3.3.2	dwater Flow	3- 3- 3- 3- 3-2		
	3.13.23.33.4	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1 3.3.2 Conclu	dwater Flow	3- 3- 3- 3- 3-2 3-4		
	3.1 3.2 3.3 Cert	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1 3.3.2 Conclusion	dwater Flow	3-13-23-23-23-43-4		
4.0	3.1 3.2 3.3 Cert	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1 3.3.2 Conclusion	dwater Flow	3- 3- 3- 3- 3-2 3-4 3-4		
4.0	3.1 3.2 3.3 4 Cert	Ground 3.1.1 3.1.2 Sampl 3.2.1 3.2.2 Ground 3.3.1 3.3.2 Conclutification Activity Ground	dwater Flow	333333-23-43-4		

6.0 References6-1
TABLES
FIGURES
APPENDIX A - GREEN LANDFILL FIELD SAMPLING FORMS
APPENDIX B - GREEN SURFACE IMPOUNDMENT FIELD SAMPLING FORMS
APPENDIX C - MONITORING WELL CONSTRUCTION PROGRESS REPORT (GREEN LANDFILL)
APPENDIX D - GREEN LANDFILL ANALYTICAL SUMMARY TABLES
APPENDIX E - GREEN SURFACE IMPOUNDMENT ANALYTICAL SUMMARY TABLES
APPENDIX F - GREEN LANDFILL LABORATORY ANALYTICAL REPORTS
APPENDIX G - GREEN SURFACE IMPOUNDMENT LABORATORY ANALYTICAL REPORTS
APPENDIX H - GREEN LANDFILL DATA VALIDATION
APPENDIX I - GREEN SURFACE IMPOUNDMENT DATA VALIDATION
APPENDIX J - GREEN LANDFILL STATISTICAL EVALUATIONS
APPENDIX K - GREEN SURFACE IMPOUNDMENT STATISTICAL EVALUATIONS

List of Abbreviations

Abbreviation	Term/Phrase/Name	
ACM	Assessment of Corrective Measures	
BREC	Big Rivers Electric Corporation	
CCR	Coal Combustion Residuals	
CCR Rule	Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities; Final Rule, dated April 17, 2015, amended July 30, 2018, and on September 28, 2020	
CFR	Code of Federal Regulations	
GWPS	groundwater protection standard	
HMP&L	Reid/Henderson Municipal Power and Light	
KDWM	Kentucky Department for Environmental Protection, Division of Waste Management	
LCL	lower confidence limit	
Pace	Pace Analytical Services, LLC	
Report	2023 Annual Groundwater Monitoring and Corrective Action Report	
Station/Site	Sebree Generating Station located in Robards, Kentucky	
SSI	statistically significant increase	
SSL	statistically significant level	
TDS	total dissolved solids	
USEPA	United States Environmental Protection Agency	

List of Tables

- 1. Summary of Monitoring Well System Construction Green Landfill
- 2. Summary of Monitoring Well System Construction Green Surface Impoundment
- 3. Groundwater Elevations Green Landfill (2023)
- 4. Groundwater Elevations Green Surface Impoudment (2023)

List of Figures

- 1. General Location Map
- 2. CCR Groundwater Monitoring System Green Landfill
- 3. CCR Groundwater Monitoring System Green Surface Impoundment
- 4. Potentiometric Surface Map June 22, 2023, Green Landfill
- 5. Potentiometric Surface Map November 6, 2023, Green Landfill
- 6. Potentiometric Surface Map June 25, 2023, Green Surface Impoundment
- 7. Potentiometric Surface Map November 6, 2023, Green Surface Impoundment

Executive Summary

This 2023 Annual Groundwater Monitoring and Corrective Action Report (Report) summarizes groundwater monitoring and corrective action activities completed between January 1 and December 31, 2023, at the Big Rivers Electric Corporation (BREC) Sebree Generating Station (Station or Site) as required by 40 Code of Federal Regulations (CFR) \$257.90(e) of the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule (CCR Rule). The following two CCR units at the Station are subject to the CCR Rule:

- Green Station Landfill (Webster County); and
- Green Station Surface Impoundment (Webster County)

The 2023 Annual Groundwater Monitoring and Corrective Action Report for the Reid/Henderson Municipal Power and Light (HMP&L) Surface Impoundment (Henderson County) at the Station is provided as a separate submittal.

A Site figure presenting the location of the CCR units is presented as Figure 1. The program monitoring networks for each CCR unit, including supporting monitoring wells, are presented as Figure 2 (Green Landfill) and Figure 3 (Green Surface Impoundment). Three new characterization monitoring wells (MW-105, MW-106S, and MW-106D) were installed at the Green Landfill during the 2023 reporting period. No monitoring wells were installed, modified, or abandoned at the Green Surface Impoundment during the 2023 reporting period.

Results of baseline groundwater monitoring performed in 2016 and 2017 indicated that the Green Landfill would require initiation of assessment monitoring under the CCR Rule, as the laboratory analytical results from these events indicated that most of the Appendix III constituents had statistically significant increases (SSIs) over background as noted below.

Appendix III parameters calcium, chloride, sulfate, and total dissolved solids (TDS) at the Green Landfill.

On February 5, 2018, BREC posted on their publicly accessible CCR reporting website a formal notification that the Green Landfill would transition from baseline detection to assessment monitoring program. At both the start and end of the 2023 annual reporting period, the Green Landfill was operating under the assessment monitoring program in 40 CFR §257.95.

Statistical evaluation of groundwater analytical data collected during assessment monitoring at the Green Landfill indicated that Appendix IV constituents were detected in downgradient monitoring wells at SSIs over background in 2018 through 2023 as detailed below.

Appendix IV Constituents at an SSI	Green Landfill
Arsenic	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022 June and November 2023
Barium	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022 June and November 2023
Cadmium	• April 2021
Cobalt	September 2020
Chromium	none
Fluoride	none
Lithium	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022 June and November 2023
Mercury	 June and July 2018 April and October 2019 April and September 2020 April 2021 December 2022 June and November 2023
Molybdenum	April and September 2021April 2022June and November 2023
Radium 226+228 (combined)	April 2022
Selenium	April 2020April 2021April 2022June 2023

Per CCR rule requirements, groundwater protection standards (GWPSs) for each Appendix IV constituent were developed and the data were tested for whether the concentrations

represented statistically significant levels (SSLs) above their respective GWPSs. SSLs identified in annual reporting periods from 2018 through 2023 are as follows:

Appendix IV Constituent at an SSL above GWPS	Green Landfill	Reporting Period
Arsenic	MW-2	2022 and 2023
Lithium	MW-3A, MW-4, MW-5, and MW-6	2018, 2019, 2020, 2021, 2022, and 2023

On December 6, 2018, and October 3, 2022, BREC posted on their publicly accessible CCR reporting website a formal notification that lithium (2018) and arsenic (2022) had been detected at SSLs above the established GWPS for the Green Landfill. In June 2019, BREC finalized an *Assessment of Corrective Measures* (ACM) for the Green Landfill to identify applicable remedial technologies to address impacts in groundwater pursuant to Title 40 CFR §257.96 (AECOM, 2019b). Reports summarizing the results of the Green Landfill ACM were completed and placed in the BREC operating record on June 13, 2019. The ACM report was posted to BREC's publicly accessible CCR reporting website on July 11, 2019. Semi-annual progress on the selection of remedy process for the Green Landfill was reported in December 2019 (AECOM, 2019c) and June 2020 (AECOM, 2020b).

A public meeting open to interested and affected parties was held on July 16, 2020, to discuss the results of the ACM for Green Landfill. No public input influencing the remedy for the unit was received during the meeting. On November 18, 2020, BREC finalized a *Final Groundwater and Non-Groundwater Corrective Action Remedy Selection Report, Green Landfill, Sebree Station, Webster County, Kentucky* (AECOM, 2020c), thereby selecting the remedy for groundwater and non-groundwater impacts at the CCR unit in accordance with 40 CFR §257.97.

Construction of source control measures to address groundwater impacts at Green Landfill were initiated in November 2020. These source control measures consisted of:

- 1. Design and construction of perimeter Toe Drain System and additional seepage controls to address leachate outbreaks;
- 2. Design, permitting, and construction of supplemental seepage controls at River Seep 07; and
- 3. Sediment removal from the South Sediment Basin.

Construction of these additional source control measures around the perimeter of the Green Landfill was completed in the fourth quarter of 2021. Each of these remedies is expected to benefit groundwater corrective action as a whole and will be further evaluated in 2024 and beyond for alignment with the corrective action objectives through performance monitoring.

For the Green Surface Impoundment, the results of the statistical evaluation for Appendix III parameters collected during the baseline groundwater monitoring period in 2016 and 2017 initiated semi-annual detection monitoring by BREC in 2018. At both the start and end of the

2023 annual reporting period, the Green Surface Impoundment was operating under the detection monitoring program in accordance with 40 CFR §257.94. Assessment monitoring has not been triggered for the Green Surface Impoundment.

Other activities and conditions for the 2023 annual reporting period include:

- Semi-annual assessment groundwater monitoring events were performed at Green Landfill in June and November 2023:
- Semi-annual detection groundwater monitoring evens were performed at Green Surface Impoundment in June and November 2023;
- Installation of three new characterization monitoring wells (MW-105, MW-106S, and MW-106D) at the Green Landfill;
- No program transitions (detection to assessment or vice versa) were triggered; and
- The Green Surface Impoundment began closure activities which are scheduled to be finalized by the end of the first quarter of 2024.

No monitoring well installation, repair, or decommissioning was performed at the Green Surface Impoundment. No program transitions (detection to assessment or vice versa) were triggered at the Green Landfill and Green Surface Impoundment.

Anticipated activities for the next 2024 annual reporting period include:

- Completion of two semi-annual assessment groundwater monitoring events at the Green Landfill;
- Completion of two semi-annual detection groundwater monitoring events at the Green Surface Impoundment (unless an SSI triggers assessment monitoring);
- Continued closure activities at the Green Surface Impoundment;
- Characterization of groundwater for arsenic at the Green Landfill due to SSL over the GWPS; and
- Remedy evaluation at Green Landfill.

This Report for BREC was prepared to address the requirements of CFR 40 CFR 257.90(e) of the USEPA CCR rule, which requires the contents listed below with the appropriate report section reference identified in **bold type** for the corresponding content:

- A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit (see Figure 2 and Figure 3);
- Identification of any monitoring wells that were installed or decommissioned during
 the preceding year, along with a narrative description of why those actions were
 taken. Three new characterization monitoring wells (MW-105, MW-106S, and MW106D) were installed at the Green Landfill in 2023 (referenced in Section 2.2). No
 monitoring wells were installed or decommissioned at the Green Surface
 Impoundment in 2023;
- 3. In addition to all the monitoring data obtained under Section 257.90 through 257.98, a summary including the number of groundwater samples that were collected for

analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs (referenced in Section 2.1);

- 4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at an SSI over background levels) (presented in Section 3.3); and
- 5. Other information required to be included in the annual report as specified in Section 257.90 through 257.98 (i.e., groundwater monitoring results and various demonstrations regarding alternative monitoring frequency, alternative sources, and extension of schedule for ACMs) (no other information was developed or reported in 2023 as noted in Section 2).

1.0 INTRODUCTION

At the request of Big Rivers Electric Corporation (BREC), Burns & McDonnell prepared this 2023 Annual Groundwater Monitoring and Corrective Action Report (Report) for the BREC Sebree Generating Station (Station or Site), located in Robards, Kentucky within both Henderson and Webster Counties, Kentucky. This Report was prepared in accordance with §257.90(e) of 40 Code of Federal Regulations (CFR) Part 257 and 261 of the United States Environmental Protection Agency (USEPA) Coal-Combustion Residuals (CCR) Rule (CCR Rule) to document the status of the groundwater monitoring and corrective action program at the CCR units, summarize key actions completed, describe any problems encountered, discuss any actions to resolve the problems, and provide key activities for the upcoming year. The CCR Rule was established to regulate the disposal of CCR produced by electricity generating facilities (USEPA, 2015; USEPA, 2018; USEPA, 2020a; and 2020b).

This Report is the seventh annual report for the CCR units and summarizes activities performed in 2023 related to the CCR Rule groundwater monitoring program at the following CCR units:

- Green Station Landfill (Webster County); and
- Green Station Surface Impoundment (Webster County)

The 2023 Annual Groundwater Monitoring and Corrective Action Report for the Reid/Henderson Municipal Power and Light (HMP&L) Surface Impoundment (Henderson County) at the Station is provided as a separate submittal.

As stated in the previous 2016-2022 Annual Groundwater Monitoring and Corrective Action Reports (AECOM, 2018; AECOM, 2019a; AECOM, 2020a; AECOM, 2021; AECOM, 2022; and Burns & McDonnell, 2023b), statistical results of the baseline groundwater data indicate that the Green Landfill would require initiation of assessment monitoring under the CCR Rule, as the laboratory analytical results from these events indicated that most of the Appendix III constituents had statistically significant increases (SSIs) over background as noted below.

• Appendix III parameters calcium, chloride, sulfate, and total dissolved solids (TDS) at the Green Landfill.

On February 5, 2018, BREC posted on their publicly accessible CCR reporting website a formal notification that the Green Landfill would enter assessment Monitoring Program, fulfilling the requirement of 40 CFR §257.107(h)(4).

Based upon the statistical evaluation of Appendix III parameters collected during the baseline period at the Green Surface Impoundment, BREC initiated semi-annual detection monitoring in 2018.

The following sections present a background summary of the Site, a discussion of field activities performed, a summary of laboratory results, statistical evaluation findings, and conclusions regarding groundwater conditions in the aquifer system subject to monitoring under the CCR Rule.

1.1 Site Description

BREC owns and operates the Station, which is a former coal-fired power generating facility located on the Green River northeast of Sebree, Kentucky. The Station is composed of Green Station and HMP&L Station. The Station is bounded by Interstate 69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 began commercial operation in 1966 and was retired on September 30, 2020. HMP&L Station 2, Units 1 and 2 began commercial operation in 1973 and 1974, respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 and 2 began commercial operation in 1979 and 1981, respectively. Both Green units were converted to natural gas-fired boilers in the second quarter of 2022.

Three disposal CCR units at the Station are regulated under the CCR Rule: Green Landfill, Green Surface Impoundment, and the Reid/HMP&L Surface Impoundment. This Report is for the Green Landfill and Green Surface Impoundment with each CCR unit discussed in more detail below.

1.1.1 Green Landfill

The Green Landfill is located directly south of the Station, situated south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that previously received special wastes generated by burning coal (CCRs) from Green Station, and formerly Reid Station Unit 1, and HMP&L Station 2 Units 1 and 2. The landfill began receiving CCR wastes in 1980 and currently receives CCR material generated from Green Surface Impoundment closure activities, which began in 2022 and are scheduled to be finalized by the end of the first quarter of 2024. The current Green Landfill footprint is approximately 170 acres.

As stated in the published CCR monitoring well network certification for this CCR unit (Associated Engineering Inc., June 2016a), the original ground surface within the landfill footprint was irregular and the dominant features were small stream valleys draining towards the Green River, which is located just east of the landfill; and towards Groves Creek, which is located just south of the landfill. There was also historic oil and gas production at and in the immediate vicinity of the Green Landfill. A review of the records from the Kentucky Geological Survey showed that at or immediately adjacent to the Site, there were several dry oil/gas exploration holes, oil production wells, one gas production well, and one secondary recovery injection well. There were also former brine ponds at the Site. Most of these wells were abandoned in accordance with applicable regulations by BREC in 1997 and 1998. The last existing oil well was decommissioned in 2019.

1.1.2 Green Surface Impoundment

The Green Surface Impoundment is located directly south of the Station and situated north of the Green Landfill. The Green Surface Impoundment has been in place for more than 40 years for the placement of CCR material. In 2022, this CCR unit began closure activities which are scheduled to be finalized by the end of the first quarter of 2024. The immediate watershed that drains to the CCR unit, and in which the CCR unit is located, is unnamed and 54.13 acres in size. The unnamed watershed discharges from the CCR surface impoundment outflow structure and is routed and monitored under a Kentucky Pollution Discharge Elimination System permit, to the Green River.

As stated in the CCR monitoring well network certification for this CCR unit (Associated Engineering Inc., June 2016b), the Green Surface Impoundment is a combined incised/dike earthen embankment structure. It is diked on the west, south and east sides, while the north side is incised. The south dike has the greatest height, reaching approximately 20 feet. The original ground surface within the pond footprint was irregular and the predominant features were small stream valleys draining eastward toward the Green River.

1.2 Green Landfill CCR Program Monitoring Well System

1.2.1 Operating Permit Compliance Monitoring Wells

Prior to implementation of the CCR Rule, a groundwater monitoring well network was already present at the Green Landfill in compliance with the requirements of the facility's operating permit. The existing wells are located along the perimeter of the permitted footprint for the Green Landfill and meet the CCR Rule requirements that a minimum of one (1) upgradient and three (3) downgradient monitoring wells must be located at the waste boundary of the (active) CCR unit, or as close as practicable.

Under the requirements stated in the operating permit, six (6) monitoring wells (MW-1, MW-2, MW-3A, MW-4, MW-5, and MW-6) were installed adjacent to the Green Landfill to determine the general direction of groundwater movement and to monitor groundwater at the CCR unit. Monitoring Well MW-1 is located northwest of the landfill and is considered upgradient and represents the background well. Monitoring Wells MW-2, MW 3A, MW-4, MW-5, and MW-6; located respectively, northeast, east, southeast, south, and southwest are considered downgradient. As-built specifics of each monitoring well installation are summarized in **Table 1**. The locations of the groundwater monitoring wells are shown on **Figure 2**. Each monitoring well has a dedicated bladder pump and tubing system installed for groundwater sampling purposes.

Details about the monitoring network are presented in the *Monitoring Well Completion* Report, Special Waste Landfill Facility, R.D. Green Station, Webster County, Kentucky (FMSM Engineers, 1997).

No new CCR Rule compliance monitoring wells were installed in 2023.

1.2.2 Characterization Monitoring Wells

To address the requirements of 40 CFR §257.95(g)(1), one (1) characterization monitoring well (MW-104) was installed in February 2019 (lithium statistically significant levels [SSLs] > groundwater protection standards [GWPSs]) and three (3) characterization monitoring wells (MW-105, MW-106S, and MW-106D) were installed in 2023 (arsenic SSL > GWPS; see **Section 2.2**) to characterize groundwater at the locations indicated on **Figure 2**. As-built specifics of each characterization monitoring well installation are summarized on **Table 1**. Each characterization monitoring well has a dedicated bladder pump and tubing system installed for groundwater sampling purposes.

These characterization monitoring wells, located at a downgradient position east of the CCR unit, were used to assist in the characterization of the existence, quality, quantity, areal extent, and depth of groundwater degradation, and the rate and direction of migration of CCR contaminants in the groundwater.

1.3 Green Surface Impoundment CRR Rule Program Monitoring Well System

Prior to implementation of the CCR Rule, three temporary piezometers (P-10, P-11, and P-12) were installed adjacent to, and respectively; northwest, southwest, and northeast of the Green Surface Impoundment to determine the general direction of groundwater movement. Measured static water levels, from the highest to lowest elevation were observed in P-10 (highest), P-11, and P-12 (lowest). A hydraulic gradient was calculated using this data indicating the apparent direction of groundwater movement is generally from northwest to southeast. This groundwater gradient characterization and the ability to locate monitoring wells specific to the CCR unit justified the placement of the minimum of one (1) upgradient and three (3) downgradient monitoring wells in accordance with the CCR Rule. An upgradient monitoring well (MW-11) was installed adjacent to, and northwest of the CCR unit. Three downgradient monitoring wells (MW-12, MW-13, and MW-14) were installed adjacent to, and respectively; south-southeast, southeast, and east-northeast of the CCR unit. As-built specifics of each well installation are summarized in Table 2. The locations of the groundwater monitoring wells are shown on Figure 3. Each monitoring well has a dedicated bladder pump system and tubing installed for groundwater sampling purposes.

The stratigraphic interval considered as the most prominent water transmitting zone within and adjacent to the Green Surface Impoundment is material identified as the Upper Sandstone Member (Sebree sandstone) of the Carbondale Formation. The United States Geological Survey Geologic Map of the Robards Quadrangle (Fairer, 1973) describes the Sebree sandstone sequence as "Siltstone, sandstone, shale and coal: Siltstone, light- to medium-gray, micaceous, thin-bedded, locally calcareous. Sandstone, light- to medium-gray, grayish- and yellowish-brown, fine- to medium-grained slightly micaceous, thin-bedded to massive; locally fills channels." For purposes of compliance with the CCR Rule groundwater monitoring requirements; this sequence, and in particular the sandstone intervals, is considered to be the uppermost aquifer underlying the Green Surface Impoundment.

Details about the monitoring network are presented in the Assessment of Groundwater Gradients in Vicinities of Green and Reid/HMPL CCR Impoundments dated September 25, 2015, maintained within the operating record at the Station. No changes were made to the Program Monitoring Well System in 2023.

Due to the lack of Appendix IV constituents with SSLs above their respective GWPSs for the CCR unit, no characterization monitoring wells are required for the Green Surface Impoundment.

1.4 Summary of Groundwater Monitoring Programs

1.4.1 Green Landfill Groundwater Monitoring Program

Results of baseline groundwater monitoring performed in 2016 and 2017 indicated that the Green Landfill would require initiation of assessment monitoring under the CCR Rule, as the laboratory analytical results from these events indicated that most of the Appendix III constituents had SSIs over background as noted below.

• Appendix III parameters calcium, chloride, sulfate, and TDS.

On February 5, 2018, BREC posted on their publicly accessible CCR reporting website a formal notification that the Green Landfill would transition from baseline detection to assessment monitoring program. Since 2018 the Green Landfill has been operating under the assessment monitoring program in 40 CFR §257.95. Statistical evaluation of previous groundwater analytical data collected during assessment monitoring at the Green Landfill from 2018 through 2022 indicated that Appendix IV constituents were detected in downgradient monitoring wells at SSIs over background as detailed below.

Appendix IV Constituents at an SSI	Green Landfill
Arsenic	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022
Barium	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022
Cadmium	• April 2021
Cobalt	September 2020
Chromium	none
Fluoride	none
Lithium	 June and July 2018 April and October 2019 April and September 2020 April and September 2021 April and December 2022
Mercury	 June and July 2018 April and October 2019 April and September 2020 April 2021 December 2022
Molybdenum	April and September 2021April 2022
Radium 226+228 (combined)	April 2022
Selenium	April 2020April 2021April 2022

Per CCR rule requirements, GWPSs for each Appendix IV constituent were developed and the data were tested for whether the concentrations represented SSLs above their respective GWPSs. SSLs identified in previous annual reporting periods from 2018 through 2022 are as follows:

Appendix IV Constituent at an SSL above GWPS	Green Landfill	Reporting Period
Arsenic	MW-2	2022
Lithium	MW-3A, MW-4, MW-5, and MW-6	2018, 2019, 2020, 2021, and 2022

On December 6, 2018, and October 3, 2022, BREC posted on their publicly accessible CCR reporting website formal notification that lithium (2018) and arsenic (2022) had been detected at SSLs above the established GWPS for the Green Landfill. In June 2019 BREC finalized an *Assessment of Corrective Measures* (ACM) for the Green Landfill to identify applicable remedial technologies to address impacts in groundwater pursuant to Title 40 CFR §257.96 (AECOM, 2019b). Reports summarizing the results of the Green Landfill ACM were completed and placed in the BREC operating record on June 13, 2019. The ACM report was posted to BREC's publicly accessible CCR reporting website on July 11, 2019. Semi-annual progress on the selection of remedy process for the Green Landfill was reported in December 2019 (AECOM, 2019c) and June 2020 (AECOM, 2020b).

A public meeting open to interested and affected parties was held on July 16, 2020, to discuss the results of the ACM for Green Landfill. No public input influencing the remedy for the unit was received during the meeting. On November 18, 2020, BREC finalized a *Final Groundwater and Non-Groundwater Corrective Action Remedy Selection Report, Green Landfill, Sebree Station, Webster Counties Kentucky* (AECOM, 2020c), thereby selecting the remedy for groundwater and non-groundwater impacts at the CCR unit in accordance with 40 CFR §257.97.

Construction of source control measures to address groundwater impacts at Green Landfill were initiated in November 2020. These source control measures consisted of:

- 1. Design and construction of a perimeter Toe Drain System and additional seepage controls to address leachate outbreaks;
- Design, permitting, and construction of supplemental seepage controls at River Seep -07; and
- 3. Sediment removal from the South Sediment Basin.

Construction of these additional source control measures around the perimeter of the Green Landfill was completed in the fourth quarter of 2021. Each of these remedies is expected to benefit groundwater corrective action as a whole and will be further evaluated in 2024 and beyond for alignment with the corrective action objectives through performance monitoring.

1.4.2 Green Surface Impoundment Groundwater Monitoring Program

Based upon the statistical evaluation of Appendix III parameters collected during the baseline period at the Green Surface Impoundment in 2016 through 2017, BREC initiated semi-annual detection monitoring in 2018. At both the start and end of the previous 2022 annual reporting period, the Green Surface Impoundment was operating under the detection monitoring program in 40 CFR §257.94. Assessment monitoring has not been triggered for this unit.

2.0 Groundwater Monitoring Activities and **Results**

The following subsections describe the activities that were performed in 2023 for the two (2) CCR units noted above related to each of their corresponding CCR Groundwater Program Monitoring Well Systems.

Groundwater Sampling Activities 2.1

In 2023, the following monitoring events were performed at the Station:

- Green Landfill: Two (2) assessment groundwater monitoring events and two (2) characterization groundwater monitoring events; and
- Green Surface Impoundment: Two (2) detection groundwater monitoring events

The following tables summarize the dates of each semi-annual groundwater sampling event performed by BREC personnel and the monitoring wells included in the sampling events for each CCR unit.

Green Landfill			
Event Type	Sampling Event	Dates	Monitoring Wells Sampled
	First Half 2023 (Event #21)	June 22-24, 2023	Background (Upgradient) MW-1
Assessment			Downgradient MW-2, MW-3A, MW-4, MW-5, and MW-6
Characterization	First Half 2023 (Event #10)	June 22-24, 2023	Characterization (Downgradient) MW-104
Characterization	First Half 2023 (Event #1)	June 24, 2023	Characterization (Downgradient) MW-105, MW-106S, and MW-106D
	Second Half 2023 (Event #22)	November 7-8, 2023	Background (Upgradient) MW-1
Assessment			Downgradient MW-2, MW-3A, MW-4, MW-5, and MW-6
Characterization	Second Half 2023 (Event #11)	November 7-8, 2023	Characterization (Downgradient) MW-104

Characterization	Second Half 2023 (Event #2)	November 7-8, 2023	Characterization (Downgradient) MW—105, MW-106S, and MW-106D
------------------	-----------------------------------	--------------------	---

Green Surface Impoundment			
Event Type	Sampling Event	Dates	Monitoring Wells Sampled
Detection	First Half 2023 (Event #20)	June 25, 2023	Background (Upgradient) MW-11 Downgradient MW-12, MW-13, MW-14
Detection	Second Half 2023 (Event #21)	November 6, 2023	Background (Upgradient) MW-11 Downgradient MW-12, MW-13, MW-14

Following the November 2023 sampling event at the Green Landfill, a total of 22 monitoring events and 11 characterization monitoring events have been performed since 2016. Following the November 2023 sampling event at the Green Surface Impoundment, a total of 21 monitoring events have been performed since 2016. These previous monitoring events at both CCR units were reported on in the Annual Groundwater Monitoring and Corrective Action Reports in 2016-2017 (AECOM, 2018), 2018 (AECOM, 2019a), 2019 (AECOM, 2020a), 2020 (AECOM, 2021), 2021 (AECOM, 2022), and 2022 (Burns & McDonnell, 2023b).

Prior to groundwater sampling, the depth to groundwater was gauged at each of the monitoring wells by BREC personnel during the 2023 monitoring events. The measured depth to groundwater level data and the calculated groundwater elevations are summarized on Table 3 (Green Landfill) and Table 4 (Green Surface Impoundment).

Monitoring wells were sampled by BREC personnel following low flow purging and sampling techniques developed and incorporated into current operating permits which are maintained within the operating record at the Station. No filtration of samples was conducted in either the field or laboratory procedures. Monitoring well sampling forms for each of the groundwater monitoring events for both CCR units are included in Appendix A (Green Landfill) and **Appendix B** (Green Surface Impoundment).

Groundwater samples collected during the 2023 sampling events were submitted to Pace Analytical Services, LLC (Pace) in Madisonville, Kentucky for laboratory analysis with radium 226 + 228 (combined) analysis performed by Pace in Greensburg, Pennsylvania. Laboratory analyses were performed in accordance with USEPA-approved methods. Groundwater samples collected at the Green Landfill during assessment and characterization monitoring events were analyzed for Appendix III and Appendix IV parameters, in accordance with 40 CFR §257.95(d)(1). Groundwater samples collected at the Green Surface Impoundment for

the detection monitoring events were analyzed for Appendix III parameters only, in accordance with 40 CFR §257.94(a).

Characterization Monitoring Well Installation Activities 2.2

On October 3, 2022, BREC posted on their publicly accessible CCR reporting website formal notification that arsenic had been detected at SSLs above the established GWPSs for the Green Landfill at Monitoring Well MW-2. To address the requirements of 40 CFR \$257.95(g)(1), three (3) characterization monitoring wells (MW-105, MW-106S, and MW-106D) were installed in April 2023 to characterize groundwater in the vicinity of Monitoring Well MW-2 at locations indicated on Figure 2. As-built specifics of each characterization monitoring well installation are summarized on Table 1. A Monitoring Well Construction Progress Report (Burns & McDonnell, 2023c), included herein as Appendix C, was prepared to summarize the well installation activities. A copy of the Kentucky Department for Environmental Protection, Division of Waste Management (KDWM) approval letter for installing the characterization wells is included as Appendix A of the Monitoring Well Construction Progress Report provided in Appendix C of this Report. The characterization monitoring wells, located at downgradient positions east of the CCR unit, are being used to assist in the characterization of the arsenic in groundwater in the vicinity of Monitoring Well MW-2. The installation of these characterization monitoring wells at the Green Landfill included both soil and groundwater sampling.

Soil samples collected at the Green Landfill during the installation of the characterization monitoring wells were submitted to the following laboratories for the identified analyses:

- Pace in Indianapolis, Indiana
 - Total arsenic and iron
 - Synthetic precipitation leaching procedure for arsenic and iron
- Mineralogy, Inc. of Tulsa, Oklahoma
 - X-ray diffraction (bulk and clay)

Groundwater sampling of these newly installed characterization monitoring wells was performed to coincide with the semi-annual groundwater monitoring scheduled in 2023 under the CCR Rule. Groundwater samples from these new characterization wells and Monitoring Well MW-2 were submitted to the following laboratories for the identified analyses:

First Half Semiannual Event (June 2023)

- Pace in Indianapolis, Indiana
 - Total arsenic and iron
 - Dissolved arsenic; field filtered (0.45 micrometer [μm])
 - Dissolved arsenic; field filtered (0.20 μm)
 - Ferric iron (Fe³⁺; total) (calculated from total iron laboratory results and field ferrous iron [Fe2+] results from colorimeter)

- Books Applied Labs in Seattle, Washington
 - o Arsenic speciation for arsenite (As³⁺) and arsenate (As⁵⁺)

Second Half Semiannual Event (November 2023)

- Pace in Madisonville, Kentucky
 - Total arsenic

Except for the soil x-ray diffraction and the groundwater arsenic speciation, laboratory analyses were performed in accordance with USEPA-approved methods. The x-ray diffraction of soil samples followed standard operating procedures of X-ray Diffraction and the Identification and Analysis of Clay Minerals (Moore, et al., 1989). The arsenic speciation was performed by ion chromatography inductively coupled plasma collision reaction cell mass spectrometry following proprietary methods and standard operating procedures. Monitoring well sampling forms for each of the groundwater monitoring events are included in Appendix A.

3.0 Data Evaluation

3.1 Groundwater Flow

Measured depth to groundwater level data collected by BREC personnel and the calculated groundwater elevations during the 2023 monitoring events are summarized on **Table 3** (Green Landfill) and **Table 4** (Green Surface Impoundment). These data were used to construct piezometric surface maps to illustrate groundwater flow conditions for the uppermost aquifer. These data and figures are representative of general conditions at the CCR units and support the following analysis.

3.1.1 Green Landfill

Overall, the predominate groundwater flow direction beneath the footprint of the Green Landfill is to the east and southeast towards the Green River and Groves Creek with a localized northeast flow component along the northern portion of the CCR unit (see **Figure 4** and **Figure 5**).

3.1.2 Green Surface Impoundment

Overall, the predominate groundwater flow direction beneath the footprint of the Green Surface Impoundment is to the east and southeast towards the Green River with a localized northeast flow component along the northern portion of the CCR unit (see **Figure 6** and **Figure 7**).

3.2 Sampling Results

3.2.1 Groundwater Sampling Results

During 2023, the following monitoring events were performed at the Station:

- Green Landfill: Two (2) assessment groundwater monitoring events and two (2) characterization groundwater monitoring events; and
- Green Surface Impoundment: Two (2) detection groundwater monitoring events.

Results from the assessment and characterization monitoring events are summarized on the tables included in **Appendix D** (Green Landfill) and **Appendix E** (Green Surface Impoundment) for each CCR unit. Complete copies of the analytical laboratory reports are included in **Appendix F** (Green Landfill) and **Appendix G** (Green Surface Impoundment) for each CCR unit. Laboratory data were validated and all data are considered viable for reporting as qualified with copies of the data validation reports provided in **Appendix H** (Green Landfill) and **Appendix I** (Green Surface Impoundment) for each CCR unit.

3.2.2 Characterization Monitoring Well Soil Sampling Results

Results from the soil samples collected at the Green Landfill during the installation of the characterization monitoring wells (see **Section 2.2**) are summarized in the tables included in **Appendix D**. Complete copies of the analytical laboratory reports are included in **Appendix F**.

Laboratory data were validated and all data are considered viable for reporting as qualified with copies of the data validation reports provided in **Appendix H**.

3.3 Groundwater Statistical Evaluation

As part of previous assessment monitoring performed at the Green Landfill, background and downgradient monitoring wells for this CCR unit were sampled for Appendix IV constituents in 2018 through 2022. In accordance with 40 CFR §257.95, GWPS were established for detected Appendix IV constituents. Previous assessment monitoring results indicated the presence of an SSL above the GWPS in the following monitoring wells:

Green Landfill: Lithium in monitoring wells MW-3A, MW-4, MW-5, and MW-6.

Previous detection monitoring results indicated no Appendix III SSIs at the Green Surface Impoundment and therefore this CCR unit was not subject to assessment monitoring and no SSL determination was required.

In accordance with 40 CFR §257.93(f), 40 CFR §257.93(h), and 40 CFR §257.95(d)(2), Burns & McDonnell conducted a statistical evaluation of the 2023 assessment groundwater data for the Green Landfill as part of developing this Report to identify any 2023 SSIs over background concentrations for the Appendix III and Appendix IV parameters and identify any 2023 SSLs over established GWPSs for detected Appendix IV parameters. Statistical methods were chosen in accordance with 40 CFR §257.93(f), while the rationale behind why each method was selected is outlined in the Statistical Methods Certification Document prepared for each CCR unit dated June 28, 2016 (Associated Engineers, Inc., 2016a and 2016b). Summaries of the 2023 statistical evaluation conducted on the Appendix III detection and Appendix IV assessment parameters for the Green Landfill and Green Surface Impoundment are provided as **Appendix J** and **Appendix K**, respectively. The results of each CCR unit specific evaluation are discussed below.

3.3.1 Green Landfill Statistical Evaluation

The Green Landfill assessment monitoring data were evaluated using an inter-well approach that statistically compared constituent concentrations at downgradient compliance monitoring wells to those present at a upgradient/background monitoring well. For the Green Landfill, Monitoring Well MW-1 is designated as the background well because it is located upgradient of the CCR unit, whereas Monitoring Wells MW-2, MW-3A, MW-4, MW-5, and MW-6 are designated as compliance wells because they are located along the downgradient side of the CCR unit waste boundary.

As presented in **Appendix J**, the results of the statistical analysis indicate the following Appendix III constituents were observed as SSIs with concentrations above calculated background values in downgradient compliance monitoring wells.

2023 Appendix III SSIs - Green Landfill			
June 2023 Sampling Event	November 2023 Sampling Event		
Calcium	Calcium		
(MW-2, MW-3A, MW-4, MW-5, and MW-6)	(MW-2, MW-3A, MW-4, MW-5, and MW-6)		
Chloride	Chloride		
(MW-2, MW-3A, MW-4, MW-5, and MW-6)	(MW-2, MW-3A, MW-4, MW-5, and MW-6)		
Sulfate	Sulfate		
(MW-2, MW-3A, MW-4, MW-5, and MW-6)	(MW-2, MW-3A, MW-4, MW-5, and MW-6)		
TDS	TDS		
(MW-2, MW-3A, MW-4, MW-5, and MW-6))	(MW-2, MW-3A, MW-4, MW-5, and MW-6))		

Boron and fluoride did not have any verified SSIs over background. Based on these results, assessment monitoring is required to continue at the Green Landfill on a semi-annual basis.

As presented in **Appendix J**, the statistical analysis results indicate the following Appendix IV constituents were observed as SSIs with concentrations above calculated background values in downgradient compliance monitoring wells.

2023 Appendix IV SSIs - Green Landfill			
June 2023 Sampling Event	November 2023 Sampling Event		
Arsenic (MW-2)	Arsenic (MW-2)		
Barium (MW-2)	Barium (MW-2)		
Lithium (MW-3A, MW-4, MW-5, and MW-6)	Lithium (MW-3A, MW-4, MW-5, and MW-6)		
Mercury (MW-4)	Mercury (MW-4)		
Molybdenum (MW-2)	Molybdenum (MW-2)		
Selenium (MW-4)			

The previously identified April 2022 Appendix IV constituent SSI for radium 226 + 228 (combined) at MW-5 did not reoccur in 2023.

These Appendix IV constituents with SSIs were further evaluated to determine whether they are present at SSLs over the GWPS by calculating the lower confidence limit (LCL) at 95% confidence for each well and constituent pair using all of the baseline, detection, and assessment monitoring results collected to date. For a constituent to be present at an SSL over the GWPS, its LCL must be greater than the GWPS. **Attachment J**, provides a summary of the LCLs and GWPSs for arsenic, barium, lithium, mercury, molybdenum, and selenium for the monitoring wells identified above for the semi-annual events, respectively. As presented

in **Appendix J**, the statistical analysis results indicate the following Appendix IV constituents were observed at SSLs over the GWPS.

2023 Appendix IV SSLs > GWPS - Green Landfill							
June 2023 Sampling Event	November 2023 Sampling Event						
Arsenic (MW-2)	Arsenic (MW-2)						
Lithium (MW-3A, MW-4, MW-5, and MW-6)	Lithium (MW-3A, MW-4, MW-5, and MW-6)						

The LCLs for the remaining wells and Appendix IV constituents are less than the GWPS and thus are not considered SSLs.

The identified SSLs over the GWPS for lithium is consistent with previous statistical evaluations since 2018. On December 6, 2018, BREC posted a formal notification that lithium in Appendix IV had been detected at SSLs above the established GWPS as required by 40 CFR §257.95(g) and 40 CFR §257.107(h)(8). The identified SSLs over the GWPS for arsenic is consistent with the previous statistical evaluation in 2022 (the first SSL occurrence for arsenic). On October 3, 2022, BREC posted a formal notification that arsenic in Appendix IV has been detected at an SSL above the established GWPS as required by 40 CFR §257.95(g) and 40 CFR §257.107(h)(8).

3.3.2 Green Surface Impoundment Statistical Evaluation

The Appendix III detection monitoring data collected at the Green Surface Impoundment were statistically evaluated using an inter-well approach that compared constituent concentrations at downgradient monitoring wells to those present at a background monitoring well. For the Green Surface Impoundment, Monitoring Well MW-11 is designated as the background well because it is located upgradient of the CCR unit, whereas Monitoring Wells MW-12, MW-13, and MW-14 are designated as compliance wells because they are located along the downgradient side the CCR unit waste boundary.

The statistical analysis results indicate that none of the Appendix III constituents (boron, calcium, chloride, fluoride, pH, sulfate, or TDS) have verified SSIs over their background upper prediction limit (see **Appendix K**). In addition, pH does not have a verified SSI below its lower prediction limit. A summary of the statistical evaluations conducted on the detection Appendix III parameters for the Green Surface Impoundment is provided as **Appendix K**. Based on these results, assessment monitoring is not currently required at the Green Surface Impoundment and detection monitoring will continue.

3.4 Conclusion

Based upon the statistical evaluation of Appendix III and Appendix IV parameters collected during assessment monitoring at the Green Landfill in 2023, BREC is required to continue semi-annual assessment monitoring in 2024. The identified Appendix IV arsenic concentration at downgradient Monitoring Well MW-2 at an SSL above the GWPS (see Section 3.3.1) was its first SSL occurrence at the Green Landfill in 2022 with formal notification posted by BREC on October 3, 2022, and further groundwater characterization is planned in 2023 (see **Section 5.2**).

Based upon the statistical evaluation of Appendix III parameters collected during detection monitoring at the Green Surface Impoundment in 2023, BREC is required to continue semi-annual detection monitoring in 2024.

4.0 Certifications and Notifications to the Operating Record

The following certifications and notifications were made to the operating record and/or were posted to the BREC's publicly accessible CCR website during the reporting period:

- 2022 Annual Groundwater Monitoring and Corrective Action Report for the Federal Coal Combustion Residual Rule, Big Rivers Electric Corporation, Sebree Generating Station (Burns & McDonnell, 2023b);
- Document the 2023 groundwater concentrations of Appendices III and IV parameters in the facility operating record as required by 40 CFR §257.95(d)(1);
- Calculated 2023 GWPSs;
- Statistical Evaluation of June 2023 Assessment Monitoring Groundwater Data, Sebree Generating Station, Green Landfill in Robards, Kentucky (Burns & McDonnell, 2023d; Appendix J);
- Statistical Evaluation of June 2023 Detection Monitoring Groundwater Data, Sebree Generating Station, Green Surface Impoundment in Robards Kentucky (Burns & McDonnell, 2023e; Appendix K);
- Statistical Evaluation of November 2023 Assessment Monitoring Groundwater Data, Sebree Generating Station, Green Landfill in Robards Kentucky (Burns & McDonnell, 2023f; Appendix J); and
- Statistical Evaluation of November 2023 Detection Monitoring Groundwater Data, Sebree Generating Station, Green Surface Impoundment in Robards Kentucky (Burns & McDonnell, 2023g; Appendix K).

5.0 Key Activities Planned for 2024

Anticipated activities for the next 2024 annual reporting period include continued groundwater monitoring, continued closure activities at the Green Surface Impoundment, and groundwater characterization for the Green Landfill (Appendix IV arsenic and lithium SSL above GWPSs).

5.1 Groundwater Monitoring

Continued semi-annual assessment monitoring of all operating permit monitoring wells and subsequent statistical evaluations for the Green Landfill are planned for 2024. The semi-annual assessment monitoring will include two (2) assessment groundwater monitoring events and two (2) characterization groundwater monitoring events.

For the Green Surface Impoundment, continued semi-annual detection monitoring of all operating permit monitoring wells with subsequent statistical evaluations are planned for 2024. The semi-annual detection monitoring will include two (2) detection groundwater monitoring events (unless an SSI triggers assessment monitoring).

5.2 Green Surface Impoundment Closure Activities

The Green Surface Impoundment began closure activities in 2022 and are scheduled to be finalized by the end of the first quarter of 2024.

5.3 Green Landfill Groundwater Characterization

The statistical evaluations of the 2023 groundwater data at the Green Landfill identified Appendix IV arsenic (first occurrence in 2022) and lithium (first occurrence in 2018) at concentrations at downgradient monitoring wells at SSLs above the GWPSs (see **Section 3.3.1**). In accordance with 40 CFR §257.96(g)(1), characterization of the "nature and extent of the release and any relevant site conditions that may affect the remedy ultimately selected" with the caveat that the "characterization must be sufficient to support a complete and accurate assessment of the corrective measures necessary to effectively clean up all releases from the CCR unit pursuant to 40 CFR §257.96".

The Green Landfill was previously subject to corrective action to address the following impacts:

- Lithium in groundwater at an SSL above the GWPS in four monitoring wells (MW-3A, MW-4, MW-5, and MW-6) at the CCR unit and
- 2. Address Notices of Violation received from KDWM in regard to unpermitted discharges and seepage emanating from the CCR unit.

To address these impacts, a *Final Groundwater and Non-Groundwater Corrective Action Remedy Selection Report* (AECOM, 2020c) was completed documenting the 2019 and 2020 implementation of the corrective action remedy. Alternative #5 from the ACM was selected as the remedy to address both groundwater and non-groundwater impacts at the Green

Landfill consisting of consisting of closure-in-place, other source controls, institutional controls, and groundwater monitoring. In 2019 and 2020, source controls were implemented consisting of the construction of a deep collection trench along the east side of the Green Landfill (referred to as the Deep Seep Collection Trench or Eastern Collection Trench) and the construction of a series of shallower collection trenches along the north side of the Green Landfill (referred to as the Northwest Seep Collection Trench). In 2020 and 2021, shallow collection trenches were constructed around the perimeter of the Green Landfill and residual CCR material was removed from the South Sediment Basin to comply with an Agreed Order signed by BREC and KDWM. These source control measures implemented to date are intended to capture non-groundwater releases from migrating beyond the functional perimeter of the Unit and the property controlled by BREC.

The most recently observed groundwater impact of arsenic at an SSL above the GWPS was in Monitoring Well MW-2 following statistical analysis performed in association with both the 2022 and 2023 groundwater monitoring events. Monitoring Well MW-2 is located on the northeastern, downgradient side of the waste boundary of the CCR unit, and directly north of the Deep Seep Collection Trench (see **Figure 2**). The closest monitoring well to Monitoring Well MW-2 is Monitoring Well MW-3A to the south, which is over 1,000 feet offset from Monitoring Well MW-2 and does not exhibit arsenic detections. Thus, the existing monitoring well network provided an insufficient delineation of the observed arsenic impact in groundwater downgradient of the CCR unit. In order to evaluate the nature and extent of arsenic impacts in groundwater at Monitoring Well MW-2, three additional characterization monitoring wells (MW-105, MW-106S, and MW-106D) were installed at the CCR unit (see **Section 2.2**) in accordance with the KDWM-approved *2023 Monitoring Well Installation Work Plan* (Burns & McDonnell, 2023a).

The additional data collected and continued semi-annual groundwater monitoring from these newly installed characterization monitoring wells will be incorporated into the conceptual site model and used to evaluate the source and extent of arsenic impacts.

6.0 References

- AECOM, 2018. Annual Groundwater Monitoring and Corrective Action Report, 2016-2017; Green Station CCR Landfill, Webster County, Kentucky. January.
- AECOM, 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report, Green Station CCR Landfill, Webster County, Kentucky. January.
- AECOM, 2019b. Assessment of Corrective Measures Under the CCR Rule, Green Station CCR Landfill, Webster County, Kentucky. June 13th.
- AECOM, 2019c. Semi-Annual Remedy Selection Progress Report, Green Landfill, Sebree Station, Webster County, Kentucky. December 9th.
- AECOM, 2020a. 2019 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky. January.
- AECOM, 2020b. Semi-Annual Remedy Selection Progress Report, Green Landfill, Sebree Station, Webster County, Kentucky. June 8th.
- AECOM, 2020c. Final Groundwater and Non-Groundwater Corrective Action Remedy Selection Report, Green Landfill, Sebree Station, Webster County, Kentucky. November 18th.
- AECOM, 2021. 2020 Annual Groundwater Monitoring and Corrective Action Report, Sebree Station, Webster County, Kentucky. January.
- AECOM, 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Webster County, Kentucky. January.
- Associated Engineers, Inc., 2016a. CCR Landfill Groundwater Monitoring System and Statistical Methods Assessment and Certification, Green Station CCR Landfill. June 28th.
- Associated Engineers, Inc., 2016b. CCR Impoundment Groundwater Monitoring System and Statistical Methods Assessment and Certification, Green Station CCR Surface Impoundment. June 28th.
- BREC, 2018a. Re: Big Rivers Electric Corporation Green Station Landfill and Reid / HMP&L Station II Surface Impoundment Declaration of Entering into Assessment Monitoring Programs. February 5th.
- BREC, 2018b. Re: Big Rivers Electric Corporation Reid / Green / HMP&L Station II (Sebree Station AI 4196) Notification of Statistical Exceedance above the Groundwater Protection Standard and Notification of Intent to Initiate an Assessment of Corrective Measures. December 6th.

- BREC, 2022. Re: Big Rivers Electric Corporation Green Station Landfill (Sebree Station Al 4196) Notification of Statistical Exceedance above the Groundwater Protection Standard. October 3rd.
- Burns & McDonnell, 2023a. 2023 Monitoring Well Installation Work Plan, Sebree Generating Station, Green Landfill, Webster County, Kentucky, AI# 4196, Permit No. SW11700007, AID# APE20220004, January 5th.
- Burns & McDonnell, 2023b. 2022 Annual Groundwater Monitoring and Corrective Action Report for the Federal Coal Combustion Residuals Rule, Big Rivers Electric Corporation, Sebree Generating Station. January 31st.
- Burns & McDonnell, 2023c. Monitoring Well Construction Progress Report, Big Rivers Electric Corporation, Sebree Generating Station, Green Landfill, Kentucky, Al# 4196. June 9th.
- Burns & McDonnell, 2023d. Re: Statistical Evaluaiton of June 2023 Assessment Monitoring Groundwater Data, Sebree Generating Station, Green Landfill in Robards, Kentucky, Al# 4196. November 3rd.
- Burns & McDonnell, 2023e. Re: Statistical Evaluaiton of June 2023 Detection Monitoring Groundwater Data, Sebree Generating Station, Green Surface Impoundment in Robards, Kentucky, AI# 4196. November 3rd.
- Burns & McDonnell, 2023f. Re: Statistical Evaluation of November 2023 Assessment
 Monitoring Groundwater Data, Sebree Generating Station, Green Landfill in Robards,
 Kentucky, Al# 4196. January 26.
- Burns & McDonnell, 2023g. Re: Statistical Evaluaiton of November 2023 Detection Monitoring Groundwater Data, Sebree Generating Station, Green Surface Impoundment in Robards, Kentucky, AI# 4196. January 26.
- Fairer, G.M., Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey, 1973.
- FMSM Engineers, 1997. Monitoring Well Completion Report, Special Waste Landfill Facility, R.D. Green Station, Webster County, Kentucky. July.
- Moore, D.M., Reynolds, Jr., R.C. 1989. X-ray Diffraction and the Identification and Analysis of Clay Minerals.
- USEPA, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, 40 CFR Parts 257 and 261, Federal Register, Vol. 80, No. 74, April 17. http://www.gpo.gov/fdsys/pkg/FR-2015-04-17/pdf/2015-00257.pdf.
- USEPA, 2018. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One). 40 CFR Part 257, Federal Registrar, Vol. 83, No. 146, July 30. https://www.federalregister.gov/documents/2018/07/30/2018-16262/hazardous-and-solid-waste-management-system-disposal-of-coal-combustion-residuals-from-electric-utilities.

- USEPA, 2020a. Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; A Holistic Approach to Closure Part A: Deadline to Initiate Closure. 40 CFR Part 257, Federal Register, Vol. 85, No. 53516 September 28. https://www.federalregister.gov/documents/2020/08/28/2020-16872/hazardous-and-solid-waste-management-system-disposal-of-coal-combustion-residuals-from-electric.
- USEPA, 2020b. Final Rule A Holistic Approach to Closure Part B: Alternate Liner Demonstration. 40 CFR Part 257, Federal Register, Vol. 85, No. 219 December 14. Federal Register: Hazardous and Solid Waste Management System: Disposal of CCR; A Holistic Approach to Closure Part B: Alternate Demonstration for Unlined Surface Impoundments. https://www.federalregister.gov/documents/2020/12/14/2020-27031/hazardous-and-solid-waste-management-system-disposal-of-ccr-a-holistic-approach-to-closure-part-b.

TABLES

TABLE 1
SUMMARY OF MONITORING WELL CONSTRUCTION, GREEN LANDFILL
CCR GROUNDWATER MONITORING PROGRAM

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

Well No.		Location*		Reference Elevation* TOIC GS (feet, NAV88) (feet, NAVD88)		Casing Length Size / Type (feet, TOIC) (ID / Material)		Filter Pack Interval (feet, GS, NADV88)		Screened Interval (feet, GS, NAVD88)	
		· ·	, , ,		, ,	,	Ton	Rottom	Ton	Rottom	, , ,
							100	Dottom	100	Dottom	
U/B	37.637800	-87.508100	423.23	420.2	45.5	4 inch / PVC	389.9	377.7	387.7	377.7	45
D	37.636300	-87.500900	392.37	389.9	50.3	4 inch / PVC	354.1	342.1	352.1	342.1	49
D	37.631900	-87.500900	386.48	380.7	41.3	4 inch / PVC	357.2	344.5	355.2	345.2	36.2
D	37.628100	-87.501100	391.33	388.8	33.1	4 inch / PVC	370.2	358.2	368.2	358.2	33
D	37.628318	-87.503480	390.18	387.7	27.5	4 inch / PVC	374.7	362.7	372.7	362.7	26
D	37.628555	-87.507413	388.17	385.7	45.5	4 inch / PVC	354.9	342.7	352.7	342.7	45
D/C	37.630519	-87.500959	395.13	392.47	60.84	2 inch / PVC	347.5	332.5	342.5	332.5	60
D/C	37.636833	-87.500928	381.77	378.90	33.87	2 inch / PVC	359.9	346.9	358.1	348.1	32
D/C	37.636178	-87.500928	387.26	384.75	41.51	2 inch / PVC	357.8	344.8	356.0	346.0	40
D/C	37.636194	-87.500947	387.88	385.30	66.08	2 inch / PVC	333.8	321.3	332.0	322.0	64
	D D D D D D D C D / C D / C D / C	Lat U/B 37.637800 D 37.636300 D 37.631900 D 37.628100 D 37.628555 D/C 37.630519 D/C 37.636833 D/C 37.636178	Lat Long U/B 37.637800 -87.508100 D 37.636300 -87.500900 D 37.631900 -87.500900 D 37.628100 -87.501100 D 37.628318 -87.503480 D 37.628555 -87.507413 D/C 37.630519 -87.500959 D/C 37.636833 -87.500928 D/C 37.636178 -87.500928	Location* TOIC (feet, NAV88) U/B 37.637800 -87.508100 423.23 D 37.636300 -87.500900 392.37 D 37.631900 -87.500900 386.48 D 37.628100 -87.501100 391.33 D 37.628318 -87.503480 390.18 D 37.628555 -87.507413 388.17 D/C 37.636833 -87.500928 381.77 D/C 37.636178 -87.500928 387.26	Location* TOIC GS Lat Long (feet, NAV88) (feet, NAVD88) U/B 37.637800 -87.508100 423.23 420.2 D 37.636300 -87.500900 392.37 389.9 D 37.631900 -87.500900 386.48 380.7 D 37.628100 -87.501100 391.33 388.8 D 37.628318 -87.503480 390.18 387.7 D 37.628555 -87.507413 388.17 385.7 D/C 37.636833 -87.500928 381.77 378.90 D/C 37.636178 -87.500928 387.26 384.75	Location* TOIC GS Length (feet, TOIC) U/B 37.637800 -87.508100 423.23 420.2 45.5 D 37.636300 -87.500900 392.37 389.9 50.3 D 37.631900 -87.500900 386.48 380.7 41.3 D 37.628100 -87.501100 391.33 388.8 33.1 D 37.628318 -87.503480 390.18 387.7 27.5 D 37.628555 -87.507413 388.17 385.7 45.5 D/C 37.636833 -87.500928 381.77 378.90 33.87 D/C 37.636178 -87.500928 387.26 384.75 41.51	Location* TOIC GS Length (feet, TOIC) Size / Type (feet, TOIC) U / B 37.637800 -87.508100 423.23 420.2 45.5 4 inch / PVC D 37.636300 -87.500900 392.37 389.9 50.3 4 inch / PVC D 37.631900 -87.500900 386.48 380.7 41.3 4 inch / PVC D 37.628100 -87.501100 391.33 388.8 33.1 4 inch / PVC D 37.628318 -87.503480 390.18 387.7 27.5 4 inch / PVC D 37.628555 -87.507413 388.17 385.7 45.5 4 inch / PVC D / C 37.636833 -87.500928 381.77 378.90 33.87 2 inch / PVC D / C 37.636178 -87.500928 387.26 384.75 41.51 2 inch / PVC	Location* TOIC GS Length (feet, TOIC) Size / Type (feet, GS) Interest U / B 37.637800 -87.508100 423.23 420.2 45.5 4 inch / PVC 389.9 D 37.636300 -87.500900 392.37 389.9 50.3 4 inch / PVC 354.1 D 37.631900 -87.500900 386.48 380.7 41.3 4 inch / PVC 357.2 D 37.628100 -87.501100 391.33 388.8 33.1 4 inch / PVC 370.2 D 37.628318 -87.503480 390.18 387.7 27.5 4 inch / PVC 374.7 D 37.628555 -87.507413 388.17 385.7 45.5 4 inch / PVC 354.9 D/C 37.636833 -87.500928 381.77 378.90 33.87 2 inch / PVC 359.9 D/C 37.636178 -87.500928 387.26 384.75 41.51 2 inch / PVC 357.8	Location* TOIC GS (feet, NAVD88) Length (feet, TOIC) Size / Type (feet, GS, NADV88) Interval (feet, GS, NADV88) U / B 37.637800 -87.508100 423.23 420.2 45.5 4 inch / PVC 389.9 37.636300 -87.500900 392.37 389.9 50.3 4 inch / PVC 354.1 342.1 342.1 342.1 D 37.631900 -87.500900 386.48 380.7 41.3 4 inch / PVC 357.2 344.5 357.2 344.5 D 37.628100 -87.501100 391.33 388.8 33.1 4 inch / PVC 370.2 358.2 D 37.628318 -87.503480 390.18 387.7 27.5 4 inch / PVC 374.7 362.7 D 37.628555 -87.507413 388.17 385.7 45.5 4 inch / PVC 354.9 342.7 D / C 37.636833 -87.500928 381.77 378.90 33.87 2 inch / PVC 359.9 346.9 D / C 37.636178 -87.500928 387.26 384.75 41.51 2 inch / PVC 357.8 344.8	Location* TOIC GS Length (feet, TOIC) Size / Type (feet, GS, NADV88) Interval (feet, GS, NaD	Location* TOIC (feet, NAV88) GS (feet, NAVD88) Length (feet, TOIC) Size / Type (feet, TOIC) Interval (feet, GS, NADV88) Interval (feet, GS, NADV88) U / B 37.637800 -87.508100 423.23 420.2 45.5 4 inch / PVC 389.9 377.7 387.7 377.7 D 37.636300 -87.500900 392.37 389.9 50.3 4 inch / PVC 354.1 342.1 352.1 342.1 D 37.631900 -87.500900 386.48 380.7 41.3 4 inch / PVC 357.2 344.5 355.2 345.2 D 37.628100 -87.501100 391.33 388.8 33.1 4 inch / PVC 370.2 358.2 368.2 358.2 D 37.628318 -87.503480 390.18 387.7 27.5 4 inch / PVC 374.7 362.7 372.7 362.7 D 37.628555 -87.507413 388.17 385.7 45.5 4 inch / PVC 354.9 342.7 352.7 342.7 D/ C 37.636

^{*} Reference elevation of monitoring wells MW-1 through MW-6 surveyed by Fuller, Mossbarger, Scott and May, Civil Engineers, Inc., Lexington, Kentucky, December 1996 and December 1999. Reference elevation of monitoring well MW-104 surveyed by Associated Engineers Inc., March 19, 2019. New characterization monitoring wells MW-105, MW-106S, and MW-106D surveyed by Associated Engineers, Inc. of Madisonville, KY on May 19, 2023. Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, North American Datum of 1927 (NAD27) datum.

Lat./Long. = Latitude and longitude

NAVD88 = North American Vertical Datum of 1988

PVC = Polyvinyl chloride

TOIC = Top of internal casing

U / B = Upgradient / Background

C = Characterization

D = Downgradient

GS = Ground surface

ID = Internal diameter

TABLE 2
SUMMARY OF MONITORING WELL CONSTRUCTION, GREEN SURFACE IMPOUNDMENT CCR GROUNDWATER MONITORING PROGRAM

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION SURFACE IMPOUNDMENT WEBSTER COUNTY, KENTUCKY

Well No.		Location*		Reference Elevation* TOIC GS		Casing Length Size / Type		Filter Pack Interval		Screened Interval		Bottom of Boring
		Lat	Long	(feet, NAV88) (feet, NA	(feet, NAV88)	38) (feet, TOIC)) (ID / Material)	(feet, GS, NADV88)		(feet, GS, NADV88)		(feet, GS)
Program								Тор	Bottom	Тор	Bottom	
Monitoring Wells												
MW-11 (8006-3938)	U/B	37.64262	-87.50325	401.32	398.36	51.5	2 inch / PVC	356.86	348.46	354.86	349.86	49.5
MW-12 (8006-3939)	D	37.63915	-87.50182	395.54	392.35	73.7	2 inch / PVC	333.85	320.35	331.85	321.85	72.0
MW-13 (8006-3940)	D	37.64086	-87.50072	394.60	391.46	52.6	2 inch / PVC	348.96	339.96	346.96	341.96	51.5
MW-14 (8006-3941)	D	37.64220	-87.50001	390.71	387.55	50.0	2 inch / PVC	347.75	337.95	345.75	340.75	49.6

^{*}Reference elevation of monitoring wells surveyed by Associated Engineers, Inc., Madisonville, Kentucky, January 2015 Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, North American Datum of 1927 (NAD27) datum.

D = Downgradient

GS = Ground surface

ID = Internal diameter

Lat./Long. = Latitude and longitude

NAVD88 = North American Vertical Datum of 1988

PVC = Polyvinyl chloride

TOIC = Top of internal casing

U / B = Upgradient / Background

TABLE 3
GROUNDWATER ELEVATIONS, GREEN LANDFILL - 2023

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

					GROUNE	WATER MONIT	TORING WE	LL PROGRAM				
		/IW-1	N	/IW-2	M	W-3A	N	/IW-4	N	/IW-5	N	/W-6
Reference Elevation TOIC*(ft, NADVD88)	. •	nt/Background 22.56		ngradient 91.82		ngradient 86.27		ngradient 91.11		ngradient 89.81		ngradient 88.10
Date Measured	Depth to Water (ft, TOIC)	GW Elevation (ft, NAVD88)										
6/22/2023**	19.31	403.25	21.80	370.02	18.50	367.77	27.34	363.77	15.21	374.60	21.44	366.66
11/6/2023	21.19	401.37	23.17	368.65	19.20	367.07	28.83	362.28	15.28	374.53	21.72	366.38
Reference Elevation TOIC*(ft, NADVD88)	Charac	W-104 cterization 95.40	Chara	W-105 cterization 81.77	Chara	V-106S cterization 87.26	Charac	V-106D cterization 87.88				

	IVIV	W-104	IVI	W-105	IVIV	V-1065	IVIV	V-106D
Reference Elevation TOIC*(ft, NADVD88)		cterization 95.40		cterization 81.77		cterization 87.26		cterization 87.88
Date Measured	Depth to Water (ft, TOIC)	GW Elevation (ft, NAVD88)						
6/22/2023**	25.60	369.80	9.76	372.01	22.75	364.51	26.12	361.76
11/6/2023	25.83	369.57	10.79	370.98	23.50	363.76	26.44	361.44

^{*} Reference elevation of monitoring Wells resurveyed on May 19, 2023 by Associated Engineers, Inc. of Madisonville, KY.

ft = feet

GW = Groundwater

NAVD88 = North American Vertical Datum of 1988

TOIC = Top of internal casing

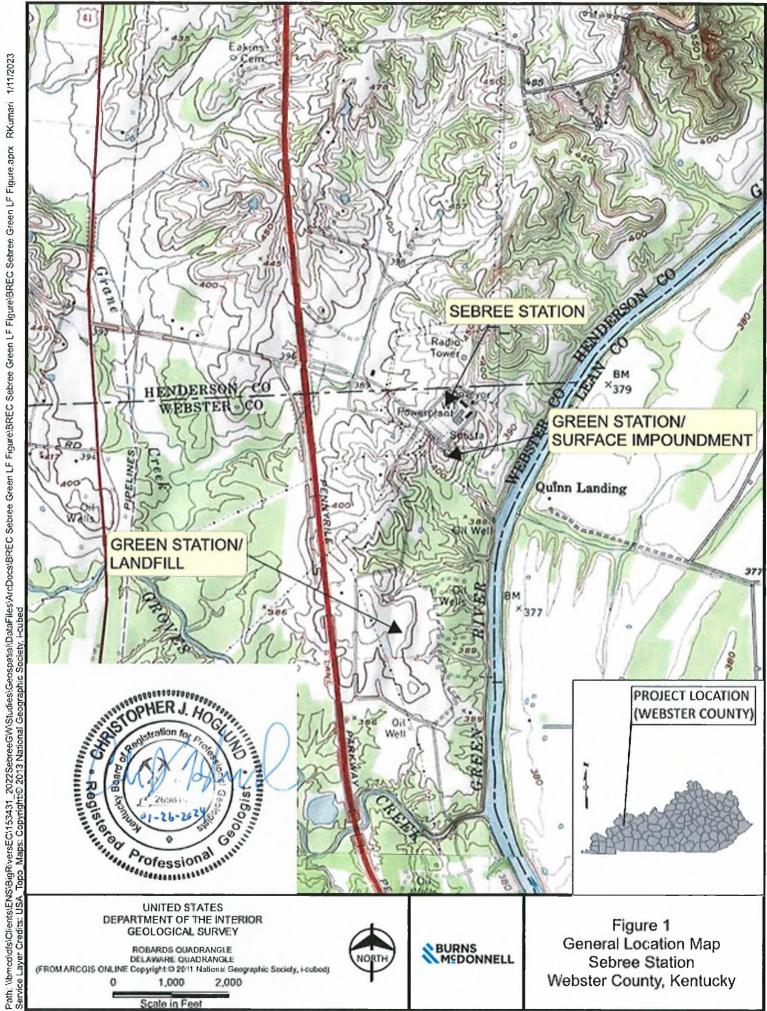
^{**} Water levels measured between June 22-25, 2023.

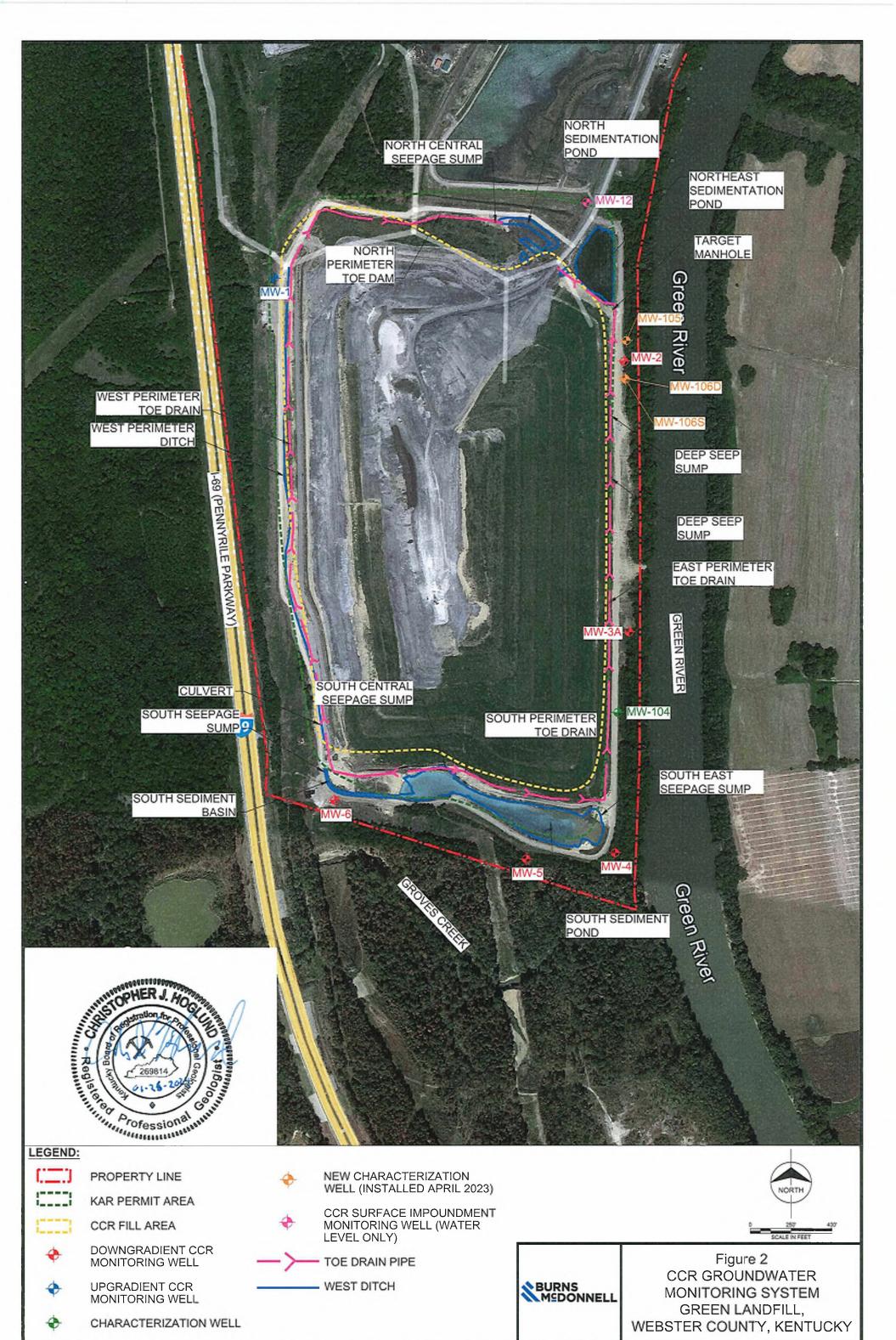
TABLE 4 GROUNDWATER ELEVATIONS, GREEN SURFACE IMPOUNDMENT - 2023 GREEN STATION SURFACE IMPOUNDMENT

BIG RIVERS ELECTRIC CORPORATION SEBREE STATION WEBSTER COUNTY, KENTUCKY

			GROUND	WATER MONIT	ORING WEL	L PROGRAM		
	М	W-11	M	W-12	М	W-13	М	W-14
Reference Elevation TOIC*(ft, NADVD88)	. •	t/Background 01.32		ngradient 95.54		gradient 94.60		ngradient 90.71
Date Measured	Depth to Water (ft, TOIC)	GW Elevation (ft, NAVD88)						
6/25/2023	22.40	378.92	28.20	367.34	22.20	372.40	26.60	364.11
11/6/2023	27.43	373.89	31.21	364.33	22.99	371.61	27.72	362.99

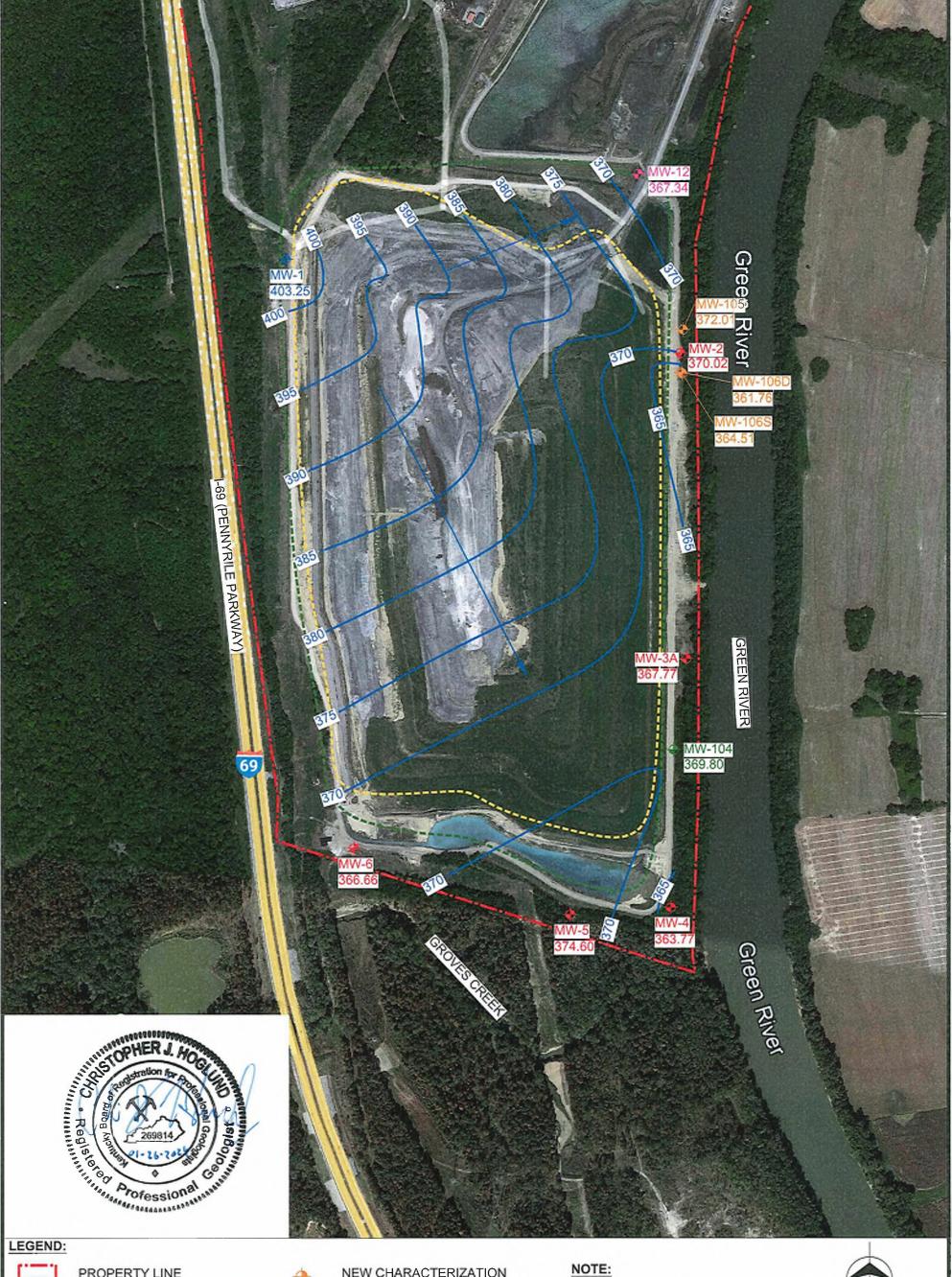
^{*}Reference elevation of monitoring wells surveyed by Associated Engineers, Inc., Madisonville, Kentucky, January 2015


ft = feet


GW = Groundwater

NAVD88 = North American Vertical Datum of 1988

TOIC = Top of internal casing


FIGURES

Scale in Feet Source: Earr, USGS, Burns & McDonnell Engineering, Inc. BREC

Issued: 1/9/2023

KAR PERMIT AREA

CCR FILL AREA

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

NEW CHARACTERIZATION WELL (INSTALLED APRIL 2023)

CCR SURFACE IMPOUNDMENT MONITORING WELL (WATER LEVEL ONLY)

GROUNDWATER CONTOUR

GROUNDWATER ELEVATION

FLOW DIRECTION

CHARACTERIZATION WELLS MW-106D NOT USED IN CONTOURING.

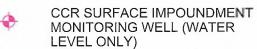
NEDONNELL

Figure 4 POTENTIOMETRIC SURFACE MAP JUNE 22, 2023 GREEN LANDFILL, WEBSTER COUNTY, KENTUCKY

KAR PERMIT AREA

CCR FILL AREA

DOWNGRADIENT CCR MONITORING WELL


UPGRADIENT CCR MONITORING WELL

CHARACTERIZATION WELL

NEW CHARACTERIZATION WELL (INSTALLED APRIL 2023)

401.37 GROUNDWATER ELEVATION


FLOW DIRECTION

CHARACTERIZATION WELLS MW-106D NOT USED IN CONTOURING.

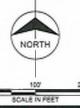
SBURNS MSDONNELL

Figure 5 POTENTIOMETRIC SURFACE MAP NOVEMBER 6, 2023 GREEN LANDFILL, WEBSTER COUNTY, KENTUCKY

IMPOUNDMENT UNIT BOUNDARY

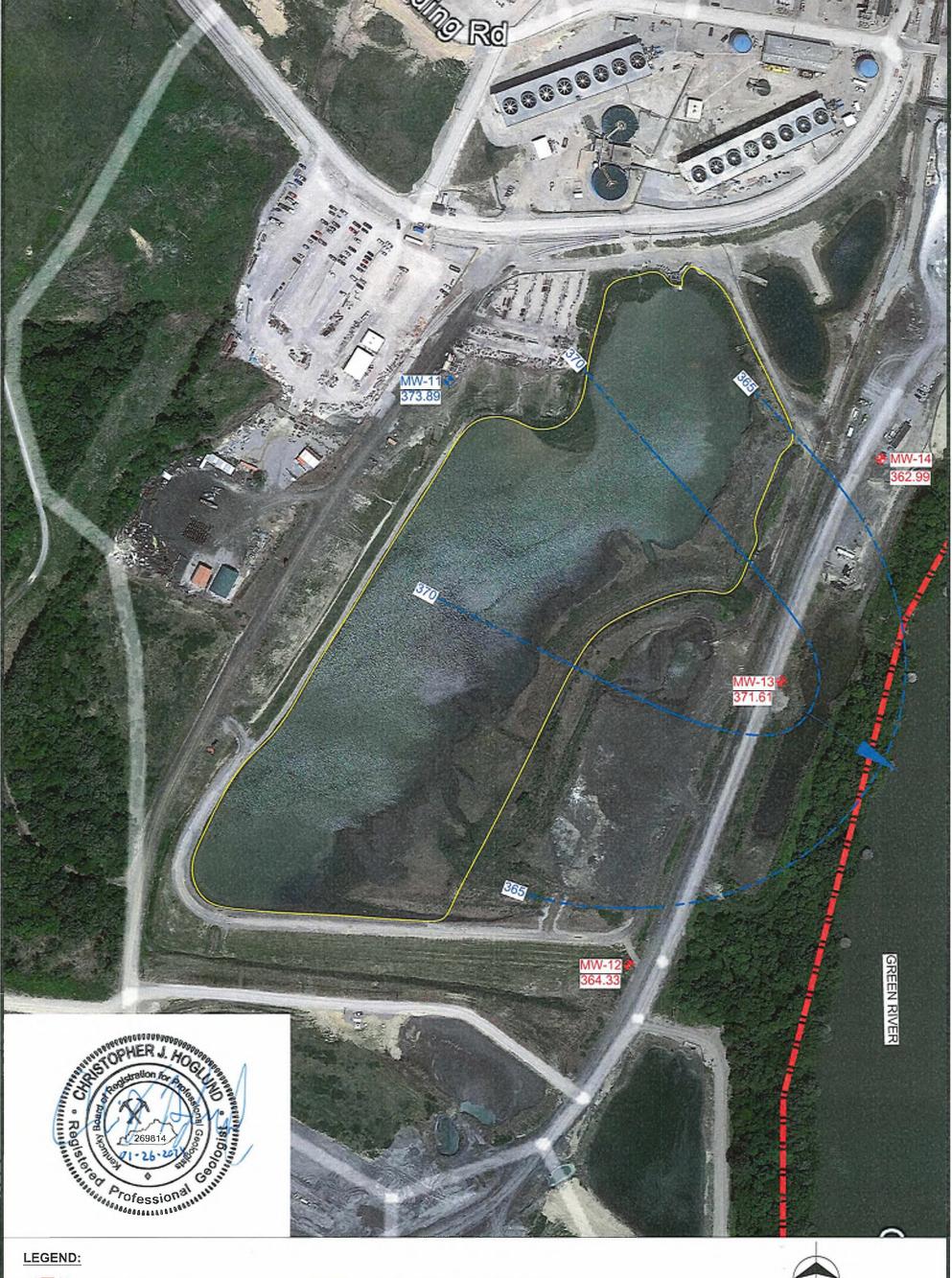
DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL



GROUNDWATER CONTOUR

378.92 GROUNDWATER ELEVATION



FLOW DIRECTION (DASHED WHERE INFERRED)

BURNS MEDONNELL

Figure 6 POTENTIOMETRIC SURFACE MAP JUNE 25, 2023 SURFACE IMPOUNDMENT, WEBSTER COUNTY, KENTUCKY

IMPOUNDMENT UNIT BOUNDARY

DOWNGRADIENT CCR MONITORING WELL

UPGRADIENT CCR MONITORING WELL

GROUNDWATER CONTOUR

373.89

GROUNDWATER ELEVATION

FLOW DIRECTION (DASHED WHERE INFERRED)

BURNS MSDONNELL Figure 7
POTENTIOMETRIC SURFACE MAP
NOVEMBER 6, 2023
SURFACE IMPOUNDMENT,
WEBSTER COUNTY, KENTUCKY

CCR GROUNDWATER FIELD LOG

Site Nan	ie:	Well	No.	Total	Dept	th (ft.)	T	Initial Dep	oth	TF	leight of	Water	Date:		Tin	ne:	
					·	, .	- 1	to Water	(ft.)		Column (1		, ,				
Green	LF	M۱	N-1		45.5	53		19,31			26.	22	6/22/2	13	f	000	
Site Loca	tion:	AKGV	VA#		_	meter	Т	Measurin	g	(Groundw	ater	Well V	ol. (G	al.)	PO #	
				4 "		□2 ″	- 1	Point (ft.)			levation	(ft.)					
Webste KY	r Co,	8002	-9625			n fact. 2"-0.16		423.2 422.5			403.	25	n l	7.57		***	
□ Rain ɪ	⊐ Sleet,	/Freez	ing Rair	n 🗆 Sr	ow	□ Fog	o C	lear of a	rtly C	lou	idy w	indy	Тетр	7	٠.	(F°)	
			pth to	Pur	$\overline{}$	Volun					T T	Sp.	T				
Time	ET		/ater	Rat		Purge	ed	Temp	ρl		eH/OR	P Cond	. т	urbidi	ty	DO	
	(min)	_	(ft.)	ml/r	nin	(£)		(°C)	(St	J)	(mV)	(mS)		(NTU)		Mg/L	
0430	ø	1	1.31	~ 251	~0	ø		15.43	6.4	8	-108	0.98	9	2.8		0.84	
0435	5	2	D. 14	1		1.25		15.44	7.	۰2	-111	0.98	3	ø		0.75	
0940	10	2	0.75	J		2.5		15.44	7.	H	-90	0.99	. / ,			g/.	
0945	15	2	1. 10	v20	onl	3.5		15.36	7	10	-78	0.98	14 Ø			ø	
0950	20	2	1.61			4.5		15,50	7	15	-72	0.98	7	ø		ø	
0955	25	2	1.92			5.5		15.40	7.	16	-65	0.98	14	ø		d	
1000	30	2	2.10			6.5		15.50	7	15	-65	0.98	0	ø		ø	
*								_									
					_	11.	4	1									
					4	108	-	The same			-						
For thre				Requi		Actua		+/- 3%	+/		+/- 10	+/- 3%		10% un	_	10%	
consec				Purg	e	Purge	2	(°C)	(St	J)	mV			<5 NTU		-t-Li-	
Readi Well		ad	10	ck	BL	adder				Fie	ld Blank ∙	Collected	EOR	Deep I		stable d Collected	
Condition		dition		ioning		ump	Cas	sing SS				No					
							Ca:	sing PVC			Yes 🗵 me:	IIVO	☐Yes ☑No Time:				
			☑ Ye	5		Yes	Filt	ered:		Sp	lit Sample	e □ Yes	s 🗹 No Semi-Annual				
6001)	G	000	□ No			No		Yes 🗔	No		ith:		⊠Yes □No				
Sample Time	Dept		Color		Odor	T	emp (C°)	Sp. C			DO (mg/L)	pH (SU)	U) eH/ORP Turbidity N				
(000)	22	.10	CLEA	2	Non	E	5.5	0.0	180		ø	7.15	-60	5		Ø	

pu : 3.99 SU

4.49 ms/cm

Sebree Station 9000 Highway 2096 Robards, KY 42452 www.bigrivers.com

FIELD WY BLANK@ 1300

CCR GROUNDWATER FIELD LOG

Site Nar	me:	Well	No.	Total	Dep	th (ft.)	Т	Initial Dep			Height of		Date:		Time:
Gree	n LF	M	N-2		50.	27		to Water 21.90	` '	ľ	Column (28,	· ·	6-24-	-23	0750
Site Loc	ation:	AKGV	VA#	Casin	g Dia	meter □2"		Measurin Point (ft.)			Groundw Elevation		Well \	/ol. (G	al.) PO#
Webste KY	,	8002	-9630			n fact. 2"-0.16		392:3 391.8			370	.02	~ 1	9.07	
□ Rain	□ Sieet	/Freez	ing Rair	n 🗆 Sr	ow	□ Fog	1/0	lear ⊡Pa	irtly C	lou	udy 🗆 W	indy	Temp	o. <u> </u>	(F°)
Time	ET (min)	V	pth to /ater (ft.)	Pur Rat ml/r	e	Volun Purge (L)		Temp (°C)	Sp Con (m:	ıd.	DO Mg/L	pH (SU)		/ORP mV)	Turbidity (NTU)
0725	195	2	1.80	~318	ml	g		16.61	1.9	0	ø	6.3	0 -7	75	51.7
0730	5	2	3.10					16.49	1.9	3	ø	6.2	7 -	88	34.7
0735	ίο	2	3.30					18.42	1.9	2	ø	6.28			26.2
0740	15	2	4.10					16.44	1.4	92	Ø	6.3	-	92	19.6
1745	20	2	4.60					16.45	1.	89	ø	6.3	4 -	94	19.2
0750	2.5	1 2	4.80	<u>_</u>				16:34	1. 9	11	ø	6.3	3 -	94	18.9
<	_				-		_			_			+		
							_	ghry (Juil	4-					
		_						0					-		
For the consec Read	cutive			Requi Purs	- 1	Actua Purge		+/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg stable	/I (SU)) +/-	10 mV	% unless <5 NTU consider stable
Well Condition		ad dition		ck ioning		adder Yump		sing SS			Field Bla	nk Collecte	ed	Colle	Duplicated ected P/A
OK	0/	(☑ Yes			Yes No		tered: Yes 🏿	No		olit Sampl /ith:	e □ Yes	No	Semi	i-Annual
Sample Time	Dept Wa	th to ter	Color		Odo	dor Temp. Sp. Cond. DO pH (SU) (C°) (mS) (mg/L)			eH/0 (m		Turbidity NTU)				
0750	24	.80	CLEA	EAR NONE 16.3			16.3	4 1.9	1		Ø	6.33	_9	4	18.9

DUPE @ 1040

Sebree Station 9000 Highway 2096 Robards, KY 42452 www.bigrivers.com

GREEN LANDFILL

CCR GROUNDWATER FIELD LOG

Site Nar	ne:	Well	No.	Total	Depth	(ft.)		ial De _l Nater			Height of Column (ter	Date:		Tin	ie:
Gree	n LF	M۱	N-3A		41.30	ŀ		8.50	(11)		22.	-		6-23-3	1613		1010
Site Loc	ation:	AKGV	VA#	Casing	-	eter 2"		asurin	-		Groundw			Well V	ol. (G	al.)	PO#
Webste KY		8003	-6430	Conve 4"-0.6	rsion	fact.		nt (ft.) - <mark>386.4</mark> -386.1	8-910		Elevation 367		- 1	~1:	5,28		
□ Rain	□ Sleet,	/Freez	ing Rair	n 🗆 Sn	ow 🗅	Fog 0	Clea	r saPa	rtly C	lou	ıdy □ W	indy	,	Temp	7	0	(F°)
Time	ET (min)	De V	pth to Vater (ft.)	Purg Rate ml/m	e e	Volume Purged (L)	1	emp (°C)	Sp Con (m	o. nd.	DO Mg/L	T	pH (SU)	eH/	ORP mV)		Turbidity (NTU)
0445	ď	18	.50	~310	ml	ø	1	7.55	7.1	4	6.5	1	7.21		179		36.9
0950	5	18	60			1.59	1	5.79	7.4	16	1.5		6.96	j j	426		0.9
0955	lo	18	.71			3.18	1	5.7	7.3	37	0,4	6	6.99		54		Ø
1000	15	18	43			4.77	1	5.45	7.	38	0.24		6.98	5	563		ø
1005	20	18	1.40			6-36	1	5.36	7.	38	0.15		6.97	- 5	70		6
1010	25	1	8.41	1	+	7.95	1	5.27	7	40	0.0	8	6,94	5	70	-	ø
	- 1				+			0			_	†		+		+	
						9	148	a	eb	1							
For thr	ran /2\	-		Requir	04	Actual	+	/- 3%		_	+/- 10%	7	+/10	+	10	1	4002
conse	cutive			Purg		Purge		/= 376 (°C)	+/- 3	3%	<0.5mg, stable	/1	+y10 {SU}	+/~.	Marin V		- 10% unless <5 NTU nsider stable
Well Condition			Lo Functi	ck ioning	Blac Pui	np	Casing Casing	; SS ; PVC	0 Ø		Field Bla me:		ollecte	d	Colle	cted	cated 1040
oK	01	٨	☑ Yes		52 Ye	25	Filtere		No		olit Sampl Vith:	e 🗆	Yes li	Z No	Sem		
Sample Time	Depth to Colo Water				Odor		mp. C°)	Sp. C			DO (mg/L)	pΗ	I (SU)	eH/C		Tur	bidity NTU)
1010	18	,41	CLEAR		NoNE	15	. 27	7.4	10	Г	0.08	6	5.94	57			Ø

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Tota	ıl Dep	oth (f	t.)		al Dep			leight of		iter	Date:		Tin	ne:
Green	LF	M	N-4		33	.13			Vater i け、3~		1	column (1 5.	11.j 79		6-22.	23		1630
Site Loca	ation:	AKG	VA#	Casi	ng Di	amet		$\overline{}$	asurinį		G	roundw	ate	r	WellV	ol. (G	al.)	PO#
				±4"		⊜2″			nt (ft.)			levation	(ft.)				
Webste		8002	- 9 628			on fac			391.3 .	3 JKQ		363	20	2	N	3.87	.	
KY				4"-0	.67	2"-0	.16		391.]]		L	255	77				_	
□ Rain	□ Sleet,	/Freez	ing Raii	n os	inow	o Fe	og 🗆	Clear	n 1025	rtly C	lou	dy □W	ind	У	Temp		76	(F°)
		De	pth to	Pu	rge	1	lume			Sp			П				T	
Time	ET		/ater		ite		irged		emp	Con		DO		pH		ORP		Turbidity
	(min)	-	(ft.)	_	min		(L)	-	(°C)	(m	S }	Mg/L		(SU)	- {	mV)	+	(NTU)
1530	ø	2	7.34	~12	5 M		ø		8.26	6.1.		4.03	-	6.84	1	24	1	ø
1535	5	2	7.80					l	7.90	6.4	0	1.54		6.68	1	23		Ø
1540	10	2:	7.91						6.64	6.1	3	1.99		6.64	2	.03		ø
1545	15	2	8.04					1	6.54	6.0	0 0	3.00)	6.54	3	02		ø
1550	20	2	8.20					1	6.01	5,	97	2.7	9	6.54	1 3	38		ø
1555	25	2	8.31						6.11	5.9	4	3.00	,	6.51	4	104		Ø
1600	30	2	8.42						6.20	5.	98	3.55		6.50		152		ø
1605	35	1	8.50					- (6.13	6.	0 [3.69		6.50		184		Ø
1610	40	2	8.71					_	6.17	6.0	2.	3.21	_	6.50		507		Ø
1615	45	2	8.81					1	6.21	6.0	2	3.3	7	6.51		152		ø
For thre	ee (3)			1 1	iired		ctual		/- 3%			+/- 10%		+/10	+/-	10 mV	+,	'- 10% unless
consec				Pu	rge	P	urge		(°C)	+/-3	3%	<0.5mg	/	(SU)			l	<5 NTU
Readi Well	_	ad	1,	ck		l Hadde					_	stable	_				CC	nsider stable
Condition		dition	Funct			Pump	- 1 (Casing	\$\$			Field Bla	nk (Collecte	d		Dupli	cated
				,		•		Casing	PVC	<u> </u>	Tin	ne: r	/A					Ne
	+		-	+	_	+	iltere	d.	-			_		_	Time	e: i-Anr	mal	
64	01	4	☑ Ye.	2	Yes	- 1			<u>/</u>	,	lit Sampl	e 🗆	Yes E	No		,	IMAI	
OK						l No	1	∃ Yes		No	W	ith:						
Sample	Dept	h to					Ter	np.	Sp. C	ond.		DO	р	H (SU)	eH/0	ORP	Tur	bidity NTU)
Time	Wa	ter		DIOT COU			{C	°)	(m	S)	((mg/L)			(m	V)		
1630	28	.99	CLEAR		NoN	E	16.	19	6.0	γ		3.15		6.52	5	38		ø

CCR GROUNDWATER FIELD LOG

Sample	Dept	h to	☐ No Color		□ No Odor	Ten		ond.		DO	pH (SU)	eH/0		Turl	oidity NTU)
			□ Ye		□ Yes		iltered: ∃Yes □	No		lit Sample ith:	□ Yes [□No	Semi	-Ann	ual
Well Condition		ad iition		ioning	Pump	c	asing PVC		Tin	Field Blanl ne:	(Collecte	ed	Colle	cted	cated
Read Well	7	ad a	La	ck	Bladder				_	stable				CO	nsider stable
consec	cutive			Purge			(°C)	+/-3	3%	<0.5mg/l	(SU)				<5 NTU
For the	ee (3)	+		Require	ed Act	ual	+/- 3%			+/- 10%	+/10	+/-:	10 mV	+/	- 10% unless
		-			-								_		
												\perp			
		_				U	1 Cu	` \	_					L	
						0									
	-											\top		\vdash	
630	30 60 28.90			V			16.19	6.6	04	3.15	6.52	- 5	38	+	Ø
1625	55		3.91		_		16.35	6.1		3.05	6.52		34	-	Ø
1620	50		.85	~125 F	.0		16.23	6.0		3,31	6.52	-	27	L	Ø
Time	ET (min)	W	pth to /ater (ft.)	Purge Rate ml/m	Pur	ume ged L)	Temp (°C)	Sp Cor (m	nd.	DO Mg/L	pH (SU)		ORP mV)		Turbidity (NTU)
□ Rain	□ Sleet,	$\overline{}$			_		Clear □Pa	_		dy 🗆 Wir	dy	Temp		_	(F°)
Webste KY		8002	-9 628		rsion fact 7 2"-0.1		391.3 391.11								
Site Loc	ation:	AKGV	VA#	Casing □4"	Diamete □2"	r	Measurin Point (ft.)	_	1 "	iroundwa levation (Well V	ol. (G	al.)	PO#
					33.13				L	<u> </u>				L,	
Site Mar	te Name: Well No. Green LF MW-4		NO.	lotali	Depth (ft.	,	Initial Dep to Water			leight of V Jolumn (ft		Date:		Tim	ie:

CCR GROUNDWATER FIELD LOG

Site Nam	ne:	Well	No.	Total	Depth	(ft.)		al Dep /ater (eight of olumn (f		D	ate:		Tim	ie:
Green	LF	M	N-5		27.48		1	5.21	,,		12.2		6	-22-	23	İ	240
Site Loca	tion:	AKGV	VA#	Casing				suring	ğ		roundwa		V	Vell V	ol. (G	al.)	PO #
Webste KY	r Co,	8002	-9627	24 " Conve 4"-0.6	rsion		4	t (ft.) 390.1 1 89.8	,	E	levation 374,			~ 8	. 22		
□ Rain (: Sleet/	/Freez	ing Rair	n 🗆 Sn	ow 🗆	Fog [Clear	er Pa	rtly C	loud	dy □ Wi	ndy	7	ľemp	7	3	(F°)
Time	ET (min)	De W	pth to /ater (ft.)	Purg Rate ml/m	e	Volume Purged (L)	Te	emp °C)	Sp Con	d.	DO Mg/L	pl (St	ŧ	eH/			Turbidity (NTU)
1210	ø	l:	5.21	a 400	al	ø	14	5.49	5.6	1	8.17	6.9	5		3		Ø
1215	5	1	, , 0 0			/	19	5.68	5.1	68	4,47	6.8	6	1,1	5		Ø
1220	10	14	61				19	. 39	5.4	64	2,03	6.	4	Į L	(2		Ø
1225	15	11	.94	J			1	5.27	5.	64	0.90	1 6.9	9	14	3		ø
1230	20	1:	7.40	~ 320	rel		- (:	5.29	5,	62	0.7	2 6.	54	Į4	12		ø
1235	25	1	8.01				1	5.39	5.	68	0.7	3 6.	46	1	39		ø
1240	30	1	8.22	l l			- 1	5.33	5.	69	0.7	6.	47	1	40	L	Ø
	75	-			4		1					-				L	
		-			+	-91	J ((),	f.	_						-	
For thre	w (a)	+		Requir	od	Actual	0 -/	- 3%		-	+/- 10%	+/	10	1/ 1	0 mV	X	- 10% unless
conseci Readi	utive			Purge		Purge		°C)	+/- 3	3%	<0.5mg/ stable			47- 2	OHIV		<5 NTU nsider stable
Well Condition		Pad Loc dition Function			Blad Pur	np (Casing (□ Tin	Field Blai ne: v	nk Collec	ted			cted	cated N/A
OK	0 K ✓ Yes				r Ye	2S {	iltered □ Yes		No		it Sample th:	:□ Yes	8	No	Semi	-Ann	ual
Sample Time	Dept Wa		to Color Odo			Ter (C	np. :°)	Sp. Co (m		(DO mg/L)	pH (SU)	eH/C (m)		Tur	bidity NTU)
1240	18.	22	CLEAR	. ,	uonE	15	.33	5.6	9		0.7/	6.47		18	10		ø

(2)

Sebree Station 9000 Highway 2096 Robards, KY 42452 www.bigrivers.com

CCR GROUNDWATER FIELD LOG

Site Nar	ne:	Well	No.	Tota	l De	pth (ft.)		Initial				leight of		1	Date:		Tin	ne:
Greei	n LF	MV	V-6		45	5.47		to Wal		(π.)		Column (1 24-0			6/22	2023	ı	145
Site Loc	ation:	AKGV	VA#		ng D	lametei	П	Measu		_		Groundw		7	Vell V	ol. (G	al.)	PO#
Webste		8002	-9626			□2" on fact. 2"-0.1				7-348		366.6			2/6	·/o		_
□ Rain	□ Sleet/	/Freez	ing Rair	n 🗆 S	now	/ 🗇 Fog		Clear 🏻	k a	rtly C	lou	ıdy ⊡ W	ndy		Temp	. 42	2	(F°)
Time	ET (min)	De W	pth to /ater (ft.)	Pu Ra	rge ite min	Volu Purg (L	me ed	Tem (°C	p	Sp Con (m	ı. ıd.	DO Mg/L	Ť	iH SU)	eH/	ORP		Turbidity (NTU)
1045	ø	2	1.44	v 40	o m			18.4	2	3.8	3	2.94		75		22		Ø
1050	5	2	1. 77		,	2		17.4	3	ų,q	12	ø	6.	57	-	8		ø
(0\$5	(o	2	79	≈37	S ni	3.8	75	16=	70	4.9	9	Ø	6	63	1	.6		58
1100	15	2	1.60			5.7	5	16-1	42	4,9	6	0	6.	56	7			Ø
1105	20	2	.76			7.6	25	16.	7 [4			6	53	-			E
1/10	25	2	1.71			9.5		161	5	- 44		-0	le.	60	8	3		100
1115	30	2	1.70			11.3	75	16.	66			_	6	62	_	3		4,2
1(20	35	-	1,7			13.7	5	14.5	$\overline{}$	40			6	56		4		6.3
1125	40	_	1.7			15.1	25	16,4		4.				15		0	L	10,9
1/30	45	2,	47			17.		16.5	\rightarrow	4	5	-		.65	-	7/	_	22.7
For thr consec Read	utive			Requ		Acti Pun		+/- 35 (°C)	- 1	+/-3	3%	+/- 10% <0.5mg/ stable		.10 U)	+/-:	10 mV		- 10% unless <5 NTU nsider stable
Well Condition		Pad Loc Condition Functi				Bladder Pump		asing SS asing PV				Field Blai me:	nk Colle	cted		Colle	cted	cated
oK	OK ☐ Yes					Yes I No	1	Itered: I Yes	¥	No		lit Sample ith:	:□ Ye	s CP	No	Semi		uai
Sample Time	Dept Wat					or	Tem (C°		p. C (m	ond. S)		DO (mg/L)	pH (S	U)	eH/C		Tur	bidity NTU)
1145	21.	70	CLEAR		No	NE	16:	57	4.	92		ø	6.6	0	94			64.2

CCR GROUNDWATER FIELD LOG

Site Nan		Well		Tota		oth (ft.)		Initial De _l to Water			eight of olumn (Date		Tin	ne:
Greet	1 LF	IM	W-6		45	.47										
Site Loca		AKG'	WA# 2-9626	□4″		ameter 2" on fact.		Measurin Point (ft.) -388.1		E	roundw levation		Well	Vol. (G	ial.)	PO #
KY						2"-0.16		388.								
□ Rain	□ Sleet,	/Free:	zing Rair	1 🗆 S	Snow	□ Fog	₀ (Clear ⊡Pa	rtly C	lou	dy □W	indy	Tem	p		(F°)
Time	ET (min)		epth to Vater (ft.)	R	rge ate /min	Volur Purgi (L)	ed	Temp (°C)	Sp Cor (m	rd.	DO Mg/L	pH (SU)		I/ORP (mV)		Turbidity (NTU)
1/35	50	J.	1,7	N 3:	75 ml	[8.8]	75	16.46	40	B	0	6,6	3 '	92	Τ.	29,6
1140	55	12	1.7			20.		AT A C.	49	13	8	6.6	_	92		
1145	60		1.7					16.57	4	72	0		_	14		58.2
1	_															
						/										
)	XV.	rk							
							Ç	0		/						
														_		
For the consecution Read	utive				uired rge	Actu: Purg		+/- 3% (°C)	+/-:	3%	+/- 10% <0.5mg/ stable		+/-	- 10 mV		< 10% onless < 9 miles nsider stable
Well Condition		ad dition	Lo Functi	ck ioninį		lladder Pump	1	sing SS		□ Tin		nk Collecte	d	Colle	Dupli ected	cated
	+		-		+		EH	tered:						Time	e: i-Ann	l
			☐ Yes			Yes			No		it Sample th:	e□Yes [□No	Jaeini	r-AIII	luai
Sample	Dept	h to	□ No Color	_	Odo	No	[em				DO	pH (SU)	Ha	ORP	Tue	bidity NTU)
Time	Wa		~~!~!	_			(C°)		S)	(mg/L)	pr- (00)		nV)	·u!	oracy 141 Or

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

CCR GROUNDWATER FIELD LOG

Site Nar	ne:	Well N	lo.	Total	Depth	(ft.)		ial Dep Vater			leight of Column (1		Date:		Tim	e:
Greei	n LF	MW-	104	1	60.84		1	25.60		1	35.		6-23-	23	(7850
Site Loc	ation:	AKGW	A#	Casing □4"	Diam			asurin nt (ft.)	_		Froundw Elevation	ater	Well V	ol. (Gal	l.)	PO#
Webste KY		8007-1	139	Conve 4"-0.6		act. 0.16		395.1 395.4			369.	8	~5	. 64		,,,,,,,,,,
□ Rain	□ Sleet,	/Freezin	ng Rair	n 🗆 Sn	ow 🗆	Fog 🗆	Clear	r na Pa	rtly C	lou	dy □W	indy	Temp	67		(F")
Time	ET (min)	Wa	th to iter t.)	Purg Rate ml/m	.	/olume Purged (L)	T	emp (°C)	pł (SU		eH/OR (mV)	Sp. P Cond (mS)		urbidity (NTU)	,	DO Mg/L
0830	ø	25	,60	N488	ul	ø		7.04	6.0	ь	146	8.33	1	.8		ø
0835	5	26	.10	1		2.44	1	6.55	6.4	3	50	8.40		7.6		ø
0840	(0	28	,22	4 199	1	3.415	1	6.52	6.5	1	35	8.39		ø		ø
0845	15	29.	3/		_	4,43	ll	49	6.5	Y	33	8.3	7)	ý		Ø
0850	20	29	.50	1	-	5.425	11	6.54	6.5	4	28	8.39	1	1.0		ø
*	_						_									
				_	-		\perp	_								
		-			+	9		(1				_			
		-			+		0			_		-	+			
F= 1, 45	(3)	+		Danuis		A service (+	/- 3%	+/	10	+/- 10	. / 20		4 mat		4 1000
For thr consec Read	cutive			Requir Purge		Actual Purge		(°C)	*/ (SU		mV	+/- 3%		10% unle <5 NTU sider stab		+/- 10% <0.5mg/l stable
Well Condition		ad dition	Lo Functi	ck ioning	Blad Pun	ıp i	Casing Casing	SS PVC				Collected No		Duplic □Yes Time:		i Collected Kio
OK		K	☑ Yes		Ľ Ye □ No	S	Filtere □ Yes	: I	No		ith:	e 🗆 Yes		EYes □No		
Sample Time	Dept Wa		Color	(Odor		mp. C*)	Sp. C (m		(DO (mg/L)	pH (SU)		eH/ORP Turbidit (mV)		
0850	29.	50	CLEAR	. ,	INE	16.	54	8.3	39		ø	6.54	28 /.º			1.0

201 Third Street

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Total	Depth (ft.)		ial Dep Vater			leight of olumn (Date:		Tim	ne:
Green	LF -	TAW	705	-	33,87	t.	101	9.76	• •		2 <i>4. !</i>		6-24-	-23		220
Site Loca	ition:	AKG	NA#	Casing □4"	g Diame			asurin nt (ft.)			iroundw levation		Well	Vol. (G	ial.)	PO #
Webste KY	r Co,	8008-	0/529		rsion fa 7 2"-(ect.		81.7	7		372		~ 3	.86		
□ Rain :	⊐ Sleet,	/Freez	ing Rair	ı □ Sn	ow 🗆 l	Fog 🗹	Clea	ሶሃ r ⊡Pa	rtly C	lou	dy □W	indy	Tem	s8	7	(F°)
Time	ET (min)	v	epth to Vater (ft.)	Purg Rate ml/m	e F	olume urged (L)	т	emp (°C)	pl (SU		eH/OR (mV)	Sp. P Cond (mS)		Furbidi (NTU)		DO Mg/L
1200	p	9	1.76	297	ul	ø	L	20.82			-99	2.3		205		3.14
1205	5	- 11	.24			485	\neg	9.23	6.6	,4	-110			99.6	,	Ø
1210	10	13	1.76	~218	ml 2	.575	-	9.42	6.6	0	-110			56.1		Ø
1215	15	1.	4.10	\vdash		.665		9.49	6		-106	2.3	6	54.2	2	9
1220	50	15	5, 20	4	4	. 755	1	9.45	6.	96	- 0	9 2.3	3	58.4	,	ø
8		-					+					_	+		_	
							1	И	6) ,	1.0	+-	+			
							Q	7		t-	~	-				
																Z
For thre consecu Readi	utive			Require Purge	- 1	Actual Purge		/- 3% (°C)	+/: (SU		+/- 10 mV	+/- 3%		10% un <5 NTU sider st	,	+/- 10% <0.5mg/l stable
Well Condition		ad lition	Lo Functi		Bladd Pum	p {	Casing Casing				Yes 🗜	Collected No		Dupl Ye Time	s E	d Collected
οK	ol	<	☑ Yes		©∕Ye:	•	iltere I Yes		No	Spli	•	Semi-An				
Sample Time	Dept Wat		Color	(Odor	Ten (C	-	Sp. C		(1	DO mg/L)	pH (SU)	eH/ORP Turb			oldity NTU)
220	15.	20	CLEAR	,	VONE	19.	45	2.3	3		ø	6.56	-1	09		58.4

P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

201 Third Street

CCR GROUNDWATER FIELD LOG

Site Nam	ie:	Well	No.	Total	Dep	th (ft.)		Initial Dep			leight of		Date:		Tim	e:
Green	LF	MW	-10 6 S		41.5	1		to Water (22. 7	,	"	olumn (1 18.7		6-24-	23		130
Site Loca	tion:	AKG	WA#		g Dia	meter		Measuring	3	G	iroundw	ater	Well V	ol. (G	al.)	PO #
Webste				□4" Came	1_	⊠ ∕2″		Point (ft.)		E	levation	(ft.)		2 .		
KY	r co,	8008-	0527			n fact. 2"-0.16		387.2	6		364.	5/	ν.	3.0		- Tangara
□ Rain t	⊐ Sleet,	/Freez	ing Rain	ı 🗆 Sr	юw	□ Fog	g/C	Sunwy: lear □Pa	rtly Cl	ouc	dy □W	indy	Temp	8	3	(F°)
			pth to	Pur		Volur						Sp.				
Time	ET (min)		Vater (ft.)	Rat ml/n		Purge (L)	ed	Temp (°C)	pH (SU		eH/OR (mV)	P Cond (mS)	· T	urbidii (NTU)	-	DO Mg/L
1045	ø	_	2.75	N265		ø		21.73	7.1		110	1.42		85.7		2.79
1050	5	2	4.00			1.32	5	17.05	7	13	-134	1.80		18.2		0.18
1055	10	2	14.73			2.65	_	16.64	6.8	0	-91	1.77		13.8		ø
1100	15	:	25.00			3.9	5	16.52	6.8	0	-93	1.7	5	13.0		Ø
1105	20		25.10			5.3		16.13	6 -	19	-91	1.7	Į	8.3		ø
1110	25	<u> </u>	25.30			6.62	5	16.20	6	76	-95	1.6	4	5.8		ø
1115	30	_	25.40			7.93	5	16.18	6.	17	-9(1,5	8	5.6	,	ø
1120	35	\perp	25.40			9.2	75	16.11	6	77	-99	(.5	5	4.4		ø
1125	40		25.45			10.6		16.09	6.	17	- 90		_	4.5	5	ø
1130	45	_	25.50		,	11.92		6.00		77				3.9	_	ø
For thre				Requi	- 1	Actua Purge		+/- 3% (°C)	+/1 (SU		+/- 10 mV	+/- 3%		10% un <5 NTU		+/- 10% <0.5mg/l
Readi	ngs						_		,					ider sta	able	stable
Well Condition		ad lition	Lo Functi			ladder Pump	Cas	sing SS				Collected				d Collected
COMMICTOR	-		3 01100	O.III.18	'	штр	Cas	sing PVC	1	Tin		No		□Ye: Time		Mo
	+		© Yes		177	Yes	Filt	tered:	\dashv			⊇ Yes ∣	Nia.	Semi		ual
OK	0	K	□ No	'	-	No		Yes □	No	-	it sampii th:	e Li Tes i	KI NO	□Ye	s 🗆	No
Sample Time	Dept		Color	T	Odo		emp (C°)			(1	DO mg/L)	pH (SU)	eH/C		Turk	oidity NTU)
1130	25.		CLEAR		NoN	E	16.0				Ø	6.77	-1			3.9

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

GREEN LANDFILL

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Total	Dep	th (ft.)		nitial Dep o Water			eight of olumn (f		Date	:	Tin	ne:
Greer	LF	MW	-10PD		66.	08		26.12	` '		39.	1	6-24	-23	1	000
Site Loca	ition:	AKG\	NA#	Casin □4"	g Dia	meter		leasuring	3		roundwa levation		Well	Vol. (0	Sal.)	PO #
Webste KY		Yucg	-0528			n fact. 2"-0.16		387.8	8		361.3	` .	ν	6.39		
a Rain	□ Sleet,	/Freez	ing Rair	n ⊡ Sı	now	□ Fog	TO CIC	יאין) ear ⊡Pa	rtly C	lou	dy □ Wi	ndy	Tem	ıp	76	(F°)
Time	ET (min)	Įν	pth to Vater (ft.)	Pur Rat ml/r	e	Volun Purge (L)		Temp (°C)	pl (SU		eH/ORF	Sp. Cond (mS)	T	Turbid (NTU	ity	DO Mg/L
0900	ø	2	6.12	-236	nl	ø		18.81	7.1	9	-66	0.68	1	179		3.36
0905	5	2	8.10			1.18		18.96	7.	21	-121	0.72	6	199		0.40
0910	ŧσ	2	8.90			2.76		18.87	7	26	-141	0.72	8	67.	3	ø
0915	15	3	0.88			3.5	,	18.80	7. :	18	- 144	0.77	8	50.	L	ø
6920	20	3	1.80			4.7	2	18.78	7.	19	- 144	0.72	.3	49.	4	ø
0925	25	3	2.43			5.9	o	18.75	7	29	-142	0.69	9	35.	3	ø
0930	30	3	2.77		,	7.0	8	18.79	7	30	-136	0.67	7	39.	2	d
0935	35	3	3.10	~186	Ml	8.0	1	18.82	7.	29	-139	0.67	7	35.	6	ø
0940	40	-	33.38			8,9	_	18.94	7.	17	-12	7 0.65	6	26.	1	ø
0945	45	-3	3.80	- 1		9.8		18.98	_	19	- 12		_	25.		Ø
For thre consec Readi	utive			Requi Pur		Actua Purge	- 1	+/- 3% (°C)	+/: (SU		+/- 10 mV	+/- 3%		- 10% til <5 NTI nsider s	J	+/- 10% <0.5mg/l stable
Well Condition	1	ad dition		ck ioning		ladder Pump		ng SS ng PVC			ld Blank (Yes 🌃 ne:			EY		d Collected INo 30
OK	OK □ No					Yes No	Filte	red: 'es 🛘	No		it Sample th:	∵ Yes (¥ No	Sem	i-Ann ≥s □	ual
Sample Time					Odo	T	emp. (C°)	Sp. Co		(1	DO mg/L)	pH (SU)		/ORP nV)	Tur	oidity NTU)
1000	34	.67	CLEAR		#/oN	E 1	9.04	0.	615		ø	7.26	-1	06		16.7

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.blgrivers.com

CCR GROUNDWATER FIELD LOG

Green		Ant.			·	(ft.)		ial Dep Water			leight of V olumn (ft		Date:	-77	2 5341	e;
	LF	Wh-	1069					26.12					10-21	23		
Site Loca	tion:	AKGV	VA#	Casing □4"	-	neter ∕2″		asurin nt (ft.)	g		iroundwa levation (Well v	ol. (G	al.)	PO #
Webster KY	r Co,	8008	-0528	Conve 4"-0.6						L						
□ Rain :	: Sleet,	/Freez	ing Rair	n ⊜Sn	ow E	Fog	□ Clea	r ⊡Pa	rtly C	lou	dy □ Win	ıdy	Temp			(F°)
Time	ET (min)	De W	pth to /ater (ft.)	Purg Rati ml/m	e 2	Volum Purge (L)	e	Femp (°C)	pl (St	4	eH/ORP (mV)	Sp. Cond (mS)	. т	urbidit (NTU)	•	DO Mg/L
0950	50	33	.95	~186	MQ.	0.8	-	9.01	7.7	9	-112	0.61	}	17.0		ø
0955	55	34	1.25			11, 7	3 1	9.02	7	Lb	7108	0.615		17.3		ø
1000	60	3	4.67	4		12.6		9.04	-	26	-106	0.61		167		ø
		-			+		+			_			+			
					1	_			1							
					_		-	94	لز	٥ر						
_		-			+		+						-	1		
For thre	e (3)	+		Requir	ed	Actua	4	/- 3%	+/	10	+/- 10	+/- 3%	+/-:	10% un	less	+7=42%
consect Readir				Purg	e	Purge		(°C)	(SL	}}	mV			<5 NTU sider sta		<0.5mg/l stable
Well Condition		ad lition		ck ioning		ider mp	Casing	g SS		Fie	ld Blank C	ollected		Dupl	cate	d Collected
Londition	Conc	210021	* Utiliti	iOiniig	, ru	, iii	Casing	PVC	-	Tin	Yes □N ne:	lo		☐Ye: Time		JNo
			☐ Ye	5	□ Y	es	Filtere		No		it Sample	□ Yes [□No	Semi		
	_		□ No		□ N	_				Wi	ith:					
Sample Time	Dept Wa		Color		Odor		emp. C°)	Sp. C		(1	DO mg/L)	pH (SU)	eH/C		Turi	oidity NTU)

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Groundwater Field Log

Site Nan	ne:	Well	No.	Total C	Pepth (f	t.)		al Dep /ater		K.	eight of \	ð	Date:	<i>I</i>	Tim	
Green	LF	M\	N-1		45.53		9].[6			24.3	' e H	11/7/	23	/	555
Site Loca	ition:	AKG	VA#		Diame		1 .	surin	_	1	roundwa	L L	Well V	ol. (G	ial.)	PO#
Webste KY	- 9	8002	-9625	X 4″ Convei 4″-0.67	12′ rsion fa 7 2″-0	ct.		it (ft.) 423.2 42 <i>2.</i> :	3- 50	E	461.3	· ·	~17	7.12		
□Rain	□ Sleet,	/Freez	ing Rair	Snc	ow □ F	og □	Clear	□Pa	rtly C	lou	dy □Wi	ndy	Temp	70	7 5	(F°)
Time	ET (min)	V	pth to /ater (ft.)	Purgo Rate ml/mi	e V	olume urged (L)	Т	emp (°C)	pl (SU	1	eH/ORP (mV)	Sp.	. Т	urbid (NTU	ity	DO Mg/L
1535	ø	2	1.53	150)	ø		.69	6.9		-60	0.556	····	.86		3.03
1540	15	2.	2.10	150	0	7.75	14	,25	6.7	2.	-129	0.56	1 0.	70	>	ø
1545	10		2.46	150		.5	17	.34	6.7	ユ	-/33	0.56	4 0.	64		ø
1550	15	22	1.83	150	2	.25	1-	1.30	6.7	6	-/38	0.564	1 0.	66		ø
1555	20	23	3.06	150	3	3.0	17	: 26	6.7	8	-140	0.56	4 0.	<u>35</u>		,25
		\Rightarrow				<u></u>								···	·	
		+(7					_		······	
	······							<u>/</u>		<u>.</u>		<u> </u>				
								ج کی	<u> </u>							
For thr consec Read	utive			Require Purge		Actual Purge		/- 3% (°C)	+/ (SU		+/- 10 mV	+/- 3%		10% ui <5 NT(sider s	U	+/- 10% <0.5mg/l stable
Well	Р	ad	1	ck	Bladd	er (Casing	SS		Fie	ld Blank (Collected	3			d Collected
Condition	Con	dition	Funct	ioning	Pum	Р	_	PVC	i		Yes 🛭	NO N/A	:	□Y.		NO N/A
OK	01	(¥ Ye: □ No		⊠ Yes □ No	• ,	iltere Yes		No		lit Sample ith:	□ Yes) N (A	⊠ No	1	ni-Ann es 🗆	
Sample Time	Depi Wa	- 1	Color	نسبب	Odor		np. :*)	•	ond. nS)	(DO mg/L)	pH (SU)	eH/((m		Tur	bidity NTU)
1555	23.	06	Clear				26	O.S	64		ø	6.78	-14	10	0	.35

201 Third Street P.O. Box 24 Honderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Groundwater Field Log

Site Nan	ne:	Well	No.	Total [epth (f	t.)	4	al Dep /ater (1	eight of olumn (f		Š	ate: 1 /7 /:	2.3	Tim	e: 5
Greer	ı LF	M	N-2		50.2 7		2	3.1	7		27.1	0	•	77		ı.	70%
Site Loca	ation:	AKGV	VA#		Diame			surin		i i	roundw		W	/ell V	ol. (G	al.)	PO#
Webste KY	- н	8002	-9630	Conve 4″-0.6	⊓2" rsion fa 7 2"-0	ct.		it (ft.) 392.3 391-8	7.	Ei	levation 368.		^	17	.69		
□ Rain	 □ Sleet/	/Freez	ing Rair	ı ⊟ Sno	ow □ F	og 🗆	Clear	□Pa	rtly C	loud	dy □ Wi	indy	Т	emp.	7	0.	<u>{</u> (F°)
Time	ET (mip)	De W	pth to /ater (ft.)	Purge Rate ml/m	e Vo	olume urged (L)	Т	emp (°C)	Sp Con (ms	d.	DO Mg/L	pH (SU		eH/			Turbidity (NTU)
1420	p		5.82	200		p		.53	1.05		1.55		_	-9		1	2.08
1425	5		1.41	260		1	18	.29	1.72	2	0.21	6.4	7	-//	ス		1.43
1430	10		.81	200	>	2	18	.47	1.15	2	0.20	6.4	8	~i	16	3	.56
1435) \$	25	. 28	200)	3	18	.3 2	1.1	<i>I</i>	9.82	6.4	4	-10	9	3	. <i>0</i> ٩
1440	20	25	.71	200)	4	18	1.23	1.1	f	0.56	6.43	3	-1	06	2	گه . ۲
1445	25	···	.21	200		5	18	.47	1.19	4	0.90	6.4	!	-1	06		7.13
1450	30	24	.80	200	-	6	17	.00	1.9	9	0.19	6.41	2	-/	04		1.73
1455	35		1.39	200	<u> </u>	7		.74	1.1		0.05	6.44		<u> </u>	08	→ —	1.56
1500	40	28	29	200)	8	_	.11	1.1		,25	6.46	· ·	-/6	79		3.13
							_	To.	سيدي						. =		
For thr consec Read	cutive			Require Purge		\ctual Purge	1 .	/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg/ stable			+/- 1	£0 mV		- 10% unless <5 NTU nsider stable
Well Condition		ad dition	1	ock Blactioning Pu		р '	Casing Casing		□ X			nk Collect N /A	ed	•		cted	cated N/A
οK	Ol	_	⊠ Ye. □ No		☑ Yes	'	Filtere Yes		No	-	llt Sample ith:	e□Yes N/A		No	Sem	i-Anr	ual
Sample Time	, .	th to ter	Colo	r	Odor		mp. [°]	_	ond. S)	4	DO mg/L)	pH (SU)		eH/C (m)	1	Tur	bldity NTU)
1500		Water 28.29 Clear Nan		anı	16.		1.1		ļ <u>`</u>	ø	6.46		-10		3	3.13	

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Groundwater Field Log

Site Nam	ie:	Well	No.	Total I	Depth (f	ît.)		al Dep Vater (В	leight of olumn (1		Date:	_	Tim	e:
Green	LF	MV	V-3A		41.30		ľ	7.2			ر ا ۱۰2 ر	-	11/8/	23		1010
Site Loca	tion:	AKG\		Casing X 4"	Dlame □2		1	surin ₍ it (ft.)		Ħ	iroundw levation		Well	/ol. (G	al.)	PO#
Webste KY	r Co,	8003	-6430		rsion fa	ct.	_	3 86.4 386. 2	B. PD	L.	367.		~/	4.43		
□ Rain :	⊐ Sleet,	/Freez	ing Rair	n⊟Sn∈	ow 🗆 F	og 🗆	Clear	. □Pa	rtly C	loud	dy j≿∕ W	indy	Temp	s. <u>70</u>	5	(F°)
Time	ET (mip)	De V	pth to Vater (ft.)	Purg Rate ml/m	e V	olume urged (L)	Т	emp (°C)	Sp Con (m:	d.	DO Mg/L	рН	еH	/ORP mV)	T	Turbidity (NTU)
0950	ø		.64	200	3	ø		,47	4.3		4.67			62	0	.84
0955	5	19	,90	200)	1	17	,00	4.3	7	ø	6.54	_	55	0	.50
1000	10	20	1.12	200)	2	16	.70	4.3	9	Ø	6.5	_	43	0	.57
1005	15	20	7.21	201	2	3	16	ا 6.	4.3	39	ø	6.49	<u> </u>	44		.43
1010	20	2	0.29	200)	4_	16	.62	4.3	9	P	6.48	<u> </u>	42	0	,52
							_								ļ	
		+	$\overline{}$				4	-7							ļ	
						(n)	7	S							<u> </u>	
															 	
For three consec	utive			Requir Purg		\ctual Purge		/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg, stable	/I (SU)) +/-	10 mV		- 10% unless <5 NTU nsider stable
Well Condition	_	ad dition	1	ck ioning	Bladd Pum	p '	Casing	SS PVC	2₹ □	☐ Tín		nk Collect	ed	ŧ	cted	ated 1030
OK	OY	<u>, </u>	2X Yes	3	▼ Yes		iltere			Spl	lit Sampl	e □ Yes	XNo		i-Ann	ual
~ ~ ~	Ur		□No		□No	1] Yes	×	No		ith:	NA				
Sample Time	Dept Wa	- 1	Color	•	Odor	Ter (C		Sp. C		1	DO mg/L)	pH (SU)		ORP 1V)	Turl	oidity NTU)
1010				en.	16.6	· · · · · · · · · · · · · · · · · · ·	4.3				6.48	-4		0	.52	

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Groundwater Field Log

ァメノ・デス Green Landfill

Site Nan	ne:	Well	No.	Total [epth	(ft.)		ial Dep		ĸ	eight of		Da	ate:	WOMBERTY	Tim	e:
Green	ıLF	M	W-4		33.13		1	Nater 8.83			olumn (f 4. 3	•	11/	7/2	3	1	025
Site Loca	tion:	AKG\	NA#	Casing				asurin	_	B .	roundwa		W	ell V	ol. (Ga	al.)	PO#
Webste KY		8002	-9628	¼4" Conve 4"-0.6	rsion		R	nt (ft.) - 391.3 -391.1	3—	Ei	ievation ろんみ		,	~ 2	.81	A STREET, STRE	
□ Rain (□ Sleet,	/Freez	ing Rain	□ Sno	ow 🗆	Fog	🗆 Clea	r ⊡Pa	rtly C	ouα	dy □Wi	ndy	Ťı	emp.	71) s	<u>(</u> F°)
Time	ET (min)	V	pth to Vater (ft.)	Purg Rate ml/m		Volum Purge (L)		Гетр (°C)	Sp Con (m)	d.	DO Mg/L	pH (SU		eH/(ORP nV)		Turbidity (NTU)
0930	ø	28	.15	125	;	þ	1	7.68	3.3	39	7.83	6.3	0	8	0		7.44
0935	5	29).0 j	12.	5. (0.62	5 1	7.31	3,4	8	2.64	6.3	8	6	6	4	7.57
0940	10	29	.10	120	2. 1	.,2:	5 /1	192	3.5	ı	1.22	6.4.	0	(8	2	7.54
0945	15	29	.17	125	5 1	. 87		1.06	3.5	ł	0.97	6.4	ţ	2	3	0	.95
9950	AD	24	1.19	129		2.5	<u>' 1</u>	7.16	3.5	0	1.01	6.4	0	4	1	0	. 35
0955	25	29	1.23	125	5 3	.12	5 1	7.27	3.5	2	1.12	_ 6.3	8	6	2	٥	2.68
1000	30	2	1.25	125		3.7		7.36	3.5	0	1.10	6.3	7	ァ	5		1.26
1005	35	20	1.28	125	;	1.37	1	7.48	3.4	9	1.13	6.35	5	8	9	2	2.98
1010	40	26	1.30	125		<u>5.</u>	0 1-	4.56	3.4	9	1.17		0	(0	6	2	. 48
1015	45	29	. 33	125	5.	629	; 1	1.70	7.4	9	1.15		3	11	7	0	.65
For thr consec Read	cutive			Requir Purge	£	Actua Purge		-/- 3% (°C)	+/-3	1%	+/- 10% <0.5mg/ stable			+/- 1	t0 mV		- 10% unless <5 NTU nsider stable
Well Condition	n Con	'ad dition	E	ck ioning	Blac Pui	lder mp	Casin; Casin;		□ 1X 0	□ Tin		nk Collect	ed		Colle	ected	cated N/A
bioni	CA .		 		1./		Filter			·		-			Time Semi	<u> </u>	1.
-OK	0	4	X Yes □ No		X Y₁	i	□ Ye		No		lit Sample ith:	∍□ Yes	K I	Vo		r-mukil	MUI
Sample Time	-	th to iter	Color		Odor	_	emp. (C°)	1 .	Cond. nS)	(DO mg/L)	pH (SU)		eH/C (m)	- 1	Tur	bidity NTU)
1025	e Water		Clea	, N	m		.94	3,4			14	6.32	***************************************	12	Ī	C	.45

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.biguivers.com

Groundwater Field Log

ع کوم Green Landfill

Site Nam		Weil			epth (1	t.)	to V	al Deş /ater	(ft.)	a a	leight of Column (1	ft.)	2	ate:	. 3	Tim	ne: pe:
Green	LF	MV	V-4	,	33.13		28	.83		avertan-ov	4.3	3	"/	'7'		· ·	<i>4-7</i>
Site Loca	tion:	AKGV	VA#		Diame		Mea	surin	 g	(Groundw	ater	W	ell V	ol. (G	al.)	PO#
Webste KY	r Co,	8002-	9628		'22 rsion fa 7 2″-0	ct.		it (ft.) 3 91,3 391.1	3 00	E	levation 362.			~ 2	.81		_
□ Rain :	a Sleet	/Freezi	ing Rair	ı en Spe	:"1 E	na r	ددما) ا	· ⊡Đa	rth/ C	lau	dy □W	indy	T	amn	7	0 s	(F°)
L Main	Joech		oth to	Purge		olume		LIFE	Sp		dy a vv	lisuy		emp.	. <u>L</u>	<u> </u>	
Time	ET	W	/ater	Rate	P	urged	Т.	emp	Con	d.	DO	рН	•		ORP		Turbidity
	(min)		(ft.)	ml/mi		(L)		(°C)	(m:		Mg/L				nV)	+	(NTU)
1020	50	29.	.33	125	6.	25	17	.84	3,4	8	1.16	6.3	4	12	.4	0	.42
1025	55 29.33			125	6.	87:	5 17	.14	3.4	8	1.14	6.3	2	12	7	0	.45
-								•••••••								†	
		1)								+	
		\forall					-1./					······································				+	
		-			-	1	7 6	$Z_{\mathcal{D}}$	_		-					-	
	·····										 					 	
																<u> </u>	
For thr				Require	1	Actual	1 '	/- 3%			+/- 10%		- 1	+/-:	10 mV	+/	'- 10% unless
consec Readi				Purge	• 1	ourge		(°C)	+/-3	3%	<0.5mg/ stable	/I (SU)					<5 NTU
Well	AHITO COLOR	ad	Lo	ck	Bladd	er					nderen sarenne annen		morond	ACTUAL PARTY NATURAL	***************************************	3	nsider stable
Condition	1	dition	ŧ	ioning	Pum	3 1	Casing	SS				nk Collect	ed		1	-	cated
Lid hin	hinge						Casing	PVC	×	1 31	me:	NA			Colle Time		NA
proper		,	L ¥ Yes	3	⊠ Yes		Filtere	d:		Sp	lit Sampl	e 🗆 Yes	K	No	Sem	-Anr	ual
-OK	get OK INO IN					- 1	□ Yes	X	No		ith:		- •				
Sample	mple Depth to Color Odor					Te	mp.		Cond.		DO	pH (SU)		eH/C	•	Tur	bidity NTU)
Time 1025	29.		Clear	Ŋ	one	17,6	") 14		18 18	T	(mg/L) .14	6.32		(m) 12	1	0	.45

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Groundwater Field Log

Site Nan	ie:	Well	No.	Total C	epth (f	t.)	4	al Dep Vater		5	eight of ' olumn (f		Dat		1	me:
Green	LF	MV	V-5	;	27.48		1	5. 2	. ,		12.2	•	1/3	1/23	C	845
Site Loca	tion:	AKGV	VA#	-	Diame			surin		1	roundwa		We	ll Vol.	(Gal.)	PO#
Webste KY	r Co,	8002-	9627	24" Conver 4"-0.67	□2" rsion fa 7 2"-0	ct.	.	it (ft.) 390.1 3 <i>89.</i> 8	8-	Ei	ievation 374.		ر.	7.9('o	ZDANNAMEC CEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
□ Rain □	⊐ Sleet/	Freezi	ing Rain	□Sno	ow ⊡F	og 🗀	Clear	□Pa	rtly C	loud	dy ⊡Wi	ndy	Tei	пр. <u></u>	ر ا ک	(F°)
Time	ET (min)	W	oth to /ater (ft.)	Purge Rate m!/mi	50 E PI	olume urged (L)	Τ	emp (°C)	Sp Con (ms	d.	DO Mg/L	pH (SU)	ε	H/OR (mV)	P	Turbidity (NTU)
2810	\$		15	150		Ø	-	1.69	3.3		1.55			-88		0.94
0815	5	16.	46	0	75	15	.40	.3. ŝ	14	Ø	6.15		-81		0.24	
0820	10	16.	69	150	1.	. 5	15	.57	3.3	7	Ø	6.24		-68		0./7
0825	15	16.	99	15.0	2	,25	/.5	5.76	<i>3</i> . 5	19	Ø	6.27	ļ -	-49		o, 0 6
9830	20	17.	26	150	3	i. o	15	.81	3.4	0	P	6.30	7	-39	,	0.04
0835	25	17.	61	150	3.	75	15	90	3.4	3	p	6.32	2	-30		Ø
0840	30	17.	88	150	ે વ	. 5	15	5.96	3 ;4	3	9	6.3	1	-26		0.01
0845	35	18	.00	150	5.	2	16	.10	3.4	4	4.	6.36		- 21		ø
		 				A.	4	ر العد								
							42	<u> </u>	=		<u></u>					
For thr consec Read	utive			Require Purge		octual Purge	1 '	/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg/ stable	ı		+/- 10 n		+/- 10% unless <5 NTU consider stable
Well Condition	{	ad lition	ŧ	Lock Bla		p '	Casing Casing	SS PVC	□ ×			nk Collect	ed	C	Dup	olicated ed NIA
ρK	94	_	2 Yes □ No		∑ Yes □ No		Filtere Yes		No	-	lit Sample ith:	Yes	EXNO Y	S	emi-Aı	nnual
Sample Time	Dept Wa		Color	· c	Odor	ž .	mp.		Cond.	,	DO mg/L)	pH (SU)	,	H/ORF (mV)) Tı	urbidity NTU)
0845	18.0		Clear			16.		3.4		[ø	6.36		2.(ø

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigilvers.com

مر المجرد Green Landfill

Groundwater Field Log

Site Nan	ne:	Well	No.	Total [epth)	(ft.)		ial Dep		*	leight of		Ħ	ate:		Tim	ie:
Green	ıLF	M	N-6		45.47		ı	Vater 11.7	. ,	C	Column (1 23.7	1	1)	/8/2	23	0	905
Site Loca	etion:	AKG\	NA#	Casing			Me	asurin	g	0	Groundw	ater	W	ell V	ol. (Ga	al.)	PO#
Webste KY		8002	-9626	X 4" Conve 4"-0.6	rsion			nt (ft.) 388.1 388.	7		Elevation 366			~ 15	5.50		_
□Rain	□ Sleet/	Freez	ing Rain	□Sno	>W □	Fog	□ Clea	r ⊡Pa	rtly C	lou	ıdy □W	indy	Ŧ	emp.	70	ς	<u>(</u> F°)
			pth to	Purg		Volun			Sp								
Time	ET (min)		Vater 🗀 (ft.)	Rate ml/m		Purge (L)	:CI]	emp (°C)	Con (ms		DO Mg/L	pH (SU)		eH/(OKP nV)		Turbidity (NTU)
0816	Ø		1.82	200		þ	17	.85	2.6		7.11	6.0		15			2.02
0820	5	21	.82	200		1	15	7.03	2.8	9	1.16	6.18		-2	2		3.35
0825	10	21	.83	200	}	2	16	94	2.9	4	0.31	6.2	5	-	4	3	3.12
9830	15	21	.83	200		3	16	,98	2.9	6	9.08	6.2	7	A	}	۵	ን. ሬ ኝ
9835	20	21	.80	200)	4	17	1.01	2.9	7	p	6.3	0	3	5_	(7.92
0840	25	21	.82	200	<u> </u>	<u> </u>	17	1.08	2.9	8	p	6.31		4	1	1	1.03
0845	30	21.	80	200	,	6	-	7.14	2.9	٩	Ø	4.3	3	5	ļ	٤	.94
0859	35	21.	81	200		7	15	4.18	2.9	9	ø	6.33	3	5	7	.ii). 9 ગ્ર
0855	40	21.	80	200)	8	(5	1.22	2.9	<u>ግ</u>	Ø	6.3	2	6	6	6	,67
0900	45	21.	79	200		٩	17	. 28	2.9	9	ø	6.3	3	7	<u> </u>	/	1.54
For thr consec				Require Purge		Actua Purge	1	-/- 3% (°C)	+/-3	00/	+/- 10% <0.5mg/	1 '	- 1	+/- 1	.0 mV	+/	- 10% unless
Read				Puige		Purge		()	17/-3	370	stable	/I (SU)				co	<5 NTU nsider stable
Well		ad	1	ck	Blac		Casin	g \$\$		X	Field Bla	nk Collect	ed			N. r. n. li	cated
Condition	Conc	ition	Funct	ioning	₽u	np	Casing		x	Tir	me: O	115			Colle	cted	N/A
·							Filtere	vų.							Time Semi	 	
ok	98	L	⊠ Yes □ No	•	DZ(Y₁ □N		☐ Ye		(No		ilit Sampli ith:	e □ Yes ៷/A	X I	VO			
Sample Time	Dept Wa		Color	. (Odor	T	emp. (C°)	1 '	Cond. nS)		DO (mg/L)	pH (SU)		eH/C		Tur	bidity NTU)
9905	21.5	š(Clear	N	ore	17	.37				ø	6.34		75		0	.76

201 Third Street P.O., Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigtivers.com

pg. 2 of 2 Green Landfill

Groundwater Field Log

Site Nan Green		Well M\	No. N-6		Depth (1 45.47	t.)	to V	al Der /ater	(ft.)	н	leight of column (1 23.	ft.)		Date:	23	Tim <i>O</i>	e: 905
Site Loca Webste KY	r Co,	AKG\ 8002	VA# -9626	≱4″ Conve	Diame; Diame; Pion fa D'-C	, ct.	Poir	surin t (ft.) 388.1 388.	- - 68	H	iroundw levation	(ft.)	- Distance has been	Well V	ol. (Ga		PO#
□ Rain (ET	De W	pth to /ater	Purg Rate	e V	olume urged	Т	emp	Sp Con	d.	DO		рН	Temp.	ORP		(F°) Turbidity
9905	(min) 50		(ft.) ∙8 (mi/m 200		(L)		(°C) .37	(m:	·······	Mg/L SS		su) 34	(n ~ 7 -	nV) 5	0	(NTU) ・アム
)										
					n	3	\$	<u> </u>									
	····																
For thr consec	utive			Requir Purge		Actual Purge		/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg/ stable	1 1	'10 SU)	+/-:	10 mV		- 10% unless <5 NTU nsider stable
Well Condition	1	ad dition	į	ock loning	Bladd Pum	p	Casing Casing		o M	,	Field Bla ne: 09		ected	<u> </u>	ŧ.	ected	cated N/A
OK	04		2≰ Yes □ No		¥ Yes □ No	,	Filtere		No	, ,	lit Sampl	e 🗆 Ye	s 🗆	· · · · · · · · · · · · · · · · · · ·	Sem	i-Ann	ual
Sample Time	Wa	th to iter	Color		Odor	(0	mp. [°)	(n	Cond. nS)	(DO mg/L)	рН (eH/0 (m)	v)	·····	oidity NTU)
0905	121.	.81 Clear None 17.37 2.99 \$ 6.34 7					75	5	つ	.76							

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.biggivers.com

Groundwater Field Log

Site Nan	ne:	Well	No.	Total C	epth (f	t.)	1	ial Dep		Н	eight of	Water	Date:		Time:
1000 1000 1000 1000 1000 1000 1000 100							to	Water	(ft.)	C	olumn (f	ft.)	11/7	/23	1125
Green	LF	MW	-104		60.84		2	5.83	,	-	35.	01	,		11/40
Site Loca	ition:	AKGV	VA#	Casing	Diamet	ter		asurin		G	roundwa	ater	Well \	/ol. (G	al.) PO#
			io.	□4 "	x 2"		Poi	nt (ft.)	EB	E	levation	(ft.)		5.71	
Webste	r Co,	8007	-1139		rsion fa			3937			369.	57	~	5.11	
KY		.,		4"-0.67	7 2"-0	.16		396.	70		0011				
□ Rain (ा Sleet,	/Freezi	ing Rair	n ⊡ Snc	ow □F	og e	ı Clea	ır 🗆 Pa	rtly C	loud	dy □W	indy	Temp	o. 74) * (F°)
		De	pth to	Purge	e Vo	olum	е		Sp	•					
Time	ET	,	ater	Rate	3	urgeo	1	Temp	Con		DO	рН		ORP	Turbidity
	(min)		(ft.)	ml/mi		<u>(r)</u>		(°C)	(m:	S)	Mg/L	(SU)		mV)	(NTU)
1105	ø		7.57	250) ,	ø	11	8.52	4.7		7.53	3 6.55	- /	4	4.29
1110	5	28	.50	250	1.	25	1:	7.32	4.8	6	0.21	6.44	/	<u>ء</u>	1.98
1115	10	29	.97	250		٠. 5	,	7.10	나, 8	34	0.02	6.3	9 -	11	1.03
1120	15	30	.64	200	3	3.5]-	7.31	4.8	3	Ø	6.38		13	0.58
1125	20	31	.32	200	4	. 5	1	7.28	4.8	2	9	4.3	5 -	11	1.04
•								1)				······································	
							Z		K						
		-						- Company	111	<u> </u>			_		
						••••				····	<u> </u>				
	(0)	_						. /						40	1 1001
For thr consec				Require Purge		ctual	1.	⊦/- 3% (°C)	+/- 3	30/	+/- 10% <0.5mg/	1	1 -	10 mV	+/- 10% unless <5 NTU
Read		1		ruge	' '	urge		(4)	+/*:) \C	stable	(30)	1		consider stable
Well	***	ad	Lo	ck	Bladd	er					. 		<u> </u>		2010 Mer atable
Condition	1	dition	1	loning	Pum	- 1	Casin	g SS				nk Collect	ed		Duplicated
				-			Casin	g PVC	X	Tin	ne: 🔥	/A		Colle	cted N/A
								····			·····	ſ		Time	: / / /
م لا		4	™ Yes	s l	⋉ Yes		Filter			Spl	lit Sampl	e 🗌 Yes	X No	Sem	-Annual
oK		***	□No		□No		□ Ye	s X	No	•	ith:	NIA			772
Sample	Dep	th to	Color	· T C	Odor	Te	mp.	Sp. C	ond.		DO	pH (SU)	eH/	ORP	Turbidity NTU)
Time	Wa	iter					C°}		nS)	1	mg/L)	·····		nV)	
1125			Clea	N	······		. 28				9	6.35	-1	1	1.04

Groundwater Field Log

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

Site Nam Green		Well I			epth (f 33.87	t.)	to V	al Der Vater	(ft.)		leight of Column (f える。0	t.)	H.	Date:	2 <i>3</i>	Time: 1155
Site Loca		AKGW			Diamet		Mea	surin	g	FI	iroundwa	ater		Well V	ol. (G	al.) PO#
Webste KY	r Co,	8008-	0529	Conver	rsion fa 7 2″-0	ct.		nt (ft.) 381.7		<u> </u>	1evation 370	` '_		~3.	77	
□ Rain a	Sleet/	'Freezi	ng Rain	□ Sno	w of	og [Clear	- □Pa	rtly C	lou	dy ≿ yWi	indy	<u></u>	Temp	70	ر (F°)
Time	ET (min)	W	oth to ater ft.)	Purge Rate ml/mi	Pi	lume urged (L)	। ा	emp (°C)	Sp Con (m:	d.	DO Mg/L		oH SU)	eH/	ORP nV)	Turbidity (NTU)
1105	ø	7	.66	100	—	b		.04	1.6		1.45		40			56.1
Illo	5	13.	65	100	0	٠5	18	.64	1.6	3	ø	6.	40	-1	33	48.7
1115	(0	14.	28	100		1.0	0 19	53	1.6	, <u>}</u>	Ø	6.	38′	-).	38	26.2
1120	15	15.	13	100		٠5	19	.37	1.6	0	Ø	6.	38	-1	41	16.6
1125	20	15.	80	100	2	0	19	.48	1.5	8	Ø	6.	34	-/	45	14.6
1130	25	16.	41	100	a	.5	19	.50	1.5	5	Ø	6.	32	-/4	44	12.9
1135	30	17.	08	100		3,0	19	.66	1.5	4	Ø	6.	27	-1	42	9.87
1140	35	17.	63	100	3	. 5	19	.71	1.5	4	ø	6.	<u> </u>	-13	39	8.40
1145	40		96	100		. 0	19	70	1.5	3	Ø		21	-13	37	7.45
1150	45	18.	54	100		1,5		.02	1.5	2_	9	6.		-13		7.34
For thre consec Readi	utive			Require Purge		ctual 'urge		/- 3% (°C)	+/-3	3%	+/- 10% <0.5mg/ stable	1	10 SU)	+/-:	10 mV	+/- 10% unless <5 NTU consider stable
Well Condition	P;	ad lition	Lo Functi			- I			☐ Field Blank Collect Time: NA			1l 1.		Ouplicated		
Gove	Goor)	A20 Yes □ No	-	Ø Yes □ No		Filtere		No	•	lit Sample ith:	≘ □ Ye		No	 	i-Annual
Sample Time	Dept Wa	- 1	Color	C	dor		mp. C°)	ł ·	Cond.	1	DO (mg/L)	pH (iU)	eH/0 (m		Turbidity NTU)
1155		19.02 Class		r N	one	*******				<u> </u>	p 6.22		۵ ا	-136		6.71

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561

Groundwater Field Log

Site Nam	:	Well I	s San Colombia		epth (ft 33.87	:.}	to W	il Dep ater i	(ft.)	H.	eight of olumn (f 23, 0	t.)	1 -	ate: \/8/:	23	Time:
Site Loca Webste KY		AKGV 8008-	***************************************	□4" Convei	Diamet %2" rsion fac 7 2"-0.	t.	Poin	surin ₍ t (ft.) 3 81.7	_	ı	roundwa levation 370.	(ft.)		/ell Vo		· • • • • • • • • • • • • • • • • • • •
□ Rain_ t	⊐ Sleet	/Freezi	ing Rair	ı □ Snc	w of	og 🖸	Clear	□Pa	rtly C	loue	dy ≫ ≪Vi	ndy	Ţ	emp.	7	0s (F°)
Time	ET (min)	W	pth to : /ater (ft.)	Purgo Rate ml/mi	Pi	lume irged (L)	Te	emp °C)	Sp Con (m.	d.	DO Mg/L	pH (SU		eH/(ORP nV)	Turbidity (NTU)
1155	50	19	.02	100) 5	,0	20	0.06	1.5	1	Ø	6.2	2	-1;	36	6.71
4-)													
	······································						-									HELLING CONTROL OF THE PROPERTY OF THE PROPERT
								yen								
									÷							
			······································													
For thr consec Read	utive			Require Purge	1	ctual urge	1	- 3% °C)	+/-3	3%	+/- 10% <0.5mg/ stable			+/-1	l0 mV	+/- 10% unless <5 NTU consider stable
Well Condition		Pad dition	1	ock tioning	Bladd Pum)	Casing Casing		□ ¤			nk Collect	ted			Duplicated ected NA
Good	G	No □ No			íx Yes □ No		Filtere	iltered: ⊒Yes 🜠			lit Sampl ith:	e □ Yes N / A		No	Sem	i-Annual
Sample Time		th to ater	1	Color C			mp. C°)				DO (mg/L)	pH (SU)	eH/0 (m)		Turbidity NTU)
1155	19.	9 2	Clea	N	low	26	96	1.5	51		ø	6.22		-13	6	6.71

201 Third Street P.O. Box 24 Henderson, KY 42419-9024 270-827-2561 www.bigrivers.com

Groundwater Field Log

Green Landfill

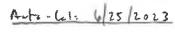
Site Name: Well N		No.	Total (Depth	(ft.)		tial Dep Water		5	eight of ' olumn (f		r	Date:		Time:		
Green LF MW-106S		1065	41.51				23.50			8-01		11/7/	23	1400			
Site Location: AKGWA#		Casing Diameter			M	Measuring			Groundwater			Well V	/ol. (G	ial.) PO#			
			2	4 ″	5	₽"	Point (ft.)			El	evation	(ft.)				2000000	
Webste	r Co,	8008	-0527	Conve			ß				363.	76			.94		
KY				4"-0.6	7 2"	-0.16				<u> </u>				ر ۔۔ ۲	५५		
□ Rain ।	⊐ Sleet,	/Freez	ing Rair	n 🛭 Sne	ow_c	Fog	□ Cle	ar ⊡Pa	irtly C	ouc	dy ⊡Wi	ndy		Temp	. <u>7</u> ,	0 s (F°)	
			pth to	Purg	ı	Volum			Sp								
Time	ET		/ater	Rate	1	Purge	4 T	Temp	Con		DO		рН		ORP		
	(min)		(ft.)	ml/m	·····	(L)	_	(°C)	(ms		Mg/L		(SU)		mV)	(NTU)	
1315	_ p _	25	5.28	200		_7		7.22			3.81	6	77	} -,	149	20.5	
320	5	25	.50	200	>	1		7.66		84	6.40	6	,70) -1	51	10.2	
325	10	25	.50	200		2		8.54			0.77	7 6	.6:	5 -1	50	7.42	
330	15	25	.60	200	>	3	1	8.50	ł		6.97	6	.6		151	6.93	
335	20		.66	20	(د	4		8.50	8,0		243	. (.65		49	7,73	
1340	25	25	.46	200		5		8:44	6.89	4	2.30	6	.67	7 -/	46	9.22	
345	30	25	.98	200		6		7.87	0.80		ø	6	.6	7 -/	48		
1350	35	26	.13	200		7		7.80	6.83		ø	6	.60	1 -1.	<u> ۲</u>	9.08	
1355	40		.18	300		8			0.82				6.69		<u> 53</u>	10.2	
1400	45	26	,,23	200		9		7.75	2.8/5		#	6.6		9 -15		8.51	
For thr consec Read	utive			Required Purge		Actual Purge		+/- 3% (°C)	i i		+/- 10% % <0.5mg/l stable		-/10 (SU)	1		+/- 10% unle: <5 NTU consider stab	
Well	***************************************	ad	Lo	ck	Bla	dder	Cash				Field Blar	nle Co	llast		Τ		
Condition	Con	dition	Funct	ioning	Pu	mp		_	. 1			1		20		Duplicated	
							Casir	ng PVC	X.	Tin	ie. f	V / /	Ť		Coli	ected NA	
04	04	······································	X Ye	s	i≥r′y	'es	Filte			Spl	it Sample	e 🗆 Y	es j	X No	Sem	ni-Annual	
V 4-			□No		□N	□No		□ Yes 💢		Wi	With:		v IA	!			
Sample Time		epth to Colo		r Odor					Cond. nS)		DO pH (s		(SU)	1 .	ORP (V)	Turbidity NT	
1400		.23	Clear	N	None 17		.75 0.8			·	9	6.69		-15			

Note: Fluctuations of DO caused by love compression and pulling air in line Nort tightened at 1343.

DO See below

1230

1240


201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.biggivers.com

Groundwater Field Log

Green Landfill

Sit	te Nan	ne:	Wel	No.	Total	Depth	(ft.)	¥	al Dep		ı,	eight of		Date	2:	Time:
	Green	LF	MW	-106D		66.08			Vater (olumn (f 39. 6		11/7	1/23	1305
Sit	te Loca	ition:	AKG	WA#	Casing				surin	-	Н	roundwa		Well	l Vol. (G	al.) PO#
• • • • • • • • • • • • • • • • • • •	/ebste KY	· Yi	8008	3-0528	□4" Conve 4"-0.6		•	5	nt (ft.) 387. 8		E	evation 361.		۸	6.47	L —
	Rain	-ı Sieet	/Free	zing Rair	n ¬ Sn	OM/ []	Fog 7	Class	· rPa	rtly C	loue	dy a Wi	indy	Ton	_{np.} 70	7 s (F°)
/	INGIRE	Joice		epth to	Pur		Volume	·		Sp	***	Jy C VV	iliuy T	7	π <u>-</u>	T. T.
T	lme	ET		Nater	Rat	,	Purged	- 1	emp	Con		DO	pН	e	H/ORP	Turbidity
^ل / 2	30	(min)		(ft.)	ml/m		(L)		(°C)	(m	•	Mg/L	(SU)	\neg	(mV)	(NTU)
	20	9	2	8.53	200		ø	2	1.59	O.Y	80	1.45	6.8	o <i>-</i>	176	11.7
4.00	23	5	2.4	1,44	200)	1	18	1.63	0.5	11	7.24	7.15	- -	-215	3.57
+2	35	10	31	77	300	,	2	17.	97	, 51	7	6.63	7.18	5 .	710	1.95
12	45				20	0	3	17.	59	,44	3	5.99	7.11	1 -	900	1.07
12	50	50 20 34.7			200)	4	17	.69	0.4		5.64		2 -	170	1.78
12	55	25	36	6	201)	S	17	.58	0.4	43	3/02	7.11	2 -	158	0.57
13	00	30	3	7.46	200	,	6	1		0.43		ø	7.0	7 -	154	1-16
13	305	35	38	7 6	20)	7	17	,45	0.4.	30	ø	7.0	7.	151	0.29
									7 -							
								120	-£	2-						
	For thr consec Read	utive			Requir Purg	- 1	Actual Purge		/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg/ stable	1	- 1	-/- 10 mV	+/- 10% unless <5 NTU consider stable
9	Readings Well Pad Lock Condition Condition Functionin				Blad Put	np	Casing Casing		□ Dx/	□ Tin	001	nk Coilect J /A	ed	f	Duplicated	
OK OK I				Da. Ye	es	Filtere		No		it Sample th:	e □ Yes N/A	⊠ No		i-Annual		
	Sample Depth to Col					Odor	,	mp. C°)	Sp. C	Cond. IS)	(1	DO mg/L)	pH (SU)		H/ORP (mV)	Turbidity NTU)
	Time Water 1305 38.74 Clua			, ,	jan	17.	····	9.43	***************************************		P	7.07	اسما	58	0.29	

APPENDIX B - GREEN SURFACE IMPOUNDMENT FIELD SAMPLING FORMS

DO: 8.29 mg/L

201 Third Street P.O. Box 24 Henderson, KY 42419-0024 270-827-2561 www.bigrivers.com

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Total	Dept	h (ft.)		nitial Dep			leight of		Date:		Tim	ie:
GREEN F	חאח	M	V-11		49.	Q	t	o Water	ft.)	C	olumn (· '	6/25/	2613	١,	0755
Oltanit i	UITO		* ***		750		┸	22.40		┖	27	.5	El i	2000		100
Site Loca	ation:	AKG\	₩A#	,		meter		/leasurin _[3		roundw		Well V	ol. (G	al.)	PO #
	_			□4″		rd2"	P	oint (ft.)		E	levation	(ft.)				
Webste KY		8006	-3938	4″-0.6		n fact. 2"-0.16		401.3	Ž	1	378	1.92	5	1.4		*****
RI				4 ~0.0	, 2	0.10				_					_	
□ Rain	□ Sleet,	/Freez	ing Rair	n 🗆 Sn	ow	□ Fog	□ Cl	ear 🗗	rtly C	lou	dy □W	indy	Temp	. 75		(F°)
			pth to	Purg		Volun	- 1					Sp.				
Time	ET		Vater	Rate	_	Purge	d	Temp	pH		eH/OR			urbidi	-	DO
	(min)	+	(ft.)	ml/m		(L)	-	(°C)	(SU		(mV)	(mS)	_	(NTU)		Mg/L
0725	ý	2	2.40	~164	ml	ø	_	19.50	5.6	5	225	7.82	4	Ø		2.9/
0730	5	2	2.70			0.8	2	18.88	6.1	5	215	7.80		0		2.06
0735	10	2:	2.82			1.6	4	18.02	6.6	5	104	6.52		Ø		0.48
0740	15 22.85					2.4	6	17.63	6-8	5	-41	5.71		d		Ø
0745	20					3.2	-g	17.54	6.8	86	-50	5.65	-	Ø		6
0750	25	2	2.87			4.1	0	17.52	6.8	37	57	5.61		ø		ø
0755	30	2	2.85	1		4.9	2	17.49	6.5	67	-59	5.61		Ø		ø
-					-	_	_									
							94	4 C	st.			-				
								, –								
For thre	ee (3)			Requir	ed	Actua	1	+/- 3%	+/:		+/- 10	+/- 3%	+/-:	10% មក	less	+/- 10%
consec				Purg	5	Purge	•	(°C)	(SU)	mV			<5 NTU		<0.5mg/l
Readi Well	_	ad	I I o	ck	Bla	adder	_			Fie	ld Blank	Collected	Cons	ider st		stable d Collected
Condition		ition	Funct			ump	Casi	ing SS				No				No
							Cas	ing PVC	z	Tim		HAD		□Ye Time		OFIE
					/-	Ýes	Filte	ered:	\neg	_			-/s.	Semi		ual
OK	OK DY								No	-	it Sampli th:	e 🗆 Yes 🏻	A NO	ØΥe		
						_				VV:						
Sample	Dept		Color	1	Odor		emp.			1.	DO ma(I)	pH (SU)	eH/C		Turl	bidity NTU)
Time	Wa	rei		+			(C°)	(m)	- (1	mg/L)		(m)	v)		-
0755	22	.85	CLEAT	2 P	MAR	- 1	7.40)	5.61		Ø	6.87	- 50	7		Ø
	-												*	_		

CCR GROUNDWATER FIELD LOG CINS GREEN ASH POND

Site Nar	ne:	Well	No.	Total	Dept	th (ft.)		nitial Dep			leight of		T	Date:		Tim	ne:
GREEN	POND	M	N-12		72.	0	,	28.2		1	olumn (; 43.8	•	1	5-25-	23		1120
Site Loc	ation:	AKG ¹	WA#	Casin □4"	g Dia	meter		Measuring Point (ft.)	_		Froundw Tevation		Ť	Well V	ol. (G	ial.)	PO#
Webste KY		8006	5-3939			n fact. 2"-0.16		395.54	4		367.	34		7.0)		41 7 - 1 7
□ Rain	□ Sleet,	/Freez	zing Rair	n⊟Sr	ow	□ Fog	o Cl	ear 🗷 a	rtly Cl	lou	dy □W	indy		Temp	_ 9	(4	(F°)
Time	ET (min)	V	epth to Vater (ft.)	Puri Rat ml/n	e	Volum Purge (L)	- 1	Temp (°C)	Sp. Con- (mS	đ.	DO Mg/L	pł (SU			ORP nV)		Turbidity (NTU)
1045	g	1	18.10	N200	ml	Ø		33.60	1.0	2	4,03	6.9	ÿ	97	8		Ø
1050	5 30,70					1		29.42	0.	2	7.45	7.1	0	9	4		ø
1055				\sqcup	_	2		25.60	0.97	20	5.5	2 6.9	8	- 0	14		ø
1100	15 31.00				3		23.57	0.9	17	ø	6.9	3	-1	03		ø	
1105	20		31.85		_	4		23.37	0.9	18	ø	6.9	0	-	10%		ø
1110	25	1	32.25	1	_	5	_	21.50	0.9	116	ø	6.9	2	-1	07		d
1115	30	3	32.64		_	6	4	21.57	0. 0	9	ø	6.9	0	-	08		ø
1120	35	3	3.10	\	4	7	4	21.55	0,9	9	ø	6.0	0	-	F07		ø
`					+	-	troy	Du	t	_						H	
For three consec	utive			Requir Purg		Actual Purge	- 1	+/- 3% (°C)	+/- 39	%	+/- 10% <0.5mg/ stable			+/- 1	0 mV		10 % In 35 <5 NTU asider stable
Well Condition	Pa Cond		Lo Functi		1	ump		ing SS [7	Tim	Field Blar ne:	nk Collect	ed		Colle	Ouplic cted	ated
ок	OK ON ONO NO Split Sample Ores Yes No With:					Ø	No	Semi		ıal							
					eH/O		Turb	idity NTU)									
1120	33	./0	CLEMI	2 N	ONE		1-55			4	d	6.90		-10		0	/

CCR GROUNDWATER FIELD LOG

Site Nar	ne:	Well	No.	Total	Dept	th (ft.)		nitial Dep			leight of		Date:		Time:
GREEN	POND	MV	V-13		51.	.5	100	o Water (22. 20	, .	1	Column (f 2 <i>9</i> ,3	,	6-2	5-23	0930
Site Loc	ation:	AKG	VA#			meter		1easurin ₍	3		Groundwa		Well V	ol. (G	al.) PO#
Webste K)		8006	-3940		ersio	№2 " n fact. 2"-0.16	P	oint (ft.) 394.6 6	0		Slevation 372		4	4.69	4446
□ Rain	□ Sleet	/Freez	ing Rair	n ⊡Sn	ow	□ Fog	□ Cle	ear 🗗 a	rtlv C	lou	dγ □ Wi	indv	Temp	8	(F°)
Time	ET (min)	De V	pth to Vater (ft.)	Purg Rat ml/m	ge e	Volum Purge (L)	e	Temp (°C)	Sp Con	ı. ıd.	DO Mg/L	pH (SU)	eH/	ORP	Turbidity (NTU)
0410	ø	2	2.20	~220	nd	ý		21.97	1.2	ı	4.31	7.01	1	ol	Ø
0415	5	2	.3.35	İ		1.1		21.49	1.1	7	3.45	6.78	1	08	Ø
0910	10	2	4.00			2.2		21.74	1.1		2.89	6.7) [(2.	Ø
6925	15	2	4.32			3.3		21.71	1.1	7	2.85	6 1	14	ø	
0930	20	2	4.70	1		4.4		21.70	1.	17 2.85 6.6 16 2.81 6.6			16	ø	
			_		1		+			_			+		
							M	Out	0 _						
							9					_			
														_	
For the consec Read	cutive			Requir Purg	- 1	Actua Purge	- 1	+/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg/ stable		+/-:	10 mV	+/- 10% mb ss <5 NTU consider stable
Well Condition	P	ad dition		ock ioning		adder 'ump		•	<u> </u>	stable (SU) Stable (SU) Field Blank Collect Time: PA		ed .		Ouplicated	
ok	0	K	Yes			Yes	Filte	ered: 'es 🖭	Νο	Split Sample ☐ Yes ☑ Yes With:			No		-Annual
Sample Time	Dept		□ No Color		Odor	T	emp. (C°)	Sp. Co		nd. DO pH (SU) eH/ORP Tu			Turbidity NTU)		
0930		,70	CLEAR		IONE		1.70				2.81	6.65	116		Ø

2 DUPE@ 0900

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Tota	Dep	oth (ft.)		Initial Dep			leight of		Da	ate:		Tim	e:
GREEN	POND	MW	V-14		49	9.6		to Water	, ,	1	Column (1 23 -		6	- 25	- 23	0	845
Site Loca	ation:	AKGV	VA#	Casir □4"	ıg Di	iameter		Measurin Point (ft.)	-		Froundw levation		W	'ell V	ol. (G	al.)	PO#
Webste KY	1 1	8006	-3941			on fact. 2"-0.1		390.7	1		364.	.11	L	3,	68		w**
□ Rain	□ Sleet,	/Freez	ing Rair	ı 🗆 S	now	□ Fog		Clear 🗫 a	rtly C	lou	dγ □ W	indy	T	emp.	_7	8	(F°)
Time	ET (min)	M	pth to /ater (ft.)	Pur Ra ml/i	te	Volu Purg (L	ed	Temp (°C)	Sp Con (m)	d.	DO Mg/L	pH (SU	- 1	eH/(ORP nV}		Turbidity (NTU)
0825	ø	26	60	~25	N	ø		19.56	1.6	7	1.83	7.5	2	٠ {	83		Ø
0830	5	27	1.10			1,2	5	19.06	1.6	3	0.30	7.0	9	- 7	46		ø
0835	į0	27	1.21			2.5	0	18.82	1.6	.2	×	1.			63	L	Ø
0840	15	2.7	7.21			3,7	5	18.80	1.0	62	Ø	13	-1	62	L	Ø	
0845	20	27	7.24		_	5.0	0	18.90		63	ø	6.6	9	-	60	H	Ø
					_		<u></u>	0									
		+					Ü	my Ci	ing.	_			+		_	⊢	
		+															
For thr consec Read	utive			Requ Pur		Actu Purg		+/- 3% (°C)	+/- 3	3%	+/- 10% <0.5mg, stable		- 1	+/- 1	Vm 0.		- 10% b
Well Condition		ad lition	Lo Funct	ck ioning		Bladder Pump	1						ed		Colle Time	Duplicted	cated 0900
OK	Oł	<	☑ Yes			Yes No		ltered: IYes ⊠	No	Split Sample □ Yes ☑ N With:			Semi				
Sample Time	Dept Wa		Color		Odo	3f	Tem (C°							eH/O (m\		Tur	oidity NTU)
0845	27.	LY	CLEAI	2	HoH	E	18.9	lo 1.0	3		ø	6.69		-60	0		ø

CCR GROUNDWATER FIELD LOG

Site Name: Well No. Total Depth (ft.) Initial Depth Height of Water to Water (ft.) Column (ft.) GREEN POND MW-11 49.9 27.43 22.47										12	_		Date:		Tim	
GREEN P	OND	MW	/-11		49.9)	22.4	· .	11/6/	1.3.	/6	615
Site Loca	tion:	AKGV	VA#	Casing	Diame	ter	Mea	surin	g	G	roundw	ater	Well V	ol. (Ga	al.)	PO #
				□4 "	⊟2″	'	Poin	t (ft.)		E	levation	(ft.)			Ì	
Webster	·Co,	8006	-3938		rsion fa	ct.		401.3	2		373	89	~ 3	.67	1	
KY				4"-0.6	7 2"-0	.16						- F				
□ Rain □	Sleet,					*************		□Pa	rtly C	lou	dy XW	indy	Temp	70	ک(<u>(</u> F°)
			pth to	Purge		olume						Sp.		* N. P.		
Time	ET		/ater	Rate	1 1	urged		emp	pł		eH/OR		4	urbidit		DO
	(mip)		(ft.)	ml/mi	0	<u>(L)</u>	1,	°C)	(St		(mV)	(mS)		(NTU)		Mg/L
1550	2		7.81	20		<u> </u>	 -	.03	 		-41	3.3		84		2.49
1555	_5_	2-	7.80	\$5	0 0.	75	18	.58	7.1	D&	-61	3.60	1 0	.88		0.69
					-73	3.96	, 0	. 33	•	Ø						
1605 15 27.81 150 2.25 18.19 6.85 -81 1					4.14	0	. 17		2							
1610	20	27	.83	150	3	۵,	18	17	6.8	<u>_</u>	-83	4.19	0.	34		Ø
1615	25	27	.81	150	3.	75	18	.04	6.8	· <u>)</u>	-85	4.2	3 2	.28		ø
		\bot					7									
						//	2									
						ne	a			<u></u>						
														,		
For thre				Require		ctual	1 '	- 3%	+/		+/- 10	+/- 39		10% un	_	+/- 10%
consect				Purge	:	urge	'	(°C)	(SL	1)	mV		, , , , , , , , , , , , , , , , , , ,	<5 NTU		<0.5mg/l
Read! Well		ad	l o	ck	Bladd	er				Fie	ld Blank	Collected	con	sider st		stable d Collected
Condition	1	dition	1	ioning	Pum	1 (Casing	S\$]		
Condition Functioning Pump Casing PVC STime: NA					□Ye Time		N/A									
OK OK					Sem	i-Ann	ual									
OK OK ON ONO ONO OYES NO With:				□Ye	s [No										
Sample Depth to Color Odor Temp. Sp. Cond. DO pH (SU) eH/ORP				ORP	Tur	bidity NTU)										
Time Water (C°) (ms) (mg/L) (mV)						-										
				6.81	-8	5	0	. 28								

Pg. 1.f2

CCR GROUNDWATER FIELD LOG

											1V=					
Site Nam				Total [epth (1	t.)	3	al Dep		\$	eight of	1	Date:		Tim	e:
CDEEN D	CNS	B 414			72. 0		1	/ater		Co	olumn (f		11/6/	23	t.	5 2.5
GREEN P	עאט	IVIV	V-12		72.0		31	. 2	{		40.7	7	77			
Site Loca	tion:	AKGV	VA#	_	Diame		3	surin	_	ų.	roundw	1	Well	ol. (Ga	al.)	PO#
				□4 "	*		1	t (ft.)		E	evation	(ft.)	,	/	.	
Webster KY	r Co,	8006	-3939	4"-0.6	rsioń fa 7 – 2"-C			395.5	4		364	33	~ (67	r	
N)	<u>.</u>	····· .	····	4 50.0	<u> </u>	.10	<u> </u>	· ·	,,	<u> </u>			········	/		······································
🗆 Rain 🗈	: Sleet/	/Freez	ing Rair	□ Sno	w □F	og (Clear	□Pa	rtly C	louc	dγ γ (W.	indy	Temp	70	15	(F°)
			pth to	Purg		olum			Sp							
Time	ET (min)		/ater (ft.)	Rate ml/m		urged (L)		emp (°C)	Con (m:		DO Mg/L	pH (SU)	1	/ORP □ mV)		Turbidity (NTU)
1425	Ø		3.28	200		<u>、、</u> ナ		.46	0.6		6.36			36	1	5.5
1430	3		1.49	20		*		1.73	ļ		5.05		 }	18	-1	6.8
1435	10		.45	200		3-	17	:37	Ļ <u> </u>		 -			55		8.07
1440	15	38	.63	200) 3	4		.51	0.6					17	-	3.05
1445	20		.02	200	4	4/1	0 17	.36	0.6	21	1.46			24	5	1.82
1450	25	4/2	.98	200		*		1,20	0.62	26	1.70			0	1	.30
1455	30	45	.19	Jeo.	6	7	13	118	0.62	4	1.70	6.94	, (1	6	1.96
1500	35	47	.50	200		B	17	.15	0.63		2.25	7.93	. 1	8	1	.67
1505	40	49	57	200	8	4	13	1.18	2.61	8	2.76	770	3	9	9	. <i>5</i> 9
1510	45	52.	24	200	9	10	17	.05	0.6	12	3.73	3 7/1		4	0	.65
For thre				Requir	1	\ctual	1 .	<i>l</i> - 3%			+/- 10%	1) +/-	10 mV	+/	- 10% unless
consect Readi				Purge		ourge		(°C)	+/- 3	3%	<0.5mg/ stable	(SU)			-	<5 NTU nslder stable
Well		ad	Lo	ck	Bladd	er				~			<u>L.</u>	T	1	Haidel Stable
Condition	\$	dition	1	ioning	Pum	1	Casing					nk Collect	2 0	4 .		cated
							Casing	PVC	χ(1117	ne: 15	クラ		Colle	cted	NA
······································							Filtere	d:						Sem		utal
ok	DK	•	X Ye	S	XX Yes	,]	☐ Yes		No	-	-	e □ Yes '	X No			
, , , , , , , , , , , , , , , , , , , 			□No		□No		F1 1C3		l	WI	th:	22			······································	
Sample Time	Dept Wa	ž.	Colo		Odor	•	emp. (C°)	1	Cond. nS)	(1	DO mg/L)	pH (SU)	•	ORP IV)	Tur	bidity NTU)
1525	54.		Clear	N	one.		,47	0.6			.27	7.33	····		0	.65
						<u></u>		l	S-FEED-WAY				<u> </u>		×	

Pg. 2 of 2

CCR GROUNDWATER FIELD LOG

Site Nan	ne:	Well	No.	Total D	epth (f	to Water (ft.) Column (ft.) 116/23 1525												
GREEN	POND	MW	/-12		72.0		8	1.2	, ,	**************************************	40.	-		11	(6/2	,	152	5
Site Loca	ation:	AKGV	VA#	Casing □4"	Dlame x⁄ 2′			suring t (ft.)	3	Æ	roundwa evation		- 1	W	ell Vol	l. (Ga	al.) PO#	
Webste KY	- 1	8006	-3939	Conver 4"-0.67				395.5	4	Approximation of	364	3	3		~6.1	67	T. WASHINGTON OF THE PARTY OF T	
□ Rain	□ Sleet	/Freez	ing Rair	n ⊡ Sno	w pF	og 🗆	Clear	□Pa	rtly C	loud	ty Xwi	ind	<u>y</u>	Te	emp	70) s <u>(</u> F°)
Time	ET (min)	W	pth to later (ft.)	Purge Rate ml/mi	Р	olume urged (L)	Te	emp °C)	Sp Con (m:	d.	DO Mg/L		pH (SU)		eH/O (m)		Turbic	-
1515	50		.39	290	10 -		1	7.38	0.6		3.89		7.27	F	59		0.59	
1520	55	54.	21	200	11 -	12/	G 18	.34	0.6	09	4.12		7.33	3	57	ı	0.48	/
1525	60	54.	92	200	12-	-36	18	.47	0.6	09 4.27 7.33				3	61		0.65	
		\Rightarrow				····							_					
		$+\!(-$			_		\downarrow	7		,				\dashv	 ,			
		+					6		>	<u></u>				\dashv		**************************************		
					-				,,,,					4				
														1				
For the consec Read	cutive	-		Require Purge		Actual Purge		'- 3% (°C)	÷/-3	3%	+/- 10% <0.5mg/ stable	- 1	+/10 (SU)		+/- 10	mV	+/- 10% i <5 N° consider	ľU
Well Condition	F	Pad dition		ock ioning	Bladd Pum	р '	Casing Casing	-	o de la companya de l					-		Ouplicated		
οK	01	4	A⊠ Yes	i	⊠ Yes		Filtere ☐ Yes		Split Sample Yes No Semi-Annu No With:				-Annual					
Sample Time		th to	Colo	r C	Odor		mp. C°)		1 1 1 1 1				Turbidity	NTU)				
1525		92	(أومها	· N	سعد		.47		ns) (mg/L) (mV) 09 4.27 7.33 (1 0.65									

CCR GROUNDWATER FIELD LOG

Site Nan		Well MW	No. /-13		epth (f 51.5	t.)	to V	al Dep Vater I	(ft.)	C	eight of olumn (f 28.5	t.)	Date	: /23	Tím	e: 230
Site Loca	ition:	AKGV	A	Casing □4"	Diame		ā .	surin _i nt (ft.)	9	B.	roundwa levation			Vol. (G		PO#
Webste KY		8006	3940	4"-0.67		.16		394.6			373		~	, 4.6°	>	
□ Rain	□ Sleet/	Freez/	ing Rain	□ Snc	ow of	og 🗆	Clear	- □Pa	rtly C	3%	10%. dy ≥ Wi	ndy .S	Tem	10. 71) s	(F°)
Time	ET (min)	W	pth to /ater (ft.)	Purge Rate ml/mi	P	olume urged (L)	া	3 /. emp (°C)	Sp Con (m:	d.	DO Mg/L	± ₽. I pH (SU)	el	IO I/ORP (mV)	10	ス・・・くぐ Turbidity (NTU)
1205	Ø		.36	200		ø		7.29					9	23		1.1)
1210	5	32	.66	200		1_		92	9.7	81	2.98			4	1	7.70
1215				200	<u> </u>	2		.48	0.8		#	6.6		3		.as
1220				200	·	3		5.38				6.5	2 -	12	1/	.83
1225	225 20 35:4			200		4		.33	_	·····	+	6.5%	<u> </u>	14		1.50
1230	25	32	. 29	200		5	18	1.34	0.84	13	ø	6.58	<u> </u>	18		1.29
	\rightarrow	ļ					\perp	7	2							
		-					601	<u>D</u>	2_							
										······	<u> </u>				-	
	(0)				<u> </u>						. (4004		_	1 40 14	 	
For thr consec Read	utive			Require Purge	1	octual Purge		/- 3% (°C)	+/-3	3%	+/- 10% <0.5mg/ stable		3 '	/- 10 mV		'- 10% unless <5 NTU nsider stable
Well Condition	1	ad dition	Lo Functi	··· 1	Bladd Pum	p	Casing Casing		□ >	Tin		nk Collect	ed	1	Dupli ected	cated
04	014	_	127 Yes □ No		2X Yes □ No	·	Filtere Yes		No		lit Sample ith:	•□ Yes	X No	Sem	i-Anr	ıual
Sample Time	- 1 -		Color	. ()dør	t	mp.	Sp. C	iond.	[[DO mg/L)	pH (SU)	1	/ORP mV)	Tur	bidity NTU)
		.29	Clear	N	ore	18.		0.8		<u> </u>	ø	6.58		18	/	・

CCR GROUNDWATER FIELD LOG

Site Nam		Well i		Total D	Pepth (f	t.)		al Dep ater		Height of Column (Date:		Tim	e: 330
GREEN P	OND	MW	-14		49.6		27	1.72	2.	21.8	8	11/4/	2)	' -	<i>,</i> -
Site Loca	tion:	AKGW	/A#	_	Diamet		Mea	surinį	g B	Groundw		Well V	ol. (G	al.)	PO#
141-5		0000	2044	□4"	≅ (2"		•	t (ft.)		Elevation		3 <i>پ</i>	57	VONESCOOL	
Webste KY	rto,	8006-	3941	4"-0.67	rsion fa 7 2"-0		1 -	390.7	ı.	362.	.44	.,,,,,,		was the	
*************************************	ft.	·					<u>k</u>			1		I		l	
□ Rain o	∃ Sleet/		***************************************			TAXABLE PROPERTY.		□Pa		loudy x ∕W	'indy	Temp) <u>s</u>	(F°)
Time	ET	W	oth to ater	Purge Rate	Pu	olume urged		mp	Sp Con	1.0	рH	eH/	ORP		Turbidity
	(min)		ft.)	ml/mi		<u>(L) :</u>		°C)	(ms				nV) ″. C		(NTU)
1305	#		1.72	200		<i>p</i>		.08	0.95			<u>' </u>	80	1	. 23
1310	5	78	.37	200	·	1	18	.83	1.0		7 6.72	٦ - 6	5	1	. / 7
1315	10	28	.48	200		2	18.	60	1.0	1 8.91	6.7	7 -6	0	-0	.79 8.3
1320				200		3	18	51	1.0	2 8.09	6.71	0 -5	19	0	08
1325	5 20 28.78		.78	200		4	18	.45	1.0	1 7.50			7	0	241
1330	25	28.	93	200		5	18	.47	1.0	1 8.05	6.7	2 -5	6	0	7,93
) 		4		2						┦	
		<u> </u>						Di						ļ	
													==:::		
For thre consec				Require Purge	I	ctual Purge	1	- 3% °C)	+/- 3	+/- 109 <0.5mg			10 mV	 */	- 10% unless <5 NTU
Readi								-,	,	stable			e	co	nsider stable
Well Condition	3	ad Iitian	Lo	1	Bladd Pum	- 1	Casing	SS		☐ Field Bla	nk Collect	ed	囱	Duplic	ated
Condition	3			oung	rum		Casing	PVC	X	Time: N	A		Colle	ected	345
	OV M			;	™ Yes		Filtered	i;		Split Sampi	e 🗌 Yes	ĎK No	Sem	i-Ann	ual
oK	C OK D				□No	í	□ Yes	×	No	With:					A COLOR
Sample	nple Depth to Col				Odor		mp.	Sp. C		DO	pH (SU)			Turl	oldity NTU)
1330	e Water				امد		²⁹⁾ 47	(n) 	(mg/L) 8,05	6.70	(m 5(0.	93

Monitoring Well Construction Progress Report

Big Rivers Electric Corporation

Sebree Station Green Landfill Agency Interest No. 4169 Project No. 156465

6/9/2023

Monitoring Well Construction Progress Report

prepared for

Big Rivers Electric Corporation
Sebree Station
Green Landfill
Sebree, Kentucky

Agency Interest No. 4169 Project No. 156465

6/9/2023

prepared by

Burns & McDonnell Kansas City, Missouri

TABLE OF CONTENTS

				<u>Page No.</u>
1.0	INTF	ODUCTION	\	1-1
	1.1			
	1.2	-	line	
2.0	SITE	BACKGRO	OUND	2-1
	2.1	Site Locati	on and Description	2-1
	2.2			
	2.3	Existing M	onitoring Well Network	2-2
3.0	MON	IITORING V	VELL INSTALLATION ACTIVITIES	3-1
	3.1	Pre-Investi	gation Activities	3-1
		3.1.1 H	lealth and Safety Plan	3-1
		3.1.2 S	ite Access and Permitting	3-1
			tility Clearance	
		3.1.4 K	DWM Notification	3-2
	3.2	Monitoring	g Well Installation	3-2
		3.2.1 D	rilling Activities	3-2
		3.2.2 C	eology Encountered	3-3
		3.2.3 N	Ionitoring Well Construction and Installation	3-3
	3.3	Monitoring	g Well Development	3-5
	3.4	Monitoring	g Well Surveying	3-6
	3.5	Groundwa	ter Occurrence	3-6
	3.6	Estimated	Vertical Gradient	3-6
	3.7	Decontami	nation	3-7
	3.8		on-Derived Waste	
	3.9	Estimated	Horizontal Gradients and Groundwater Flow	3-7
4.0	REF	ERENCES .		4-1
	JRES			
TAB APP		A - KDWI	I WORK PLAN APPROVAL LETTER AND REV	/ISFD
A! !			N LANDFILL PERMIT	IOLD
APP	ENDIX		10-DAY NOTIFICATION LETTER TO KDWM	
			PHOTOGRAPHS	
			LOGBOOK	
		E – DRILL		
			ICKY MONITORING WELL VARIANCE REQUE	ST
			ORING WELL CONSTRUCTION DIAGRAMS	· - -
			RM KENTUCKY WELL CONSTRUCTION REC	ORD
			RING WELL DEVELOPMENT FORMS	

APPENDIX J – MONITORING WELL SURVEY REPORT

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Monitoring Well Location Map

LIST OF TABLES

<u>Table No.</u>	Title
1	Summary of Monitoring Well Construction Details
2	Summary of Groundwater Depths and Elevations – May 2023
3	Estimated Vertical Hydraulic Gradients – May 2023

LIST OF ABBREVIATIONS

Abbreviation Term/Phrase/Name

amsl above mean sea level

bgs below ground surface

BREC Big Rivers Electric Corporation

bTOC below top of casing

Cascade Environmental, LP.

CFR Code of Federal Regulations

CCR coal-combustion residuals

Facility/Site

Big Rivers Electric Corporation's Sebree Generating Station, Green

Landfill at Webster County, Robards, Kentucky

feet ft

FMSME Fuller, Mossbarger, Scott & May Engineers, Inc.

GWAP 2021 Groundwater Assessment Plan

HASP Health and Safety Plan

IDW investigation-derived waste

KAR Kentucky Administrative Regulation

KDEP Kentucky Department of Environmental Protection

KDWM Kentucky Department of Environmental Protection, Division of Waste

Management

MW Monitoring Well

Report Monitoring Network Construction Progress Report

Work Plan 2023 Monitoring Well Installation Work Plan

CERTIFICATION

I, Chris Hoglund, certify that I am a qualified groundwater scientist, having received a baccalaureate or post-graduate degree in the natural sciences or engineering, and having sufficient training and experience in groundwater hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound judgements regarding groundwater and contaminant fate and transport.

I further certify that this report, with all its component elements, was prepared by myself or under my direction.

Chris Hoglund KY Registered Professional Geologist No. 269814 Burns & McDonnell Engineering Company, Inc. 9400 Ward Parkway Kansas City, MO 64114 Monitoring Well Construction Progress Report June 9, 2023 Sebree Station Green Landfill Webster County, Robards, Kentucky Agency Interest No. 4196

6/9/2023 Date

1.0 INTRODUCTION

Burns & McDonnell, on behalf of Big Rivers Electric Corp. (BREC), has prepared this *Monitoring Well Construction Progress Report* (Report) for the installation of three (3) additional groundwater monitoring wells at the BREC Sebree Generating Station Green Landfill located in Webster County, Robards, Kentucky (Site/Facility). A Site location map and well location map are provided as **Figures 1 and 2**, respectively.

1.1 Purpose

At the request of BREC, additional groundwater monitoring wells were installed in accordance with Title 401 of the Kentucky Administrative Regulations (KAR) Chapter 6 Part 350. The monitoring well installation activities were performed in general accordance with the protocols and procedures specified in the Kentucky Department of Environmental Protection (KDEP), Division of Waste Management (KDWM) approved 2023 Monitoring Well Installation Work Plan (Work Plan; Burns & McDonnell, 2023a). This Report for monitoring well construction and installation was prepared as required by Green Landfill permit conditions GSTR0001 and GSTR0003. A copy of the KDWM approval letter and Green Landfill permit is provided in **Appendix A**.

The newly installed groundwater monitoring wells will serve as characterization wells in the established coal-combustion residual (CCR) groundwater monitoring program at the Site to support compliance with the requirements included in the Title 401 KAR Chapter 46 CCR (401 KAR 46) that follows the United States Environmental Protection Agency *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, 40 Code of Federal Regulations (CFR) Part 257 and 261* and in accordance with 40 CFR §257.90, collectively referred to herein as the "CCR Final Rule".

1.2 Report Outline

The Report has been prepared to provide a summary of the groundwater monitoring wells installed at the Site.

This Report includes the following:

- Site Background Section 2.0
- Monitoring Well Installation Activities Section 3.0
- References Section 4.0

- KDWM Work Plan Approval Letter and Revised Green Landfill Permit Included in Appendix
 A
- BREC 10-Day Notification Letter to KDWM Included in **Appendix B**
- Field Photographs Included as **Appendix C**
- Kentucky Monitoring Well Variance Request Included in Appendix D
- Field Logbook Included as **Appendix E**
- Drill Logs Included as Appendix F
- Monitoring Well Construction Diagrams Included as Appendix G
- Uniform Kentucky Well Construction Record Included as Appendix H
- Monitoring Well Development Forms Included as **Appendix I**
- Monitoring Well Survey Report Included as Appendix J

2.0 SITE BACKGROUND

2.1 Site Location and Description

BREC owns and operates Sebree Station, which is a power generating facility located on the Green River northeast of Sebree, Kentucky. Sebree Station is composed of Green Station and Reid/Henderson Municipal Power & Light (HMP&L) Station. The Sebree Station is bounded by Interstate-69 to the west and the Green River to the east (see **Figure 1**). Reid Unit 1 (65 Megawatts [MW]) began commercial operation in 1966 and was retired in 2020. The Reid Combustion Turbine (65 MW) was commercialized in 1976. HMP&L Station 2, Units 1 (167 MW) and 2 (168 MW) began commercial operation in 1973 and 1974 respectively. Both HMP&L units were retired as of February 1, 2019. Green Station Units 1 (250 MW) and 2 (242 MW) began commercial operation as coal-fired units in 1979 and 1981, respectively. Both Green units were converted to natural gas-fired boilers in the second quarter of 2022.

The location of the Green Landfill is illustrated in **Figure 1**. The Green Landfill is located directly south of Sebree Station, situated directly south of the Green Station CCR Surface Impoundment. The Green Landfill is a Kentucky permitted landfill (Permit No. SW11700007) that received special waste generated by burning coal (CCRs) from Green Station and Reid/HMP&L Stations (retired in 2019 and 2020). The landfill began receiving CCR waste in 1980 and currently receives CCR material generated from ash pond closure activities, which are scheduled to continue through April 2024. In December 2021, the Green Landfill was converted from a Special Waste Landfill (ACTV0004) to a CCR Unit – Landfill (ACTV0007) as governed by the 40 CFR Part 257. The current Green Landfill footprint is approximately 170 acres.

The Green Landfill is located on an upland adjacent to the west bank of the Green River at an elevation of approximately 436 feet above mean sea level (amsl) at the north end of the landfill and 397 feet amsl at the south end of the landfill. Overland flow surface runoff from precipitation falling within the Green Landfill is diverted to ponds in the north and south sides of the landfill and then discharged to the Green River under Kentucky Pollution Discharge and Elimination System permit.

2.2 Geology

The Green Landfill lies in the Western Kentucky Coalfields section of the Interior Low Plateaus physiographic province, characterized by rolling uplands underlain by coal-bearing bedrock of the Pennsylvanian Period. The Geology underlying the Site vicinity consists of unconsolidated materials, including loess and alluvial deposits, underlain by Upper to Middle Pennsylvanian-age clastic and carbonate bedrock consisting primarily of sandstone and shale. The unconsolidated materials also include

fill, silty and clayey residuum, and minor amounts of sandy, clayey channel fill alluvium. The bedrock is comprised of the Upper Pennsylvanian Shelburn Formation (formerly identified as the Lisman Formation [Fairer, 1973]) and the Middle Pennsylvanian Carbondale Formation. At the base of the Shelburn Formation is the Providence Limestone Member, consisting of limestone and interbedded shale, but this geologic unit is absent in much of the area due to erosional channeling. Due to its discontinuous character and the presence of interbedded shale, hydrologically significant karst features are not present in the Providence Limestone Member. The underlying Carbondale Formation consists of cyclic sequences of sandstones, shales, siltstones and coals. The Carbondale sediments were deposited in a fluvial-deltaic system. As a result of this depositional environment, the sandstone/siltstone units of the Carbondale tend to be lenticular bodies rather than continuous sheet-like strata. Regionally, gradational and abrupt horizontal changes in lithology are often encountered.

2.3 Existing Monitoring Well Network

Monitoring wells were installed at the Green Landfill beginning in November 1996 prior to the implementation of the CCR Rule. However, the existing wells meet the requirements of Title 40 CFR Section 257.90 of the CCR Rule for installation of a groundwater monitoring system. These regulations require that monitoring wells adequately represent the quality of background groundwater and groundwater representing the downgradient waste boundary. The existing wells are located along the perimeter of the landfill footprint. One upgradient monitoring well (MW-1) and five downgradient monitoring wells (MW-2, MW-3A, MW-4, MW-5 and MW-6) were installed at the landfill to determine the general direction of groundwater movement and to monitor groundwater impacts. A map illustrating the location of all program monitoring wells is presented as **Figure 2**.

3.0 MONITORING WELL INSTALLATION ACTIVITIES

To support the installation of the groundwater monitoring wells the following field activities were performed in accordance with the KDWM-approved Work Plan:

- Advanced three (3) borings to be completed with monitoring wells at three (3) locations.
- Developed monitoring wells.
- Conducted surveying of newly installed monitoring wells.

The monitoring well locations are illustrated in **Figure 2**. The general approach and results of field activities is presented below. These new groundwater monitoring wells will be included as characterization wells in the established CCR groundwater monitoring program at the Site in accordance with CCR Final Rule.

3.1 Pre-Investigation Activities

Pre-investigation activities included preparing a Site-specific Health and Safety Plan (HASP), obtaining on-site property access, clearing subsurface utilities, and satisfying landfill permit requirements.

3.1.1 Health and Safety Plan

A Site-specific HASP (Burns & McDonnell, 2023b) was developed and implemented during the well installation field activities. The HASP complies with applicable Occupational Safety and Health Administration regulations. No health or safety incidents occurred during the well installation activities.

3.1.2 Site Access and Permitting

Site access, including access to the monitoring well locations within the existing BREC Green Station property, was obtained and coordinated with BREC prior to initiation of field work. No access agreements or permits were needed as all the monitoring wells are located on BREC property.

3.1.3 Utility Clearance

Prior to initiation of field activities, subsurface utilities were located with the aid of BREC personnel and Kentucky One-Call (811 local or 1-800-752-6007), a public utility locating service. BREC was responsible for locating all on-site utilities owned by BREC and contracted a private utility locator to further mark/clear utilities in the vicinity of the new monitoring wells.

3.1.4 KDWM Notification

In accordance with 401 KAR 6:350 Section 12 and the landfill permit (GSTR003), BREC provided the KDWM at least 10 days' notice prior to monitoring well construction and abandonment activities associated with the KDWM-approved Work Plan. Notification was provided via a letter dated April 5, 2023. A copy of the notification letter is provided in **Appendix B**. A member of the KDWM was present from the start of the field activities and observed drilling and construction of Monitoring Well MW-105.

3.2 Monitoring Well Installation

Three (3) new monitoring wells were installed as characterization monitoring wells at the Green Landfill in accordance with 401 KAR 6:350 and included Monitoring Wells MW-105, MW-106S, and MW-106D (**Figure 2**). Monitoring wells were installed at locations illustrated in **Figure 2** and consisted of a single well (MW-105) at one (1) location north of existing Monitoring Well MW-2 and two wells (MW-106S and MW-106D) clustered near each other at one (1) location (each in separate boreholes) south of MW-2. Monitoring well installation activities were conducted from April 24th, 2023- April 28th 2023.

3.2.1 Drilling Activities

Roto-sonic drilling and well construction/installation services were provided by Cascade Environmental LP, a Kentucky-licensed driller and KDWM-certified well contractor, in accordance with 401 KAR 6:350 monitoring well construction practices and standards.

Two (2) monitoring wells, MW-105 and MW-106S, were completed in unconsolidated overburden and MW-106D was completed in sandstone. Roto-sonic drilling was used for continuous soil/bedrock sampling by advancing through the subsurface using a 4-1/4-inch sonic core barrel that was sequentially overridden by a 6-inch diameter temporary steel drill casing (telescoping one casing over another; 4"x 6" sonic drilling system). In accordance with the Work Plan at Monitoring Well MW-106S and MW-106D, an additional 7-inch diameter outer drill casing was used to sequentially override the 6-inch override casing through the overburden and 3-feet into bedrock (MW-106D) resulting in an approximate 8-inch diameter borehole. Photos of the typical drilling activities are included in **Appendix C**.

3.2.1.1 Variance Request

Prior to drilling, verbal approval was obtained from both the KDWM and Division of Water to use Thread Armour TJC® by Hole Products as a pipe thread lubricant on the drill rod casing joints during drilling of monitoring wells. A Kentucky Monitoring Well Variance Request form was submitted and approved by the Division of Water on April 20, 2023, a copy of which is included in **Appendix D**.

3.2.2 Geology Encountered

The retrieved continuous soil/bedrock samples from roto-sonic drilling were examined by the field geologist. A copy of the field logbook and drill logs are included in **Appendices E and F**, respectively. The drilling depths for the new monitoring wells are summarized in **Table 1**. Bedrock cores recovered during roto-sonic drilling at MW-106D were placed in labeled wooden core boxes stored at the Facility by BREC personnel. Photos of the recovered soil and bedrock from each monitoring well location are included in **Appendix C**.

The upper 12-17 feet of overburden consisted of a yellowish-brown to brown clay, with-some silt, trace-some fine sand, medium-high plasticity, medium to high stiffness, and trace to some iron-oxide staining. Between 17-32 feet bgs the color of the overburden clay changed to very dark gray to grayish brown. An approximate 3-foot thick transition zone was observed above bedrock comprised of gravel with-some fine sand and trace-some silt and clay.

Bedrock was encountered in Monitoring Wells MW-105 (31-feet bgs) and MW-106D (42-feet bgs) consisting of sandstone and interbedded sandstone and shale, respectively. The uppermost portion of the bedrock was weathered with sandstones comprised of very fine to fine grained sand, poorly graded, micaceous, with iron staining, pyritic (MW-106D), tan in color, and weakly cemented (broke easily). The weathered shale was observed with bluish grey color. At Monitoring Well MW-106D, the weathered bedrock transitioned to more indurated/resistant, unweathered gray sandstone and dark gray to black shale (fissile, organic-rich) at 48 feet bgs. Beneath the gray sandstone was a dark gray to black, organic-rich shale with some fine-grain sandstone interbeds/laminations of unknown thickness.

3.2.3 Monitoring Well Construction and Installation

The three monitoring wells were installed through the 6.25-inch (MW-105) or 8-inch (MW-106S and MW-106D) diameter roto-sonic borehole. The targeted depth for the placement of the well screens was determined from the estimated borehole depth elevation and geology encountered during drilling.

Before installing the well at the targeted depth, a minimum 6-inch thick filter pack sand cushion was placed in the bottom of the borehole. The well filter pack consisted of Global Drilling Supplies Global Quartz Silica Sand a clean, uniform, 12/20-grade silica sand.

Wells were constructed with 10-foot long, 0.010-inch machine-slotted screens, threaded end caps, and 10-foot long casing. Well construction adhered to requirements of 401 KAR 6:350 Section 7 and 401

KAR 45:160 Section 3(3), except that the well materials consisted of 2-inch diameter Schedule 40 PVC. No glues or solvents were used in the construction of the monitoring wells.

Monitoring Well MW-106D was installed at a depth greater than 50-foot bgs and therefore included the use of centralizers in accordance with 401 KAR 6:350 Section 7. Centralizers were constructed of stainless steel to provide rust prevention near the screened interval. The first centralizer was placed approximately 14.5 feet from the bottom of the well to achieve centralizer placement above both the well screen and the bentonite seal. All remaining centralizers were placed on approximate 10-foot centers, along the well casing, proceeding upward towards the ground surface.

The well casing, screen and end cap were then placed in the borehole, with the end cap set on top of the filter pack sand cushion. Additional well filter pack sand was placed around the well screen that extended from the bottom of the well to approximately 2-feet above the top of well screen. The sand filter pack was placed by the gravity free-fall method with the depth of sand continuously monitored downhole with a weighted tape measure to confirm bridging was not occurring and that the targeted placement depth was achieved.

An approximate 2-foot thick bentonite seal was placed immediately above the well filter pack sand consisting of Polymer Drilling Systems Pel-Plug 3/8-in coated, time release, bentonite pellets. The bentonite pellets were placed using the gravity free-fall method while continuously monitoring downhole with a weighted tape measure to confirm bridging was not occurring and that the targeted placement depth was achieved. The bentonite seal was allowed to hydrate per manufacturer's recommendation of 2-hours before placing the annular seal.

The annular seal consisted of Haliburton Quik-Grout[®], a high-solids bentonite grout slurry. The grout was placed above the bentonite seal, to within 3 feet of the ground surface, using a tremie grout pipe. Per manufacture specifications, the grout was mixed at a ratio of one 50-pound bag to 24 gallons of potable fresh water to create 20% active solids within the mixture. Grout was tremied in place using a grout pipe per 401 KAR 6:350 Section 7, with the bottom of the pipe placed approximately 0.5-1.0 foot from the top of the bentonite seal. The grout pipe remained at depth until the high solids grout reached the top of the boring. The grout was allowed to settle and if needed, grout was added to achieve a final minimum grout depth of 3 feet bgs.

Monitoring wells were completed above the ground surface in accordance with 401 KAR 6:350 Section 8. Each well casing was constructed to protrude at least 2.5 feet above ground surface and was fitted with a locking steel protective casing. The protective casing was installed by first pouring concrete slurry into

the borehole, on top of the annular seal, and then pushing the protective casing into the wet concrete slurry, approximately 3-feet bgs. The concrete slurry was brought to the ground surface and a square 3-foot by 3-foot, 6-inch thick concrete pad was constructed around the protective casing, with the casing centered within the pad. The concrete pad was sloped outward to provide a means for water to flow off of the pad and two (2) one-quarter inch weep holes were drilled into opposite sides of the steel protective casing, approximately one-half inch above the concrete pad. Four (4) bollard posts were installed at the corners of the well pad to provide protection from vehicle or equipment strikes. The bollards were not located within or in contact with the surface well pad and consisted of 3-inch diameter steel pipes that were 5-foot in length, extending approximately 3-feet above ground surface and 2-feet bgs. The bollards were coated with high-visibility yellow paint and filled with concrete. A water-tight well cap was installed in the top of the well casing and a minimum clearance of one inch was maintained between the top of the well casing and the protective casing to provide secure unobstructive closure of the lid. A minimum clearance of 2 inches was maintained between the outer steel protective casing and the inner well casing and silica sand was used to fill the open area between the outer protective casing and the inner well casing. Kentucky well tags were affixed to the inside of the protective casing lid.

The well construction details and well diagrams for the new monitoring wells are provided in **Table 1** and **Appendix G**, respectively. A Uniform Kentucky Well Construction Record was completed by Cascade for each new monitoring well and submitted to KDWM. Copies of the well construction records are provided in **Appendix H**. Photos of the typical monitoring well construction and installation activities are included in **Appendix C**.

3.3 Monitoring Well Development

Well development was performed on all three newly installed monitoring wells to remove fine-grained material from the well screen and filter pack. Development was accomplished by surging and pumping the monitoring wells using a submersible pump.

The monitoring wells were each developed 3 separate times, with the well being pumped dry during each development event. These wells were allowed to recharge to at least 90% of the static water level or above the top of well screen (as practical based on recharge rate) prior to beginning each successive purging event. Field water quality parameters of turbidity, pH, conductivity and temperature were measured at the beginning and throughout the development. Final water quality parameter readings were recorded after the well was nearly dry. Due to the low yield of these monitoring wells, well development was considered completed after pumping the wells dry three (3) times. Over three saturated well volumes

were pumped from each well. Data collected during the development of each well was recorded on a Well Development Form, copies of which are included in **Appendix I**.

3.4 Monitoring Well Surveying

The new and existing monitoring wells at the Green Landfill were surveyed for both vertical and horizontal control. Surveying was performed by Associated Engineers of Madisonville, Kentucky, a Kentucky-licensed Professional Land Surveyor, on May 19, 2023. The monitoring well locations were surveyed horizontally to the nearest 0.1 foot and referenced to a local coordinate system (northing and easting) using the Kentucky State Plane, Southern Zone and also included latitude/longitude coordinates. The monitoring well locations were surveyed vertically using an established surveyed benchmark referenced to the North American Datum 1927. The ground surface elevation at each monitoring well location was measured to the nearest 0.1 foot relative to mean sea level and reported using a Facility-specific datum from an established surveyed benchmark. The top of the monitoring well riser pipe was surveyed to the nearest 0.01 foot relative to mean sea level. The survey report prepared by Associated Engineers is provided in **Appendix J**.

3.5 Groundwater Occurrence

Groundwater level data was collected from the newly installed monitoring wells on June 19, 2023. Groundwater levels were measured using a decontaminated, battery-operated, electronic water level probe. The depths to groundwater measured in the monitoring wells were 6.49 feet below top of casing (bTOC) at MW-105, 18.81 feet bTOC at MW-106S, and 22.50 feet bTOC at MW-111. Groundwater elevations calculated using the measured water levels and surveyed top of well casing elevations were 375.28 feet amsl (MW-105), 368.45 feet amsl (MW-106S), and 365.38 feet amsl (MW-106D). Groundwater level and elevation data are summarized in **Table 2**.

3.6 Estimated Vertical Gradient

Vertical gradients can be estimated using hydrologic data obtained from paired/clustered monitoring wells. One newly installed clustered well pair includes Monitoring Wells MW-106S and MW-106D.

The estimated vertical groundwater gradient is calculated as follows:

Groundwater Elevation (shallow well) – Groundwater Elevation (deep well)

Midpoint of Screen Elevation (shallow well) – Midpoint of Screen Elevation (deep well)

^{*} A positive value identifies a downward gradient, while a negative value identifies an upward gradient.

The estimated vertical gradient was 0.284 downward at MW-106S/D. The estimated vertical gradient is summarized in **Table 3**.

3.7 Decontamination

Drilling equipment and tools and other non-disposable sampling equipment used for subsurface soil sampling and well installations were decontaminated with a Hotsy® hot water pressure washer prior to drilling operations and between boring and monitoring well locations. A centralized decontamination pad was constructed west of MW-2 (along western edge of access road) and all decontamination fluid was contained within the pad by a polyvinyl lining. Decontamination fluids were pumped from the decontamination pad and managed in accordance with investigation-derived waste (IDW) procedures specified in Section 3.6.

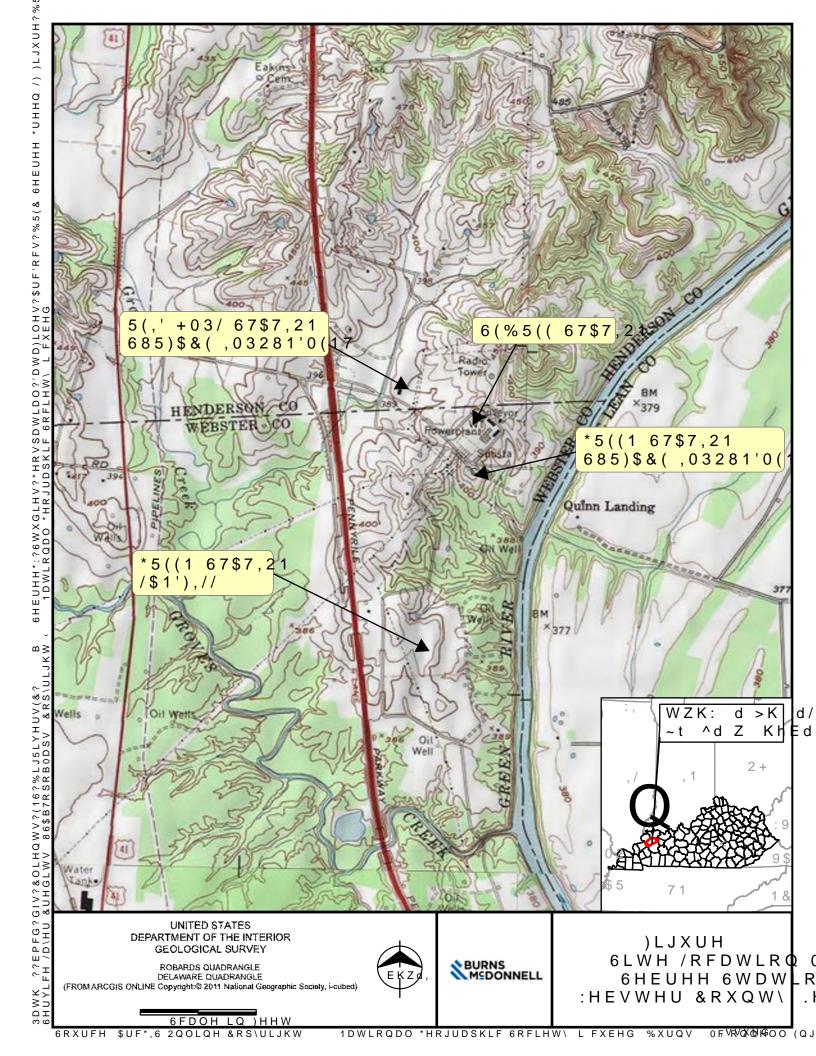
3.8 Investigation-Derived Waste

Excess soil cuttings resulting from the drilling operations through soil overburden were disposed of at the Green Landfill.

Liquid IDW generated during the monitoring well installation activities consisted primarily of decontamination water and groundwater purged during well development. Liquid IDW was temporarily containerized and disposed of on-Site at the Northeast Sediment Pond located directly northeast of the Green Landfill.

3.9 Estimated Horizontal Gradients and Groundwater Flow

Potentiometric surface contours were generated using the January 2022 groundwater elevation data described in Section 4.1. A map presenting groundwater elevations for each well and depicting the potentiometric surface contours and groundwater flow direction, denoted by arrows drawn perpendicular to the potentiometric contour lines, is included as **Figure 5**. The potentiometric surface depicted in the figure represents the uppermost groundwater surface within the bedrock and mine spoil hydrostratigraphic units at the Site. Based on the data presented on Figure 5, groundwater beneath the Site generally to the south-southwest, with a western component near the southeastern boundary of the Site, localized northern components in the vicinity of Monitoring Wells MW-105R and MW-113, and southeastern flow near Monitoring Wells MW-1, MW-2, and MW-102. Future water level gauging will be performed during subsequent monitoring events to further evaluate groundwater flow direction under static conditions, and to evaluate variations in groundwater flow patterns beneath the Site.


The locations of the six newly installed groundwater monitoring wells, relative to the site boundary and groundwater directions observed at the Site in January 2022, are as follows:

- Monitoring Wells MW-114, MW-113, and MW-105R, located south of Route 85 West, are hydraulically upgradient of the CCR waste boundary.
- Monitoring Wells MW-111 and MW-112, located near the western site boundary, are hydraulically downgradient of the CCR waste boundary.

4.0 REFERENCES

- Burns & McDonnell (2023a). 2023 Monitoring Well Installation Work Plan, Sebree Generating Station, Green Landfill, Webster County, Kentucky, Agency Interest No. 4196. January 5th.
- Burns & McDonnell (2023b). Safety & Health Program. April 7th.
- Fairer, G.M. (1973). Geologic Map of the Robards Quadrangle, Henderson and Webster Counties, Kentucky, U.S. Geological Survey.
- Kentucky Administrative Regulation (KAR), Title 401 Energy and Environmental Cabinet, Department for Environmental Protection, Chapter 6 Water Wells, Section 350, Monitoring Well Construction Practices and Standards (401 KAR 6:350).
- KAR, Title 401 Energy and Environmental Cabinet, Department for Environmental Protection, Chapter 45 Special Waste Section, Section 160, Surface and Groundwater Monitoring and Corrective Action for Special Waste Sites or Facilities (401 KAR 45:160).
- KAR, Title 401 Energy and Environmental Cabinet, KDEP, Chapter 46, Coal Combustion Residuals (401 KAR Chapter 46).

FIGURES

TABLES

TABLE 1

SUMMARY OF MONITORING WELL CONSTRUCTION, GREEN LANDFILL
CCR GROUNDWATER MONITORING PROGRAM

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

		Loca	ntion*	Reference	Elevation*	Casing		Filte	r Pack	Scr	eened	Bottom of
Well No.		Lat (degrees)	Long (degrees)	TOIC	GS (feet, NAD27)	Length (feet, TOIC	Size / Type) (ID / Material)		erval S, NAD27)	-	erval S, NAD27)	Boring (feet, GS)
Program Monitoring Wells		(uegrees)	(uegrees)	(leet, NADZI)	(leet, NADZI)	(leet, 1010) (ID / Material)	Top	Bottom	Top	Bottom	(1661, 43)
MW-1 (8002-9625)	U/B	37.637783	-87.508381	422.56	420.11	45.5	4 inch / PVC	389.3	375.1	387.1	377.1	45
MW-2 (8002-9630)	D	37.636481	-87.500967	391.82	389.41	50.3	4 inch / PVC	353.6	340.4	351.6	341.6	49
MW-3A (8003-6430)	D	37.631925	-87.500758	386.27	380.47	41.3	4 inch / PVC	357.0	344.3	355.0	345.0	36.2
MW-4 (8002-9628)	D	37.628203	-87.500964	391.11	388.62	33.1	4 inch / PVC	368.2	355.6	366.2	356.2	33
MW-5 (8002-9627)	D	37.628067	-87.502836	389.91	387.28	27.5	4 inch / PVC	374.3	361.3	372.3	362.3	26
MW-6 (8002-9626)	D	37.629003	-87.506903	388.10	385.55	45.5	4 inch / PVC	354.8	340.6	352.6	342.6	45
Characterization Well												
MW-104 (8007-1139)	D/C	37.630564	-87.500964	395.4	392.44	60.84	2 inch / PVC	344.4	331.9	342.4	332.4	60
MW-105 (8008-0529)	D/C	37.636833	-87.500928	381.77	378.90	33.87	2 inch / PVC	359.9	346.9	358.1	348.1	32
MW-106S (8008-0527)	D/C	37.636178	-87.500928	387.26	384.75	41.51	2 inch / PVC	357.8	344.8	356.0	346.0	40
MW-106D (8008-0528)	D/C	37.636194	-87.500947	387.88	385.30	66.08	2 inch / PVC	333.8	321.3	332.0	322.0	64

^{*} Well location and reference elevations surveyed by Associated Engineers, Inc. of Madisonville, KY on May 19, 2023.

PVC = Polyvinyl chloride

ID = Internal Diameter

TOIC = Top of internal casing

GS = Ground Surface

U / B = Upgradient / Background

D = Downgradient

C = Characterization

TABLE 2 **GROUNDWATER ELEVATIONS, GREEN LANDFILL - 2023**

BIG RIVERS ELECTRIC CORPORATION - SEBREE STATION GREEN STATION LANDFILL WEBSTER COUNTY, KENTUCKY

	NEWLY INSTALLED GROUNDWATER MONITORING WELLS						
	MW	-105	MW-	106S	MW-106D		
Reference Elevation TOIC*(ft, NAD27)	Downgradient/Characterization 381.77		•	Characterization 7.26	Downgradient/Characterization 387.88		
	Depth to Water (ft) (feet)	GW Elevation (feet)	Depth to Water (ft) (feet)	GW Elevation (feet)	Depth to Water (ft) (feet)	GW Elevation (feet)	
5/19/2023	6.49	375.28	18.81	368.45	22.50	365.38	

^{*} Well TOIC reference elevations surveyed by Associated Engineers, Inc. of Madisonville, KY on May 19, 2023. Survey coordinates were based on the Kentucky State Plane, Kentucky Southern Zone, NAD27 datum

TOIC = Top of internal casing GW = Groundwater

GS = Ground Surface

NA = Not Available

NM = Not Measured

Table 3 Estimated Vertical Hydraulic Gradients

Green CCR Landfill
Big Rivers Electric Corporation - Sebree Station
Robards, Kentucky

	Top of	Total Well	Well Scree	n Elevation	Screened					
Well	Casing Elev.	Depth	Top MidPoint		Geologic	Water Depth	Water Elevation	Difference in Water Level	Vertical	Gradient
Cluster	(ft amsl)	(feet bTOC)	(ft amsl) (ft amsl)		Formation	(ft bTOC)	(ft amsl)	(ft)	(feet	/foot)
	19-May-23									
MW-106S	387.26	40.00	355.95	345.95	Clay with Silt	11.70	375.56	2.24	0.00404	
MW-106D	387.88	64.00	332.0	322.00	Sandstone w/ Shale Interbeds	19.13	368.75	6.81	0.28434	Downward

Vertical Gradient (ft/ft) Groundwater Elevation of (Shallow Well) - Groundwater Elevation of (Deep Well)

= (Screen Midpoint Elevation (Shallow Well) - Screen Midpoint Elevation (Deep Well)

amsl - above mean sea level (North American Vertical Datum 1988 (NAVD88)

bTOC - below top of casing

ft - feet

Notes:

1. Positive vertical gradient value identifies a downward gradient, while a negative value identifies an upward gradient.

Andy Beshear
GOVERNOR

ENERGY AND ENVIRONMENT CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION

300 Sower Boulevard Frankfort, Kentucky 40601 Phone: (502) 564-2150 Fax: 502-564-4245 Rebecca Goodman
SECRETARY

Anthony R. Hatton

January 11, 2023

Ms. Heather Todd, Plant Manager Big Rivers Electric Corporation – Sebree Generating Station 9000 KY 2096 Robards, Kentucky 42452

Sent via E-mail Only

RE: Approval of Monitoring Well Installation Work Plan
Big Rivers Electric Corporation – Sebree Generating Station
Agency Interest No. 4196
Application I.D. No. APE20220004
Webster County

Dear Ms. Todd,

The Kentucky Division of Waste Management (DWM), Solid Waste Branch has reviewed the above-referenced Monitoring Well Installation Work Plan for the Big Rivers Electric Corporation Sebree Generating Station, received January 6, 2023. Based upon the information submitted, the subject plan is hereby approved.

The proposed procedures are acceptable, provided the work is conducted in complete compliance with 401 KAR 6:350. Any deviation from the approved plan requires prior approval of DWM pursuant to 401 KAR 6:350 Section 12(1), and any deviation from the requirements of 401 KAR 6:350 requires the driller to obtain a variance from the Kentucky Division of Water pursuant to 401 KAR 6:350 Section 1(7).

DWM notes that Section 2.2 of the subject plan states, "... the existing wells meet the requirements of Title 40 CFR Section 257.90 of the CCR Rule for the installation of a groundwater monitoring system". However, because it has not reviewed a groundwater monitoring plan for this CCR Unit pursuant to 401 KAR Chapter 46 or 40 CFR 257, DWM is unable to concur with this statement.

Please be advised that approval of this plan is limited to the work described therein. <u>The</u> present correspondence does not constitute the approval of a groundwater monitoring system, and

it does not constitute an approval of any other detail of the construction or abandonment of groundwater monitoring wells at Big Rivers Electric Corporation Sebree Generating Station, including any well's construction, location, depth, or suitability for monitoring any particular CCR unit, aquifer, or aquifer zone pursuant to 401 KAR Chapters 46.

Should you have any questions, or if you would like to schedule a meeting regarding this matter, please contact Todd Hendricks, P.G. at <u>todd.hendricks@ky.gov</u>.

Sincerely,

Danny Anderson, P.E. Manager, Solid Waste Branch

DA/ec/lk/rth/lkg

c: Ms. Heather Todd via e-mail heather.todd@bigrivers.com
Mr. Mark Bertram via e-mail mark.bertram@bigrivers.com

Kentucky Energy and Environment Cabinet Department for Environmental Protection Division of Waste Management

PERMIT

Facility: Green Station Landfill

9000 KY 2096 Robards, KY 42452

Permittee: Big Rivers Electric Corporation

9000 KY 2096 Robards, KY 42452

Agency Interest: Big Rivers Electric Corp - Reid HMP&L Station 2 - Green Station 9000 KY 2096
Robards, KY 42452

The Division has issued the permit under the provisions of KRS Chapter 224 and regulations promulgated pursuant thereto. This permitted activity or activities are subject to all conditions and operating limitations contained herein. Issuance of this permit does not relieve the permittee from the responsibility of obtaining any other permits, licenses or approvals required by this Division or other state and local agencies.

No deviation from the plans and specifications submitted with your application or any condition specified herein is allowed, unless authorized in writing from the Division. Violation of the terms and conditions specified herein may render this permit null and void. All rights of inspection by representatives of the Division are reserved. Conformance with all applicable Waste Management Regulations is the responsibility of the permittee.

Agency Interest ID #: 4196

Solid Waste Permit #: sw11700016, SW11700007

County: Webster

Permitted Activities:

Subject Item	Activity	Туре	Status
ACTV001	Landfarm Class II-SW/11700016	Activity Terminated	Terminated
ACTV004	Special Waste Landfill-Coal/11700007	Construction/Operation	Converted
ACTV005	Coal Combustion Residuals Surface Impoundment/11700007	Permit by Rule	Converted
ACTV006	Coal Combustion Residuals Surface Impoundment/11700007	Permit by Rule	Converted
ACTV007	CCR Unit - Landfill/11700007	Construction/Operation	Active
ACTV008	CCR Unit - Impoundment/11700007	Construction/Operation	Active
ACTV009	CCR Unit - Impoundment/11700007	Construction/Operation	Active

PERMIT

Acreage Summary:

Waste Disposal Area (in Acres):

Activity	Disposal
	Area
CCR Unit -	16.70
Impoundment	
CCR Unit -	19.40
Impoundment	
CCR Unit - Landfill	110.00
Total Disposal Area	146.10
Total Permitted Area	200.00

Cost Estimate Summary:

Coverage Type	Cost Estimate	Effective	Comments
Closure	\$75,007,378.00	12/09/2021	Approved under APE20210002
Post-Closure	\$4,542,600.00	12/09/2021	Approved under APE20210002

Financial Assurance Summary:

The owner or operator shall maintain the following financial assurance approved by the Division in compliance with KRS Chapter 224.40-650, KRS Chapter 224.50-862, 401 KAR 45:080, and 401 KAR 48:310:

Instrument Type	Instrument Number	Amount	Date Received	Comments
Corporate	1	\$79,549,978.00	11/17/2021	
Financial Test				

First Operational Permit Effective Date: 09/13/1979 -- Inert Landfill

Permit Effective Date: 09/13/1987

Permit Expiration Date: Life of Facility

Permit issued: 12/09/2021

Sincerely,

Danny Anderson, P.E.

Manager, Solid Waste Branch

APE20210002 - Approved Application

PERMIT

Permit Conditions:

Subject Items

ACTV0001 - Landfarm Class II-SW

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

- 11-29-1994 Registered Permit-By-Rule Special Waste Class II Landfarm Registration LD1NW1 -ARP19930001
- 2. 06-09-1995 Minor Modification ARP19940001
- **3.** 02-19-1997 Termination Letter

ACTV0004 - Special Waste Landfill-Coal

Variances, Alternate Specifications and Special Conditions:

1. General: The landfill consists of approximately 110 acres and has been converted from a Special Waste Landfill (ACTV0004) to a CCR Unit - Landfill (ACTV0007) on December 09, 2021. The landfill is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and the landfill remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:080, 401 KAR 45:140, 401 KAR 46:110]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

- 1. 10-01-1979 New Permit Application Approval SHF19790001
- 2. 09-13-1979 Construction Permit Renewal SHF19790001
- 3. 10-07-1980 Construction Permit Renewal SHF19800001
- 4. 09-10-1981 Operation Permit SHF19810001
- 5. 09-13-1982 Operation Permit Renewal Inert Landfill SHF19820001
- 6. 02-04-1988 Operation Permit Renewal SHF19880001
- 7. 09-19-1990 MOMN1
- 8. 06-14-1992 PR1
- 9. 01-30-1996 MOGW
- 10. 02-28-1996 Minor Modification Conversion to Special Waste Landfill LE2PR1 & LI1MOMN1 SHF19960001
- 11. 03-22-1999 Transfer Ownership from Big Rivers Electric Corporation to Western Kentucky Energy Corp LS1PT1 SHF19990001
- 12. 06-13-2000 HEX LS1MOHX1 SHF20000001
- 13. 05-25-2005 Add Kenneth Coleman Plant Fly Ash and Bottom Ash to Waste Stream APE20010001

- 14. 07-25-2005 Groundwater Assessment Plan AIN20040003
- 15. 10-05-2010 Transfer Ownership from Western Kentucky Energy Corp to Big Rivers Electric Corporation APE20090007
- 16. 06-08-2011 Vertical Expansion APE20100001
- 17. 12-17-2014 Vertical Expansion APE20130001
- 18. 11-30-2017 Amendment to Groundwater Monitoring Plan APE20170001

PERMIT

19. 12-09-2021 - See the CCR Unit-Landfill activity (ACTV0007) for additional information

ACTV0005 - Coal Combustion Residuals Surface Impoundment

Variances, Alternate Specifications and Special Conditions:

1. General: The CCR Pond 1, also called the Green Station Ash Pond, consists of approximately 16.7 acres and has been converted from a Coal Combustion Residuals Surface Impoundment (ACTV0005) to a CCR Unit - Impoundment (ACTV0008) on December 09, 2021. The impoundment is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and it remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:080, 401 KAR 45:140, 401 KAR 46:110]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

1. 12-09-2021 - See the CCR Unit-Impoundment activity (ACTV0008) for additional information

ACTV0006 - Coal Combustion Residuals Surface Impoundment

Variances, Alternate Specifications and Special Conditions:

1. General: The CCR Pond 2, also called the Henderson Municipal Power and Light Station Pond, consists of approximately 19.4 acres and has been converted from a Coal Combustion Residuals Surface Impoundment (ACTV0006) to a CCR Unit - Impoundment (ACTV0009) on December 09, 2021. The impoundment is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and it remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:040, 401 KAR 46:110]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

1. 12-09-2021 - See the CCR Unit-Impoundment activity (ACTV0009) for additional information

ACTV0007 - CCR Unit - Landfill

Variances, Alternate Specifications and Special Conditions:

- 1. General: The owner or operator shall submit the \$15,000 annual fee no later than July 31 of each year pursuant to 401 KAR Chapter 46:120. Applications and reports specific to only the CCR landfill, or only other CCR Units, for this facility shall not be subject to the filing fees pursuant to 401 KAR 45:250. [401 KAR 46:120 Section 4]
- 2. General: The landfill consists of approximately 110 acres and has been converted from a Special Waste Landfill (ACTV0004) to a CCR Unit Landfill (ACTV0007) on December 09, 2021. The landfill is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and the landfill remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:080, 401 KAR 45:140, 401 KAR 46:110]

PERMIT

3. General: The owner or operator of a Coal Combustion Residuals (CCR) Unit shall comply with KRS Chapter 224 and 401 KAR Chapter 46 for the construction, operation, maintenance, and closure of a CCR Unit and other provisions pursuant to 401 KAR Chapters 30, 40, and 45 as applicable. The owner or operator shall comply with the applicable provisions in the Approved Applications listed on this permit document for ACTV0004 - Special Waste Landfill-Coal and with all provisions in the Approved Applications listed on this permit document for ACTV0007 - CCR Unit - Landfill. [401 KAR 45:030, 401 KAR 45:140]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

- 1. See the Special Waste Landfill-Coal activity (ACTV0004) for additional information and site history
- 2. 12-09-2021 Revised Cost Estimate Permit Issued in accordance with 401 KAR Chapter 46 technical standards APE20210002

ACTV0008 - CCR Unit - Impoundment

Variances, Alternate Specifications and Special Conditions:

- 1. General: The owner or operator of a Coal Combustion Residuals (CCR) Unit shall comply with KRS Chapter 224 and 401 KAR Chapter 46 for the construction, operation, maintenance, and closure of a CCR Unit and other provisions pursuant to 401 KAR Chapters 30, 40, and 45 as applicable. The owner or operator shall comply with the provisions in the Approved Applications listed on this permit document for ACTV0008 CCR Unit Impoundment. [401 KAR 45:030, 401 KAR 45:140]
- 2. General: The owner or operator shall submit the \$15,000 annual fee no later than July 31 of each year pursuant to 401 KAR Chapter 46:120. Applications and reports specific to only the impoundment, or only other CCR Units, for this facility shall not be subject to the filing fees pursuant to 401 KAR 45:250. [401 KAR 46:120 Section 4]
- 3. General: The CCR Pond 1, also called the Green Station Ash Pond, consists of approximately 16.7 acres and has been converted from a Coal Combustion Residuals Surface Impoundment (ACTV0005) to a CCR Unit Impoundment (ACTV0008) on December 09, 2021. The impoundment is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and it remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:080, 401 KAR 45:140, 401 KAR 46:110]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

1. 12-09-2021 - Revised Cost Estimate - Permit Issued in accordance with 401 KAR Chapter 46 technical standards - APE20210002

ACTV0009 - CCR Unit - Impoundment

Variances, Alternate Specifications and Special Conditions:

1. General: The owner or operator of a Coal Combustion Residuals (CCR) Unit shall comply with KRS Chapter 224 and 401 KAR Chapter 46 for the construction, operation, maintenance, and closure of a CCR Unit and other

PERMIT

provisions pursuant to 401 KAR Chapters 30, 40, and 45 as applicable. The owner or operator shall comply with the provisions in the Approved Applications listed on this permit document for ACTV0009 - CCR Unit - Impoundment. [401 KAR 45:030, 401 KAR 45:140]

- 2. General: The owner or operator shall submit the \$15,000 annual fee no later than July 31 of each year pursuant to 401 KAR Chapter 46:120. Applications and reports specific to only the impoundment, or only other CCR Units, for this facility shall not be subject to the filing fees pursuant to 401 KAR 45:250. [401 KAR 46:120 Section 4]
- 3. General: The CCR Pond 2, also called the Henderson Municipal Power and Light Station Pond, consists of approximately 19.4 acres and has been converted from a Coal Combustion Residuals Surface Impoundment (ACTV0006) to a CCR Unit Impoundment (ACTV0009) on December 09, 2021. The impoundment is a CCR Unit as defined by 401 KAR 46:101 and is subject to the standards pursuant to 401 KAR 46:110, and it remains subject to the procedural requirements in 401 KAR Chapter 45. [401 KAR 45:020, 401 KAR 45:025, 401 KAR 45:030, 401 KAR 45:040, 401 KAR 45:050, 401 KAR 45:080, 401 KAR 45:140, 401 KAR 46:110]

Approved Applications - The owner or operator shall comply with applicable statutes and regulations and the following approved applications:

1. 12-09-2021 - Revised Cost Estimate - Permit Issued in accordance with 401 KAR Chapter 46 technical standards - APE20210002

Financial Assurance

ACTV0002 - Financial Assurance

The following is a history of the financial assurance for this facility:

- 1. 09-12-1979 SB#34S45199, \$103,000.00
- 2. 09-20-1982 SB#B423619, \$103,000.00; SB#34S45199 released
- 3. 01-21-1988 CD#107101, \$579.500.00
- 4. 07-15-1994 SB#CSB0162685, \$682,500.00; CD#107101, SB#B423619
- 5. 07-01-1998 LOC#SLCDC3896/912679, \$682,500.00
- 6. 11-12-1998 LOC#SLCDC3896/912768, \$682,500.00; LOC#SLCDC3896/912679 released
- 7. 01-15-1999 LOC#SLCDC3896/912852, \$682,500.00; LOC#SLCDC3896/912768 released
- 8. 09-18-2003 LOC#003325000, \$714,358.00; SB#CSB0162685 released
- 9. 02-11-2004 LOC#003325000 increased to \$738,105.00
- 10. 08-19-2004 LOC#003325000 increased to \$749,915.00
- 11. 06-27-2005 LOC#003325000 increased to \$765,663.00
- 12. 05-10-2006 LOC#003325000 increased to \$782,508.00
- 13. 07-19-2007 LOC#003325000 increased to \$805,200.00
- 14. 07-15-2009 LOC#062-H-5102-001, \$849,248.00
- 15. 06-03-2011 LOC#062-H-5102-001 increased to \$870,750.00
- 16. 05-19-2014 LOC#062-H-5102-001 increased to \$1,410,083.00
- 17. 08-19-2021 Financial Test, \$30,564,850.00
- 18. 11-17-2021 Financial Test increased to \$79,549,978.00
- 19. 12-09-2021 LOC #062-H-5102-001 released

PERMIT

Monitoring Conditions

GSTR0001 - Groundwater Monitoring - SWB: Groundwater Monitoring Group - Special Waste Landfill

Group Members: STRC0019 - Well MW-01; STRC0020 - Well MW-02; STRC0022 - Well MW-04; STRC0023 - Well MW-05; STRC0024 - Well MW-06; STRC0033 - Well MW-03A

Variances, Alternate Specifications and Special Conditions:

- 1. Reports and Submittals: The owner or operator shall submit a Construction Progress Report (CPR) within 45 days of any groundwater monitoring well abandonment activities. [401 KAR 45:140]
- 2. Groundwater Monitoring: No monitoring well construction, maintenance, or abandonment may be conducted without prior approval by the Division of Waste Management. [401 KAR 45:140 Section 1(1), 401 KAR 6:350 Section 12]

GSTR0002 - Groundwater Monitoring - SWB: Chapter 46 Groundwater Monitoring Group

Group Members: AIOO4196 -

Variances, Alternate Specifications and Special Conditions:

1. Groundwater Monitoring: The owner or operator shall monitor groundwater and provide notifications in accordance with 401 KAR Chapter 46 and submit the results and analysis to the Division of Waste Management, Solid Waste Branch upon request. [401 KAR 45:030, 401 KAR 46:110 Section 10, 401 KAR 46:110 Section 8]

GSTR0003 - Groundwater Monitoring - SWB: Chapter 6 Groundwater Monitoring Group

Group Members: AIOO4196 -

Variances, Alternate Specifications and Special Conditions:

- 1. Groundwater Well Construction: Prior to the installation, modification, or abandonment of a monitoring well at a unit regulated by the Division of Waste Management (DWM), the permittee shall obtain DWM approval of all monitoring-well construction designs and all monitoring-well construction materials. The approval request shall be submitted to the Solid Waste Branch of the DWM. [401 KAR 6:350]
- 2. Groundwater Well Construction: The Division of Waste Management shall be notified at least ten (10) working days prior to monitoring well construction, modification, or abandonment so that a Cabinet representative may be present at the construction, modification, or abandonment. [401 KAR 6:350 Section 12]
- 3. Groundwater Well Construction: The owner or operator shall comply with the standards and provisions in 401 KAR Chapter 6. This includes, but not limited to, the provision each monitoring well shall be constructed,

APE20210002 - Approved Application

PERMIT

modified, or abandoned by a monitoring well driller or monitoring well driller assistant certified in accordance with KRS 223.425 and 401 KAR 6:320. [401 KAR 6:350]

4. Reports and Submittals: For recordkeeping purposes and in order to verify compliance with 401 KAR Chapter 6 standards, the owner or operator shall submit a Construction Progress Report (CPR) within 45 days of the completion of any groundwater monitoring well installation, modification, or abandonment activities. [401 KAR 45:140 Section 1(8), 401 KAR 6:350]

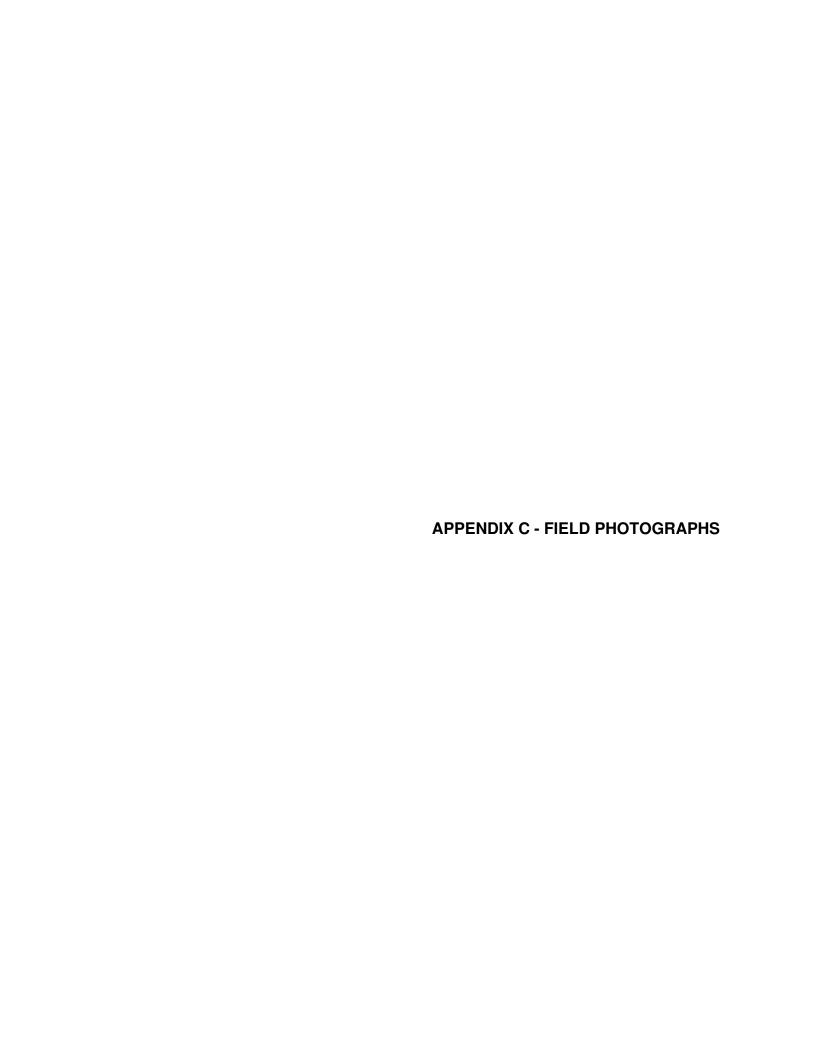
April 5, 2023

Danny Anderson, P.E.
Manager, Solid Waste Branch
Kentucky Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Blvd
Frankfort, KY 40601

Re: Big Rivers Electric Corporation, Sebree Station
Agency Interest No. 4169
Monitoring Well Installation Work Plan, APE20220004
10 day Notification for Installation of Groundwater Monitoring Wells

Dear Mr. Anderson,

Big Rivers Electric Corporation received a revised permit for Sebree Station, Green Station Landfill (SW11700007,) on December 9, 2021. In addition, a revised Monitoring Well Installation Work Plan per Application I.D. No. APE20220004 was previously approved on January 11, 2023.


BREC has contracted Burns & McDonnell Engineering Company, Inc., (Burns & McDonnell) to assure drilling, installation, and abandonment of the three monitoring wells are performed in accordance with 401 KAR 6:350. Burns and McDonnell will be utilizing a Kentucky certified well driller with Cascade Drilling LP. Cascade Drilling is scheduled to be on-site at Sebree Station on April 24, 2023 with the work expected to continue through May 2023. A Construction Progress Report (CPR,) will be submitted within 45 days of the monitoring well installation activities in accordance with the permit condition GSTR003.

Please contact Mark Bertram, Manager Environmental Services, at (270) 844-5708, or mark.bertram@bigrivers.com, should you have any questions or concerns.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations."

Best Regards,

Heather Todd Plant Manager

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

Constructed Decontamination Pad used for decontamination prior to drilling, between borings, and at completion of project.

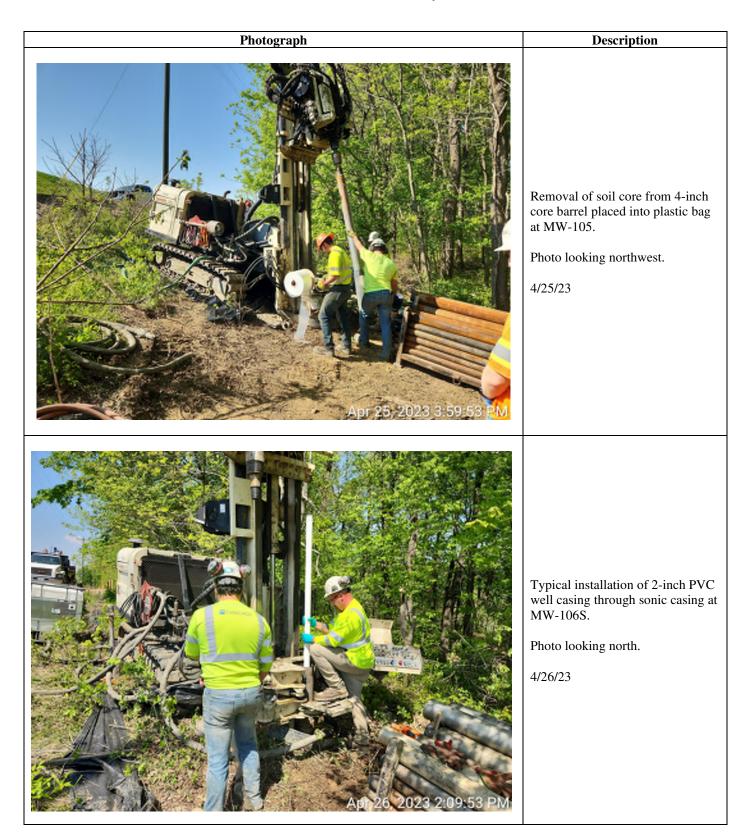
Photo looking west-southwest.

4/25/2023

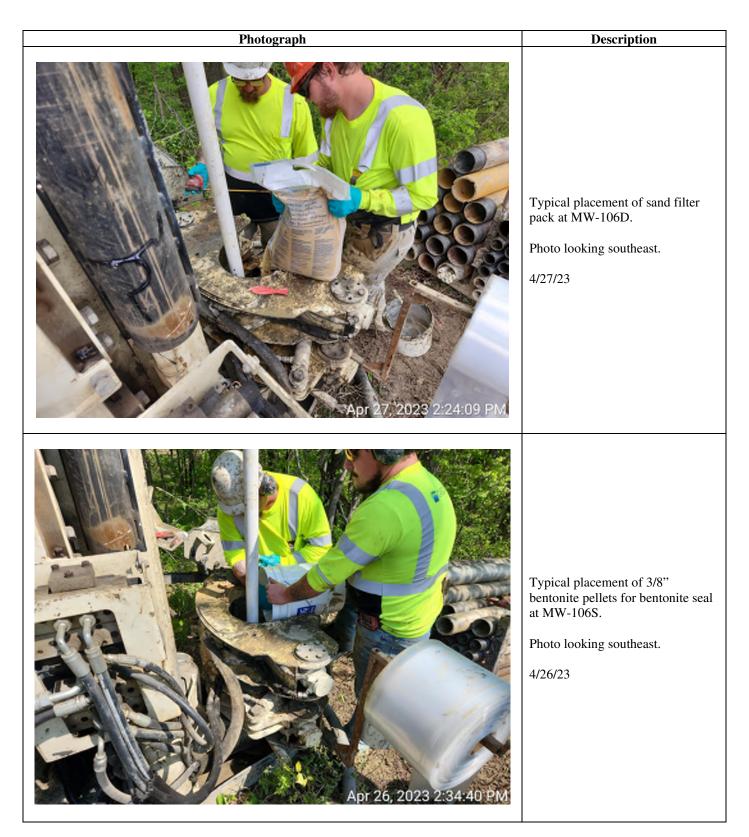
Typical decontamination of sonic drill casing/tooling prior to the start of drilling.

Photo looking west.

4/25/2023


photolog.doc 1 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky


photolog.doc 2 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

photolog.doc 3 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

photolog.doc 4 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

Typical mixing of high-solids bentonite slurry grout at MW-106S.

Photo looking east.

4/26/23

Typical setup for pumping highsolids bentonite grout with tremie pipe for annular seal of well at MW-106S.

Photo looking north-northeast.

4/26/23

photolog.doc 5 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

Typical addition of 7-inch sonic casing overriding the 6-inch sonic casing at MW-106S.

Photo looking northeast.

4/26/23

Typical setup for pumping highsolids bentonite grout with tremie pipe for annular well seal at MW-106D.

Photo looking northeast.

4/28/23

photolog.doc 6 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

Centralizers installed on riser pipe for construction of MW-106D (>50 feet [ft] below ground surface [bgs]) placed every 10-feet starting above the bentonite seal to ground surface.

Photo looking southeast.

4/27/23

Typical construction of well surface completion consisting of formed well pad, protective well casing, and bollards. Pouring concrete into upper 3-feet of annular space from top of bentonite slurry grout to ground surface.

4/29/23

photolog.doc 7 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

photolog.doc 8 of 19

Monitoring Well Construction Progress Report
Big Rivers Electric Corporation
Robards Kentucky

Robards, Kentucky Photograph	Description
Apr 30, 2023 9:20:57 AM	Typical weep hole (shown by arrow) near base of protective well casing (above well pad). Photo looking east. 4/30/23
	Photo of MW-105. Typical completed monitoring well with sand filler between well riser pipe and protective well casing. Kentucky well tag placed on the underside of the protective well cover. 5/01/23

photolog.doc 9 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-105 core from 0 ft to 5 ft bgs. Bottom of core at right.

Clay, some silt, trace fine sand, medium-high plasticity.

4/25/23

MW-105 core from 5 ft to 10 ft bgs. Bottom of core at right.

5-7.4 ft bgs: Clay, some silt, trace fine sand, medium-high plasticity.

7.4-10 ft bgs: Clay with silt, some fine sand, medium-high plasticity, medium-high stiffness.

4/25/23

photolog.doc 10 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Photograph

MW-105 core from 10 ft to 20 ft bgs. Bottom of cores at left.

10-15 ft bgs (middle bag; poor recovery) and 15-20 ft bgs (bottom bag). Top bag from previous run (5-10 ft bgs).

10-15ft bgs: Clay with silt some fine sand, medium plasticity medium to high stiffness dark yellowish, Brown 10YR 3/4.

15-17ft bgs: Same as above. High plasticity & some moisture.

17-20 ft bgs: Clay with some silt. Trace fine sand. High plasticity. Some moisture, very dark grey 2.5 Y3/1. Medium to high stiffness.

4/25/23

MW-105 core from 20 ft to 30 ft bgs. Bottom of cores at right.

20-25 ft bgs (top bag) and 25-30 ft bgs (bottom bag).

20-25.5ft: Clay with some silt, trace fine sand. High plasticity. Damp-moist. Very dark gray 2.5Y 3/1). Medium to high stiffness.

25.5-30ft bgs: Clay with some silt. Trace fine sand. High to very high plasticity. Moist grayish brown 10YR 5/2. High stiffness.

4/25/23

photolog.doc 11 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-105 core from 30 ft to 32 ft bgs. Bottom of core at right. Note interface of clay and sandstone (yellow arrow).

30-32ft bgs: Weathered sandstone. Fine to very fine-grained sand. Light tan color. Some iron staining.

4/25/23

MW-106S core from 0 ft to 5 ft bgs. Bottom of core at left.

0-5 ft bgs: Clay with some silt, trace fine sand, trace fine gravel. Medium to high plasticity medium to high stiffness. brown 10YR 4/3. Some iron-stained lenses.

4/26/23

photolog.doc 12 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-106 core from 5 ft to 10 ft bgs. Bottom of core at right.

5-10ft bgs: Same as above. trace to some coarse gravel. Some form staining. Rock in core barrel resulted in low recovery.

4/26/23

MW-106S core from 10 ft to 20 ft bgs. Bottom of cores at right.

10-15 ft bgs (bottom bag) and 15-20 ft bgs (top bag).

10-11.8ft bgs: Same as above. trace to some coarse gravel. Some form staining. Rock in core barrel resulted in low recovery.

11.8-15 ft bgs: Clay trace silt. High plasticity medium stiffness dark grey 10YR 4/1. Trace to some iron staining.

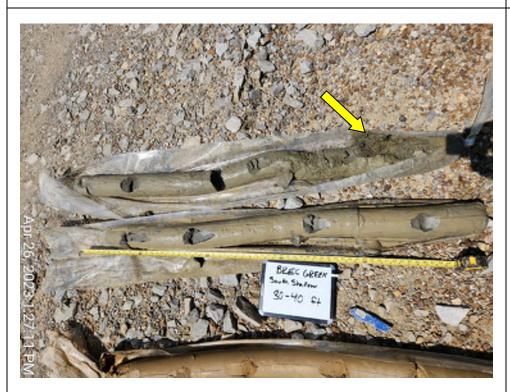
15-20ft bgs: Clay with trace to some silt trace fine sand. grey streaking dark yellowish brown 10YR 3/6. Medium plasticity medium stiffness.

4/26/23

photolog.doc 13 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description


MW-106 core from 20 ft to 30 ft bgs. Bottom of cores at right.

20-25 ft bgs (bottom bag) and 25-30 ft bgs (top bag).

20-25 ft: Clay trace silt, high plasticity medium stiffness. Brown 10YR 5/3. Consistency remains the same throughout changing to a slightly dark brown. More iron staining present

25-30 ft: Same as above. Medium to high stiffness. Less iron staining present.

4/26/23

MW-106S core from 30 ft to 40 ft bgs. Bottom of cores at right.

30-35 ft bgs (bottom bag) and 35-40 ft bgs (top bag).

30-35ft: Clay trace to some silt. Trace fine sand. High plasticity medium stiffness. Dark grey 10YR 4/1.

35-38 ft bgs: Same as above.

38-40ft bgs: Transition to coarse gravel with some fine sand trace to some clay and silt. Dark grey. No plasticity medium to low stiffness.

Note gravel and sand near bottom of core (yellow arrow).

4/26/23

photolog.doc 14 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

photolog.doc 15 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-106D core from 20 ft to 30 ft bgs. Bottom of cores at right.

20-25 ft bgs (bottom bag) and 25-30 ft bgs (top bag).

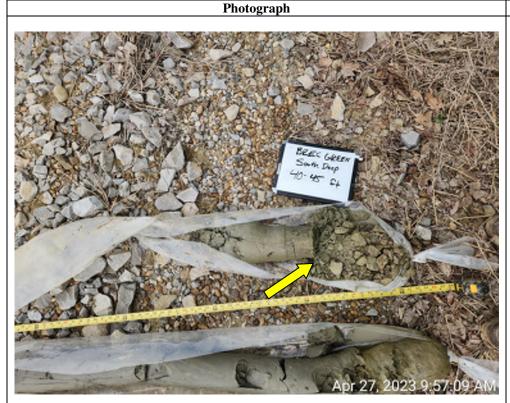
20-25ft: Clay with trace silt low to medium stiffness. Iron staining present throughout yellowish brown 10YR 5/4 medium moisture high plasticity.

25-30ft: Same as above trace iron staining high stiffness medium to high plasticity.

4/27/23

MW-106D core from 30 ft to 40 ft bgs. bottom of cores at right.

30-35 ft bgs (bottom bag) and 35-40 ft bgs (top bag).


30-35 ft: Clay trace silt high plasticity medium stiffness dark grey 2.5Y 4/11.

35-40ft: Sand with gravel fine to coarse sand/ gravel dark grey 2.5Y 4/1 trace to some clay and silt none to trace plasticity.

4/27/23

photolog.doc 16 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-106D core from 40 ft to 45 ft bgs. Bottom of core at right.

40-45ft: Interbedded sandstone and shale. Weathered shale bluish grey color. Soft fine-grained sandstone breaks easily micaceous, pyrite and tan color.

Note interface of clay and weathered sandstone/shale around 42ft bgs (yellow arrow).

4/27/23

MW-106D core from 45 ft to 50 ft bgs. Bottom of core at right.

45-50ft: Tan light iron-stained sandstone fine grained micaceous. Dark grey shale. Grey sandstone fine grained micaceous; some organic streaking/ layers throughout.

Note interbedded shale layer around 48 ft bgs (black; yellow arrow) overlying fine-grain sandstone (light gray).

4/27/23

photolog.doc 17 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

Description

MW-106D core from 50 ft to 55 ft bgs. Bottom of core at right.

50-55ft: Iron-stained band (0.7' ft thick) Dark grey shale. Grey micaceous sandstone. Fine grained some organic streaking/ layers throughout.

Note interbedding of sandstone (light gray) and shale (dark gray to black, yellow arrow)

4/27/23

MW-106D core from 55 ft to 60 ft bgs. Bottom of core at right.

55-60ft: Same as above Ironstained band

Note iron staining near top of core (yellow arrow).

4/27/23

photolog.doc 18 of 19

Monitoring Well Construction Progress Report Big Rivers Electric Corporation Robards, Kentucky

photolog.doc 19 of 19

4/25/23	C. Hogland J. Forshor
Tuesday April 25th, 2013	
53- 68°F, Partly Sunny , SSE	5-10-ph
Sotup/Begin Drilling new	
Chris Hogland, Josh Frashr	
1955 J. Fasher on s.te	
1000 C. Hogland & Casenda dorl	1
٥٠ ١٠٠٠	······································
1010 PTA/safely meeting	
1030 Cascade Comprehe site s	alidy
ocumention	
1100 Show Cascade well loca	al-roms and
zolable water source.	<u></u>
1145 Take equipment on site	
and setup. J. Frank lea	
1220 J. Frash Back on- Sile, Co	iscale officia
for lunch	
1255 Coscade back on the	
1305 Begin setup of decon	Slahron
1340 Decon Station Setup. Prop	Por decor
1410 gravity field of water from	hole is not
though for powerwash.	ioscade leures
site to got somp pump f	or decon.
1430 ky State reps on s	He.
1445 Carcade back on site	
1505 Begin Decon of to	معرابس
	•

Ritt in 14 Reim.

4/26/23 Wednesday April 26th 2023 48-70°F, Sunny, Varable would MW Install / some drilling Josh Frasher 0700 Cascada on sila 0730 BMCD on sile 0735 PTA/ co Pety meeting 6740 worm up my and prop for grout 0745 top of bontonik at 16.5ft ~ 6" 0755 Mix grout 3/4 bas growt ~ zogallons water 0757 Install 15ft growt pipe 0800 pump grout into well 0802 ~ 15 gallone of grout pomped into Cosing begin polling up remaining wgs Ma 0805 Grout at SET bas. begin fear down of Ring * nok * extra grout will be disposed of with cultings 0850 Begin Decon of Tods 0915 Discuss Devolpment of MW-2 with J.m Feild (BMcD) 0930 Cascada Shid steer fork broke. Now ones located in Henderson, official to refereve

J. Frash

Retario de Ruin

· 4/26	0/23
	BREC Personell on site to do safety walk through
1045	Cascade back on site with mu fortes.
1050	Continue Decom and Setup of Rig at-
1130	Casede affsite for lunch
	C. Hogland on site
1145	from top of-comy WL: 9.83 TD: 35.22
	From ground surface WL: 5.95 TD: 31.65
1255	Cascade back on site
1240	Begin drillion on south Shellow
	well (mw- loves)
1325	Complete 4 x la sonie setup for
1912	7" over drill
1242	Collect (MW-1065-22-24) from 22-24'
	byin 7" over drill
17	A.H. 1 (Mary 1945 27-78) 8- 37-781
12	-111 Lat 1 -1005 - 51-21 Man 21-21
139 [Collect (MW-1065-37-39) from 37-39' 7" at 40' bgs. TD total at 40'
	Thomas as a second
Nell e	easing mangurments
Lap	: 2.6" risers: 9.97 Screen-Cap: 10.20 9.18
	_
	9,99 4,98
	1,10

4/26/	125	7
1410	begin Install of MW-1065.	
1411	begin adding sand buffer	
1415	Topot buffer at 378+ bys.	
	Sch- well and add filter pack	
1432	top of Piller pack at 27 bgs	
<u></u>	5.5 bags usud	
1435	begin adding beneath pullete	
1437	top of building plug at 25' bas	٥
	Add water for hydration and	
	will allow Zhrs to hydrate	
	I bucket usub	
1445	Skid Steer cannot access tooling to	
	decon. No concrete with consende to	
	pour well put. will major digging out	
	well palderny down time	
1500	Begin digsing MW-105 well pal.	
1530	Complete dryging we well pad	<u>-</u>
1610	Clean up soil cuttings. proper	
	grout	
1630	comp ~ 300 gallons of IDW	
1638	Begin many grown	
	1.5 bays 250 gallons	
1640	begin pumping was transmis	
	tobe, who bosines	····
1645	Grant near to pot casing will	
	pull up trammit to be and T'	
) 	Casing. boot will be added the control	Á

1010

Cascade advance 711 ha 45ft to

Att water Rose

See 1 Aft overburdum.

8 4/26/23

1652

1700

1720

4127	[23			11
		onstruction	of well.	
		-6 for week		
1425	Topos	bulle at	(2.5 bos	.
	begn	adding 12	ft of f.1	h
م ماه	Pach			
1435	_	- Filter pac		
1437		- adding		
1446		F Bentanik	Plug (٠ <u>٠</u>
11146	- / len	of why	>>06/4/-	
)445	Tou	, we for pH co	4~2 dy	mp (and 1400
1450	Dear	Developm	1 4,3/4.0	1.1/7.0 10.1/10.0
	mw-		0.7	
PH	cond.		gallom	Turb
8.4	1282	17.6	0.25	NIV
8.5	1231	17. 4	2.5	N/A
8.1	1511	17.3	5	Na
` <u></u>		· .	Dey	: :
Slow	rechange	will not a	llow Po-	Lad Levelgens
foliay.				
1530:	will was	- fill 1640	for growt	providal
11.30	Rain hold	5 OUT		
 430	kam Yie	hs up. will	Scot in	flu
1435	Country 2	emis off		
; ====== ::: :::	Section 2	1/1/20	72 -	
		1/4/21	13	litter in the Pains
		<i>/</i> '	· · · · · · · · · · · · · · · · · · ·	

, <i>H</i>	(O[13			J. Frasher
Frider	y April 2	8" , 7073		
54-	68, Cloud	5 , 1. sht	w.bds	
60	of mm-1	oup, Dev	clop wells	
Jos	ih Frash			
0700	Cascale			
0115	_			
0730	Mornin			
6735°		S WU.	1.86 From	JOT
0746	Begi-	Cerelopomo	L .	
PH	cond	Temp	Turb	anou-1
6.5		" 12 2	NIA	~1.5901
6.5	2.33		NA	~3 g.l
ما م		15.1	NIA	~4.5911
6.5	2.21		1V	~ (e ga)
6753	DZY			~6,5°5)
6755	set up a	h mw-100	es WU: 17	2.19 700
		evelopmens		
PH	Co-Z	Temp	Turb	amount
7.2	556 MS	15.L	NIA	2.5ga3
7.2	501	15.1	NIA	22 gn 1
7.2	521	14.8	NIA	~ 5gx)
69	743	14.3	NA	~ (pgn)
69	709	14.5	MA	~7.550)
6.9	746	15.6	MIT Cloud	~10ga)
well	15 nech	water to	Som ra	e 0.5
Comp	11 mm , mail	allow P	all recharge	belove
Con	time der	elopmunh		
	reingijies romentee panyen remorte			TARREST PRODUCTION OF THE PARTY

4128	3/23			13
0850	from For	[دهاق -	<u> </u>	· · · · · · · · · · · · · · · · · · ·
กฉรห	Begin ,	~~~~,	growt	
005 7	Fump a	יו - וניסי	to mu	N-106D
0407	~5096	llong c	+ growt	usel.
	will pul	L UP	451mg c	150 b-
	growt , f	· rued	e è,	
0260	A11 +00	1.m 00	1-0F F	m grown)
	grout.	بہ_ <u>ح</u> جاد	- bas.	move lload epopula
0945	Conscala	lewes 1	o get w	che Germ
	Comtinue			
015				
1020				''y
1030	General for	broke	ط النه	gin lasting
·	UP causes	must en	1 har de	- duon pol
·. ::	سهااه با	wells	to rechar	
1130	mw-106:			J.
1132				lopomu
pН	Temp	(0-6	ط س	gallon,
9.0	18.4	112	NA	~ Il gallons
6.9	17.2	760	Ma	-13 gallong
6.8	16.5	૭૦૮	NA. NA	~15 gallons
6.8	16.2	812	NA	~17 gallong
_ WL	at / belen	- Oum	νο. 3)-ον	o to allow
\$ 4	10		1	
			Go- lew.	h and bo get
&	-}- Ao- &	evelan	of	mw-Z
			·	Rete in the Rein
<u>.</u>				1 seed in the 1 whom

14 4/28,	123			
		h b	ach on	site
1337				will allow
		more t	lone be to	change
1340	sch	مه م	mw-2	with
· : •··• ··· ··			ch to d	
1345	Bun	SU5 92	> with	Pluma e
·	blook	·		
			around	20F4 STOC
		e wi		-
1355	Compl	ete si	ניייניש	WL: 19.28
1400			opment	of MW-Z
PH			Turb	gallone
6.8	23. G	1457	NIa	2.5
6.8	20.9	1559	L83	~3 Planting
6.9	18.2	1(009	407	~le l
7.0	18.6	1560	<i>3</i> 03	~9 Clouby
6.8	17.7	1620	536	210 8
W-AL P	umpler	el . w.:	Il allow ro	
1425	more 6	mok to	mw-106	> for final
	develop	wint 1	NL:18.2	
PH	Temp	Cond	Turb	gallons
(e.B	18.7	896	NIA	~17.5
67	18.1	887	NA	~70
(e.7	18.1	4∞	AIN	~22
wells	الاس	heed	to re	charge overele
1500				prds. load
Factoria.	up Rig	,	p-	- 1 - 1 - 1

4/28/23 1505 deploy down hole commen in muz 1520 finsh diggins well pads 1522 finish down hole Concers 1530 Cascade offsike 15\$5 BMCD Affects Cul pH 4.2/4.0 7.1/7.0 10.0/10.0 conc: 1387

Been de Roi

4/29	1/23			. 17
PH	Temp	Cand	Tue	· —
(a.le	IS.1	1.27		~ Igal
0.60		75.1	SOL	~ 3
له. لو	157.1	1.26	418	~6
6-6	15.8	1.24	<i>3</i> 85	~ 9
10 C	4 · · · · · · · · · · · · · · · · · · ·	1.23	300	~ il
ندا: توك		1.22	251	~ 15
(0.7		1.21	247	~18
عا ص		the contract of the contract o	231	*70gl
		pump.	w.11 a	llow for
	huze.			
0845		Ra Ca	reade si	ku J dav n
	until 12	air light	m3	
0930	Continu	working	an h	iell pads
1035	MM-106E	> WL70	rc: 31.67	TOC 3F-
<u> </u>	above go	m-7		
1037		Second	developm	}
_ BH	Temp	Con2 -	Turb	amount
7.9	(6.3	(B) A	NA	~. 25
7.8	15.9 1	84 M	4	22gal
7.5	15.2 2	89 NI	4	~4901
7.5	15.6 21	15 PM	بيرسام بيكو ۾	~55-1
Dry				~ 2.2
1160	Casele bn	ah for	unch a	nd ho gal
<u>.:1</u>	water			

18 4/29	/33
1200	Cascade Returns with water
1205	Continu (on Street on of well)
	pads
1210	mix concrete for boilers at MW-1065/2
1230	poor concrete who mw-1965 and
	Slurry. Concrete
1310	Complete mw-1065 pad. Begin on
	mw-loup
1315	poor concrete into MW-106D and
	push outer casing into Conent
	Slucy
1345	Complete pad and bollade ur
	MW-1065/D
Well hay	IDS MW-106D 8008 - 0528
	mw-1055 6008 - 0527
1420	Begin Construction of MW-105
1425	poor concrete into mw-105 and push
	orther cases into concert story
ISOD	Complete and and bollerds on
	mw-105
505	Cascada tulus trash to dumpster
1535	MW-1045 WLTOC: 29.70
	Begin development of MW-106D

4/29/23	19
PH Temp Cond Turb Amount	
7.8 20.6 312 MA 2,5	
7.4 17.5 347 NA ~Z	*
7.5 17.2 341 NA ~ 4	
7.5 M.O 334 N/A 25	
Dey - 6 gal	
1600 MW-106D Dry PULL UP pump	
gerelopount Completel	
mw-105 8008-0579	
1610 Drill weep holes into outer	
Casua	
1625 Cascade load last of equipment	
1645 All personnel offsk	
·	
	:
103	
4/29/23	
111	:
	3

Pate in the Rose.

20 4/30/23	J. Frush
Sunday April 30" Z023	
Sunday April 30th 2023 51-60, sunny, windy Slug lesting	
Slug lesting	
Josh Frash	·
0800 Arrae on site	
0810 Check water le	
mw-105 WL: 7.59	To: 33.76
mw-1065 WL: 19.47	D: 41-60
MW-106D WE 23.85	To: 66.35
0820 Selup for Slug his	
Other Begin slug test	
	Dog.
+ measurements from well outer coms well www1065 -2.53 Ft5 2.80ft	2.5507
MW-106D 1.76A	
MW-105 2.79FL	2.5351
1225 complete mw-105	
1727 pull up and load aug	
1245 off site	
/ 1/20/23	
A 4130/23	
John The Control of t	:

5/1/	J. Frank 21
Mondo	may 15+, 2023
50-1	03, portly sunny I Windy
Slug T	lesting
Josh	Frashr
07 <i>15</i>	Anrive on site
0735	MW-1065 WE: 19.53
	mw- 1060 WL: 23.63
6740	Setup for slug test
6757	Begin Slug test on Mw.1065
0845	Finish mw-106 5 Slyy lest
	pull up direct
୯୫୧୦	Download Data and Schop So
	MW-10-6D Slug lest
(385)	Beg - non-low D Slug test
1150	Complet mw-104D stug test-
	dull up diver and download
liss	Setup for MW-2 Slugtest
	WL: 24.(6)
1200	Begin Slug ket on mwz
وماك _	5,725 3" x 323/4"
	1.5" y 32.5"
1400	Pull up diver and complete
	Slug test. Download dates
1415	off six
	Drop off sample & for Shipping va
Fedex	T-K+: 6426 9096 4609 Roman Ram

Rete in the Rain

APPENDIX E - DRILL LOGS

Drilling Log

				Drilling	g Log				
Project Name			roject No. 15				Boring	Number	V-105
BREC Green LF MW-2 Ground Elevation	Characterizati			REC Sebree Station; 9265.66		3'12.60"	Page	IVIV	<u>v-103</u>
378.9 ft. amsl			-	93006.72	Longitude 87°30			1 of	3
TOC Elevation 381.8 ft. amsl		A	Air Monitoring	Equipment 4- 0	Sas Meter & Pers	onal H2S	Total F	ootage 32 fe	eet
Drilling Type I	Hole Size	Overbu	rden Footage	Bedrock Footage	No. Of Samples	No. Core	Boxes	Depth to Wa	ter Date Measured
Roto-Sonic	6"		31 ft	1 ft	4	NA		12.35 ft	5-19-23
Drilling Company Cas	scade Drillin	g LLC			Driller(s) Russ	s Gordon			
Drilling Rig Geoprob	e 8140LC				Type of Sampler 4" To	ube Core	Barrel		
Date 4-25-23		To 4	1-26-23		Field Observer(s)	J. Fras	her & C	. Hoglund	
Elev. Depth Blow (ft msl) (ft) Counts	Reco USCS & Symbol Run	PID Rdg.		Description		Depth (ft)	[Well Diagram	Remarks/ Notes
378 - 1 - 377 - 2 - 376 - 3 - 377 - 4 - 377 - 5 - NA 373 - 6 - 3 - 377 - 8 - 377 - 8 - 377 - 8 - 377 - 9 - 368 - 377 -	Time CH 1 5/5 100% OH CH 3 7/10 7/7%	íó NA	dark yello Roots ne plasticity Roots/ O	rganic silt some fine sand, to high stiffness dark	medium plasticity	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		2" diameter Sch. 40 PVC well riser. High Solids Bentonite Grout Slurry (placed 4/26/2023)	4" sonic casing sequentially overridden by 6" override casing

						Drilling Log, continued		1	
									V-105
	t Name			_F MV	V-2 CI	naracterization		Page 2 of	
Projec	t Numbe	er 15646		<u></u>				Date 4-25	-23
Elev. (ft msl			USCS Symbol	Recov. & Run Time	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
364 - 363 -	15 -		СН			Clay with silt some fine sand, medium plasticity medium to high stiffness dark yellowish, Brown 10YR 3/4. Same as above. High Plasticity & some moisture.	- 15 - 15 - 16		Collected MW-105
362 -	- - - 17 - - - -					Clay with some silt. Trace fine sand. High plasticity. Some moisture, very dark grey 2.5 Y3/1. Medium to high stiffness.	17	Bentonite Seal (3/8" bentonite pellets: placed	Soil _ sample _ (15 - 17)
361 -	_ _ 18 — 					13/1. Wedidin to high stillness.	- 18- - 18- 	pellets; placed 4/25/2023 and hydrated overnight)	
360	19 - 19 - - - -						- 19 - 19 		
359 -	20 -			4			- 20 - 		- - - -
358 -	21 -	NA NA			NA		- 21- 22-	diameter Sch. 40 PVC; 0.01" machine-slotted. Filter Pack sand (placed	- - - - -
356 -	23 -			10/10 100%			- 23		- - - -
356 - 355 - 354 - 353 - 351 - 350 - 349 -	24 —						- 24 - 24 		Collected MW-105 Soil
354 -	25 – 25 –		CH			Clay with some silt. Trace fine sand. High to very	- 25 - 25 		sample — (23 - 25) — — — —
353 -	26 -					high plasticity. Moist grayish brown 10YR 5/2. High stiffness.	- 26 -		- - - -
352 -	27 -						- 27 - - 27 - 		- - - -
351 -	28 -						- 28 - 28 		- - - -
350 -	29 -						29-		Collected MW-105 Soil sample
349 -	30 -			5 2/2 100%			- 30 		(28 - 30) — - - - - -

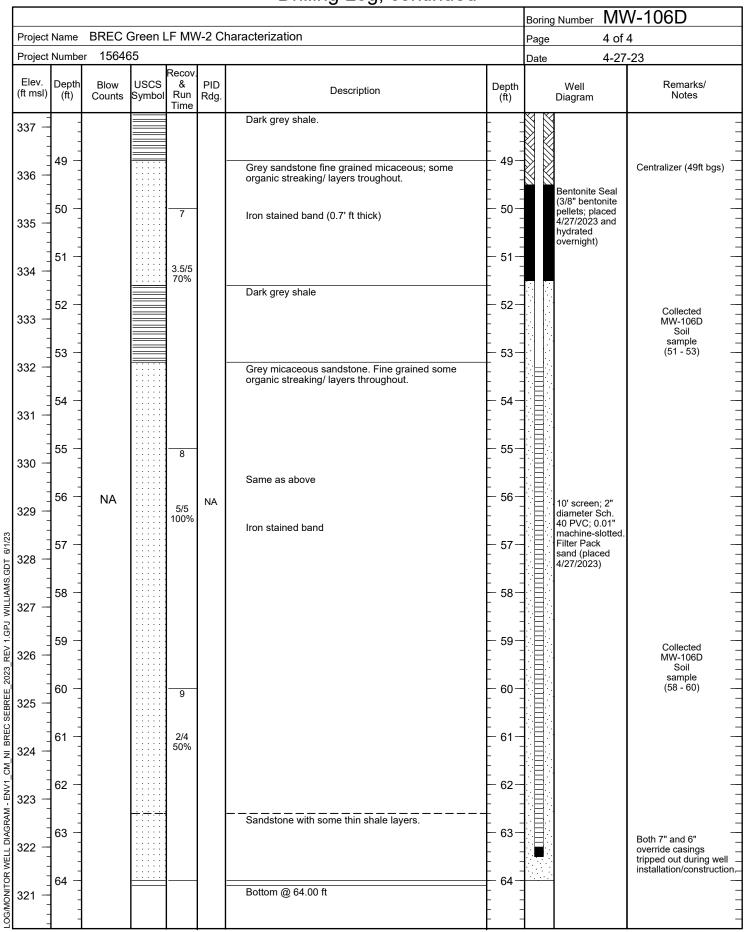
						Drilling Log, continued			
								Boring Number \	/IW-105
Project	Name	BREC (Green I	LF MV	V-2 CI	haracterization			of 3
Project	Numbe	er 15646							-25-23
Elev. (ft msl)	Depth (ft)	Blow Counts	USCS Symbol	Recov. & Run Time	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
	-		: : : : :	:	NA	Weathered sandstone. Fine to very fine grained sand. Light tan color. Some iron staining.			_
-	-					sand. Light tan color. Some Iron staining.			Collected -
347 -	32 -					2 11 2 2 2 2 2	32-		MW-105 — Soil —
-	1 -					Bottom @ 32.00 ft]	sample (31 - 32)
346 -	33 –						- 33		
	-						 		6" override casing tripped out during well installation/construction_
345 -	34 –						_ 34 _		\exists
-	-								1 =
344 -	35 —						- 35-		
	-						- 		
343 -	-								1 7
:	36 –						— 36 —]	\exists
:	_						-]
342 -	37 –						_ 37_]	
:] -								1 =
341 -] 38 —						- 38]
	-						- 		
340 -									
	39 –	NA					— 39 <i>—</i>] =
	1 -]]
339 -	40 -						_ 40_		_
 	-								
338 –	41 -						 - 41-]
] -								
337 -]	
- 007	42 –						- 42 -] =
]]]
339 - 338 - 337 -	43 –						43]]
	1 -						-]
335 -	- 44						- 44		1 =
<u> </u>] -						├ [`] -		
334] -						- -		
334 -	45 —						45 	1	
- -	-						-		
333 –	46 -						- - 46 -]	-
. [] -						[]	
332 -	47 –						- - 47-]	\exists
	"' -						- 4/-]	\exists
	1 -						<u> </u>		\exists
≟ <u>[331 −</u>			<u> </u>	ļ	Щ		<u> </u>		

Drilling Log

							Drilling	g Log				
Project Na			<u> </u>	. ,.		Project No. 15		0.00015		Boring	Number	V-106S
BREC Gr Ground El			Cnaracte	erizati			REC Sebree Station; 9027.34		8'10.24"	Page	IVIV	<u>v-1000</u>
384.8 ft.						Easting 149	92997.32	Longitude 87°30			1 of	3
TOC Eleva 387.3 ft. a						Air Monitoring	Equipment 4- G	Gas Meter & Pers	onal H2S	Total F	ootage 40 fe	eet
Drilling	Туре	ŀ	Hole Size	е	Overbu	ırden Footage	Bedrock Footage	No. Of Samples	No. Core	Boxes	Depth to Wa	
Roto-S	Sonic		8"			40 ft	0 ft	2	NA		9.19 ft	5-19-23
Drilling Co	mpany	Cas	scade D	Orillin	allC		<u> </u>	Driller(s) Russ	s Gordon		ı	
Drilling Rig			e 8140		9 == 0			Type of	ube Core	Darral		
			C 0 140			4 00 00		Campion				
Date 4-	-26-23 T		i	Recov	_	4-26-23 T		Field Observer(s)	J. Fras	ner & C	C. Hoglund	
	epth (ft)	Blow Counts	USCS Symbol	&	PID Rdg.		Description		Depth (ft)		Well Diagram	Remarks/ Notes
384 - 1 383 - 2 382 - 3 381 - 4 380 - 5 379 - 6 377 - 8 377 - 8 377 - 8 377 - 8 377 - 8 377 - 8		NA	СН	2 1.5/5 30%		gravel. M stiffness. Ienses	above. trace to some sm staining. Rock in covery.	ity medium to high me iron stained	- 1 - 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3		2" diameter Sch. 40 PVC well riser. High Solids Bentonite Grout Slurry (placed 4/26/2023)	4" sonic casing sequentially overridden by 6" override casing; and then by 7" override casing.
374 - 1 373 - 1 372 - 1 371 - 1	1 -		CH	10/10 100%		Clay trac dark grey	e silt. High plasticity r / 10YR 4/1. Trace to s	nedium stiffness some iron staining.	- 10			- - -

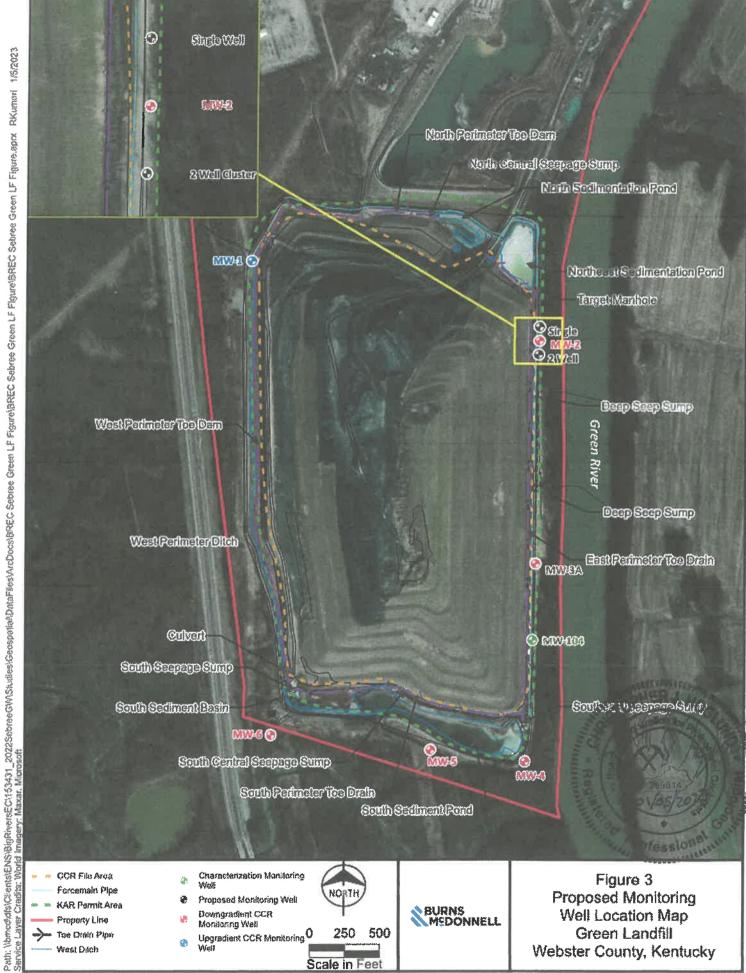
								i	
								Boring Number M	W-106S
	t Name			_F MV	V-2 Cr	aracterization		Page 2 o	
Projec	t Numbe	er 15646	35 T	D	1		1	Date 4-2	6-23 T
Elev. (ft msl)	Depth (ft)		USCS Symbol	&	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
Elev.	Depth (ft) 15	Blow	USCS	Run	PID Rdg.	Clay trace silt. High plasticity medium stiffness dark grey 10YR 4/1. Trace to some iron staining. Clay with trace to some silt trace fine sand. grey streaking dark yellowish brown 10YR 3/6. Medium plasticity medium stiffness. Clay trace silt, high plasticity medium stiffness. Brown 10YR 5/3. Consistency remains the same throughout changing to a slighty dark brown. More iron staining present Same as above. Medium to high stiffness. Less iron staining present.	Depth	Well	
355 -	30 -		СН	5		Clay trace to some silt. Trace fine sand. High plasticity medium stiffness. Dark grey 10YR 4/1.	30-		=======================================

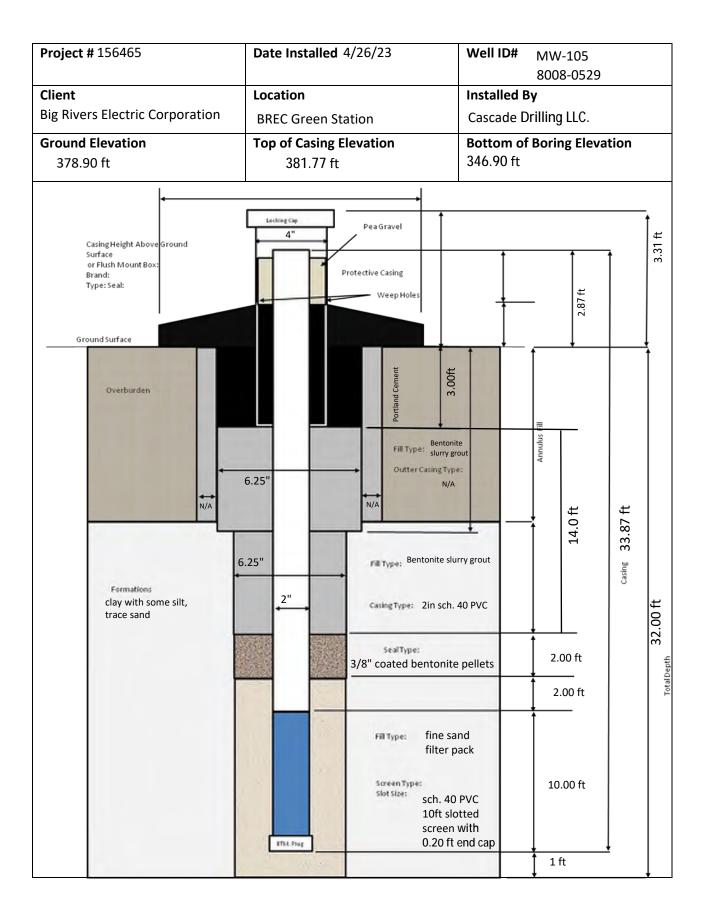
						Drilling Log, continued			
								Boring Number	MW-106S
Projec	t Name	BREC (Green I	LF MV	V-2 CI	naracterization		Page 3	3 of 3
Projec	t Numbe	er 15646	35					Date 4	I-26-23
Elev. (ft msl)	Depth (ft)	Blow Counts	USCS Symbol	Recov. & Run Time	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
353 -	32 -		CH			Clay trace to some silt. Trace fine sand. High plasticity medium stiffness. Dark grey 10YR 4/1.	 - 32		= = = = = = = = = = = = = = = = = = = =
352 -	33 -			10/10 100%			- 32 - 33	diameter Sc 40 PVC, 0.0 machine-slo Filter Pack sand (place	h
351 -	34 —						- - - - 34	4/26/2023)	' = = = = = = = = = = = = = = = = = =
350 -	35 —				NA	Same as above.	 - 35-		
349 -	36 -						 - 36- 		
348 -	37 -						- 37 - 37 		
347 -	38 -		GM-GC	 		Transition to coarse gravel with some fine sand trace to some clay and silt. Dark grey. No plasticity medium to low stiffness.	- 38 - - 38 - 		Collected MW-106S Soil sample
	39 -	NA					- 39 - 		(37 - 39) — — — —
344 -	40 -					Bottom @ 40.00 ft	40 - 41		
343 -	42 —						- · · · - - 42		Both 7" and 6" override casings tripped out during well installation/construction
344 - 343 - 344 -	43 -						 - 43		
341 -	44 -								
340 -	45 —						 - 45- 		
339 -	46 -						- 46 - 46 		
337 -	47 -						- 47 - - 47 - 		

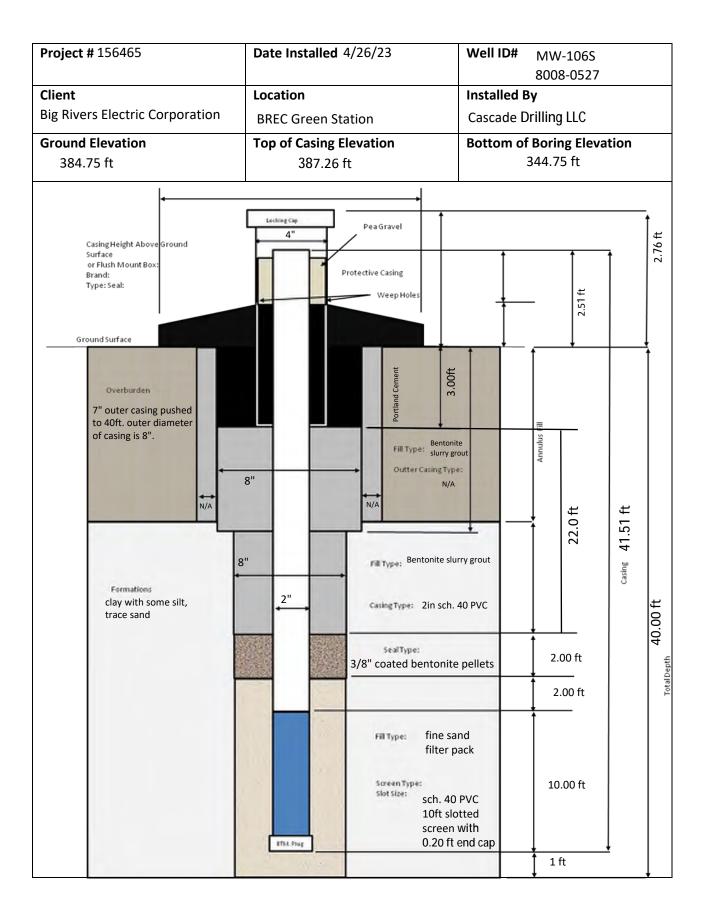

Drilling Log

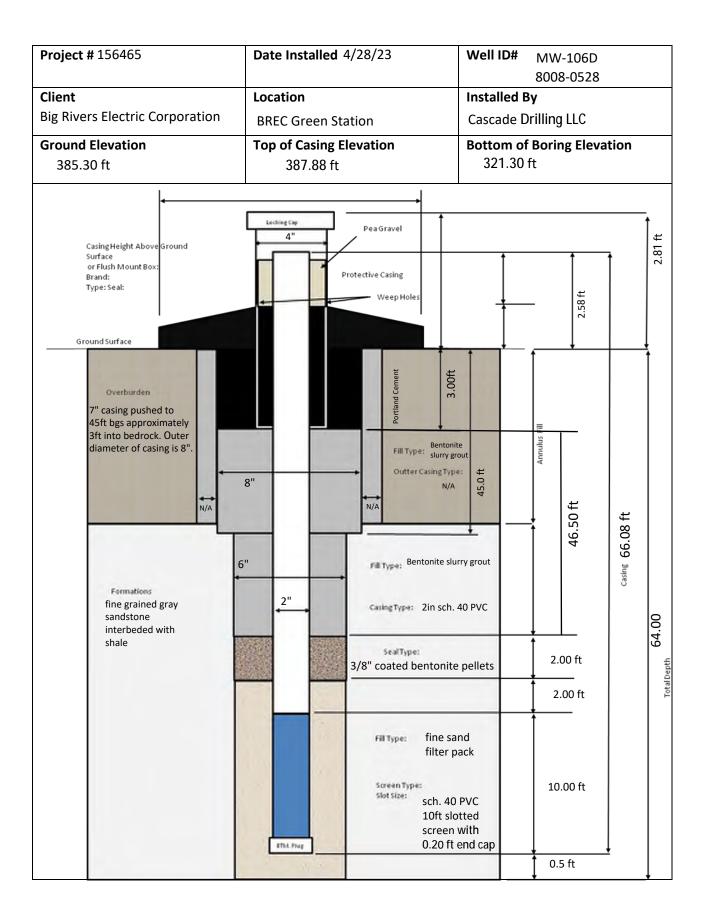
							Drilling	g Log				
Project						roject No. 15				Boring	Number	V-106D
	Green I Elevati	LF MW-2 on	Charact	erizatio			REC Sebree Station; 9033.25		'10.30"	Page	IVIV	V-100D
	ft. am	nsl			E	Easting 14	92996.71	Longitude 87°30			1 of	4
	levation t. amsl				F	Air Monitoring	Equipment 4- C	Sas Meter & Pers	onal H2S	Total F	ootage 64 f€	eet
Drilli	ing Type	e l	Hole Size	е (Overbu	rden Footage	Bedrock Footage	No. Of Samples	No. Core	Boxes	Depth to Wa	ter Date Measured
Rote	o-Sonic	С	8"			42 ft	22 ft	2	5		16.55 ft	5-19-23
Drilling	Compa	ny Ca:	scade [Drilling	LLC			Driller(s) Russ	Gordon			
Drilling	Ria (Geoprob						Type of	ube Core	Barrel		
	4-27-2				To 4	1-28-23		Sampler 4" II Field Observer(s)	J. Fras			
	 			Recov		7 20 20		ricia Observer(s)	1			
Elev. (ft msl)	Depth (ft)	Blow Counts	USCS Symbol	& Run	PID Rdg.		Description		Depth (ft)	1	Well Diagram	Remarks/ Notes
205	+ -		ОН	Time 1		Top soil	organic			N N		4" sonic casing
385 -] ;								<u> </u>			sequentially overridden by 6"
-	1 -		CH			Clay with	some silt, trace fine	sand Medium	_ 🕂 1 -			override casing; and then by 7" override –
384 -	1 -					plasticity	medium stiffness dar 1. Low to medium mo	k yellowish, brown	E			casing.
-	2 -					10114/2	. Low to medium mo	isture.	- 2 -			_
383 -	1			0/40					<u> </u>			
-]			2/10 20%					<u> </u>			
382 -	3 =								- 3 -			_
-	1 1											
-	4 -								- 4 -			_
381 -	1 }								E			
-	5 -	NA							- 5 -			_
380 -]	INA									2" diameter Sch. 40 PVC	
-	1 1									KA KA-	well riser. High Solids Bentonite Grout	
379 -	6 -								- 6 -	-KA KA:	Slurry (placed 4/28/2023)	_
-	1]								<u> </u>		4/20/2023)	
-	7 -				NA				7 -			
378 -]								ļ :			
-	8 -								- 8 -			<u>-</u>
377 -									-			
-	9 -								- - 9 -			
376 -	[- 9 -			Centralizer (9ft bgs)
-] :								- :			
375 —	10 –		CH	2	1	Clay trac	e to some silt high pla medium stiffness. Lig	asticity high	- + 10-			-
-						moisture 2.5Y 5/4.	rneaium stiπness. Lig	Jiii Olive brown	-			
-	11 -								- 11-			_
374 -	1]								<u> </u>			
-	12 -								- - 12-			<u>-</u>
373 -]			EIAC					- '-			
-]			5/10 50%					- :			
372 –	13 –								- 13-			
-									F :			
-	1 1											

						Drilling Log, continued		N 41	W 400D
		DDE0.	21	_ N AVA	V 0 01				<i>N</i> -106D
				_F IVIV	v-2 Cr	naracterization		Page 2 of	
Project	Numbe	13040		Recov.			T	Date 4-27	7-23
Elev. (ft msl)	Depth (ft)	Blow Counts	USCS Symbol	&	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
371 -	-		СН			Clay trace to some silt high plasticity high moisture medium stiffness. Light olive brown 2.5Y 5/4.	-		
370 -	15 —		CH			Clay with silt trace fine sand trace fine to coarse gravel medium to high stiffness dark yellowish brown 10YR 4/4 medium plasticity medium	15-		-
369 -	16 -					moisture.	- 16-		- Y
368 -	17 -						- 17-		-
367 -	18 -						- 18-		_
366 -	19 -						- 19-		Centralizer (19ft bgs)
365 -	20 –		СН	3		Clay with trace silt low to medium stiffness. Iron	- 20 - 20		-
364 -	21 -					staining present throughout yellowish brown 10YR 5/4 medium moisture high plasticity.	21-		_
363 -	22 -	NA			NA		- 22		_
]	23 –			10/10 100%			23		_
362 -	24 –						24		_
361 -	25 —		СН			Same as above trace iron staining high stiffness	- - - 25-		_
360 -	26 -					medium to high plasticity.	- 26		-
361 - 360 - 359 - 356 - 355 -	27 –						- 27		
358 -	28 —						- 28		
357 -	- - - -								
356 -	29 — - -						- 29 - 		Centralizer (29ft bgs)
355 -	30 -			4			- 30 - 		_


							Drilling Log, continued		B 41	AL 400D
										<i>N</i> -106D
		Name			_F MV	V-2 C	naracterization		Page 3 of	
P	roject	Numbe	r 15646		Danavi			_	Date 4-2	7-23 T
	Elev. t msl)	Depth (ft)	Blow Counts	USCS Symbol	Recov. & Run Time	PID Rdg.	Description	Depth (ft)	Well Diagram	Remarks/ Notes
3	54 -	-		СН			Clay trace silt high plasticity medium stiffness dark grey 2.5Y 4/11.			
3	53 -	32 -			10/10 100%			- 32 		
3	52 -	33 -			.00%			- 33 		
3	51 -	34 -						- 34 - - 34 - 		
3	50 —	35 -						- 35 - 35 		
3	49 -	36 -						36		
3	48 —	37 -						37		
3	47 -	38 -						38-		
3	46 —	39 -	NA	GM-GC		NA	Sand with gravel fine to coarse sand/ gravel dark grey 2.5Y 4/1 trace to some clay and silt none to trace plasticity.	39		Centralizer (39ft bgs)
3 3	45 —	40 -			5			- 40 - 40 		
3 WILLIAMS	44 —	41 -			2.5/5 50%			- 41 - - 41 - 		
23 KEV 1.GF	43 —	42 -					Interbedded sandstone and shale. Weathered shale bluish grey color. Soft fine grained sandstone breaks easily micaceous, pyrite and	42		
LOG/MONITOR WELL DIAGRAM - ENV1_CM_NI BREC SEBREE_2023_REV 1.GPJ WILLIAMS.GDT 6/1/23 ω ω ω ω	42 -	43 -					tan color.	43		
N BKEC	41 -	44 -						44-		
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40 -	45 -			6		Tan light iron stained sandstone fine grained micaceous.	- 45 	Terminated 7" override casing at 45 ft bgs.	
WELL DIAGR	39 —	46 -			3/5 60%			- 46 - 		
3/MONITOR	38 —	47 —						47		

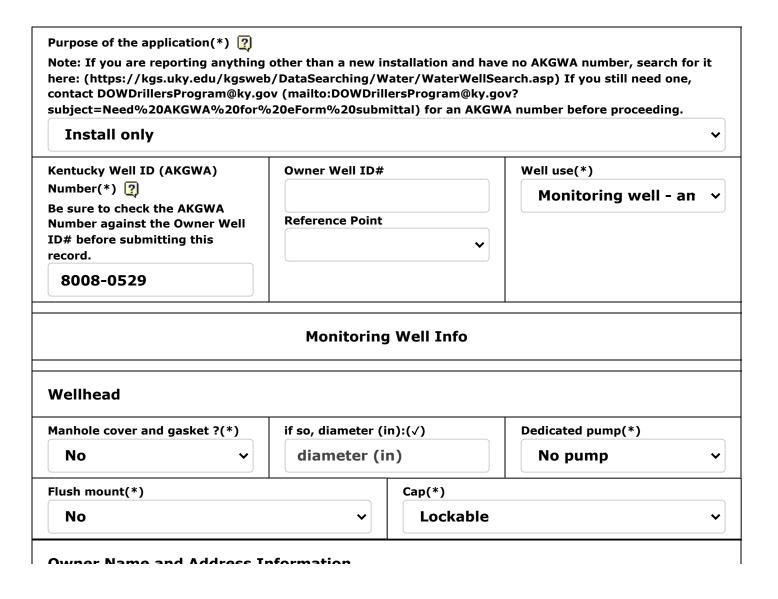

KENTUCKY MONITORING WELL VARIANCE REQUEST Pursuant to 401 KAR 6:350 Section 1 Energy and Environment Cabinet, Division of Water, 300 Sower Boulevard, 3rd floor, Frankfort, KY 40601 502-564-3410 GENERAL INFORMATION WELL LOCATION Adam Smith Requested By: William Gordon Received By: Quadrangle: Code Driller Certification Number: 0492 -Date of Request: County: Code: 0549 -00 April 20, 2023 U Number: Orligno Company: Time of Request: AKGWA Number: Cascade Drilling LP 14:28 atitude (dd): N Longitude: W -WELL OWNER IDENTIFICATION **EFFECTIVE DATES** Big Rivers Electric Corp Well Owner: Mark Bertram Telephone: (270) 844 5708 Well Construction Date: 9000 Highway 2096 Fmail: Mark.Bertram@bigrtvers.com Weil Must be Completed Address: Robards, KY On or Before: City, State: Zip Code: 42452 REASON FOR VARIANCE WELL CHARACTERISTICS Attach All Supporting Documentation, 401KAA 6:350 Section 1(6)(a) Soff Thickness: ft. Estimated Exact Use of lubricant Thread Armour TJC on pipe threads of drilling rods during monitoring well drilling enth to Bedrock: ß Blanket Variance for monitoring well installed in <30 ft. unconsolidated Water-Bearing Units: ft. Applicable Regulation: 401 KAR 6:350 Section: Type of Bedrock; **WELL CONSTRUCTION OR ABANDONMENT REQUIREMENTS** 🔲 The Division of Water is issuing you a onetime temporary water well variance as a certified monitoring well driller to plug a water well located at the following location: Please include a copy of this variance request with the plugging record you submit. 🗆 The Division of Water is issuing you a onetime temporary monitoring well construction variance due to shallow water zone to be monitored at this site. This monitoring well construction variance is for approval of the shorter interval of the sand/filter packs and bentonite seals installed at: Please include a copy of this variance request with the plugging record you submit. The Division of Water is issuing you a onetime temporary monitoring well (construction or abandonment) variance due to This variance is for approval of: Use of lubricant Thread Armour TJC on pipe threads of drilling rods during monitoring well drilling Big Rivers Sebree Station Green Landfill For wells installed at: Please include a copy of this variance request with the plugging record you submit. CASING AND SCREEN INFORMATION in. Outer Casing Diameter: To: Hole Diameter: in, Material: From: From: To: Hole Diameter: in. Inner Casing Diameter: in. Material: To: Hole Diameter: Screen Diameter: in. Material: From: SEALING MATERIAL REQUIREMENTS FOR PLUGGING ADDITIONAL REQUIREMENTS Sketch Map must be provided: Sealing Material Type: For three (3) characterization groundwater To: Method: From: monitoring wells near MW-2 (Green LF) Method: From: THIS VARIANCE IS NOT VALID UNLESS SIGNED BY THE CERTIFIED MONITORING WELL DRILLER AND THE WELL OWNER WELL OWNER AFFIRMATION **ORILLER AFFIRMATION** and the above described well is not in compliance with the water web I, the undersigned, agree to construct the above described well in accordance with all water well construction practices and standards established by the Kentucky Energy and Environment Cabinet, Department of Environmental Protection and in accordance with those conditions described in this variance request. I will be held financially responsible for remedial measures for this well if I fall to construction practices and standards established by the Kentucky Energy and Environment Cabinet. I constructions process and abstracts constructed a variance to allow the well to be constructed according to the constructed according to the constructed according to the constructed as described in this variance request. By signing below, I give my permission for the well to be constructed as described above. If this variance well is constructed to the specifications of this construct the well in compliance with the conditions established in this variance request. variance and results in degradation of groundwater quality, I will be imancially responsible for remedial measures for this well, including plugging if necessary. Date: Signature: **DIVISION OF WATER AFFIRMATION** Signature: Wash Best Date: 4-28-25 Date: 4/25/23




Source: Esra

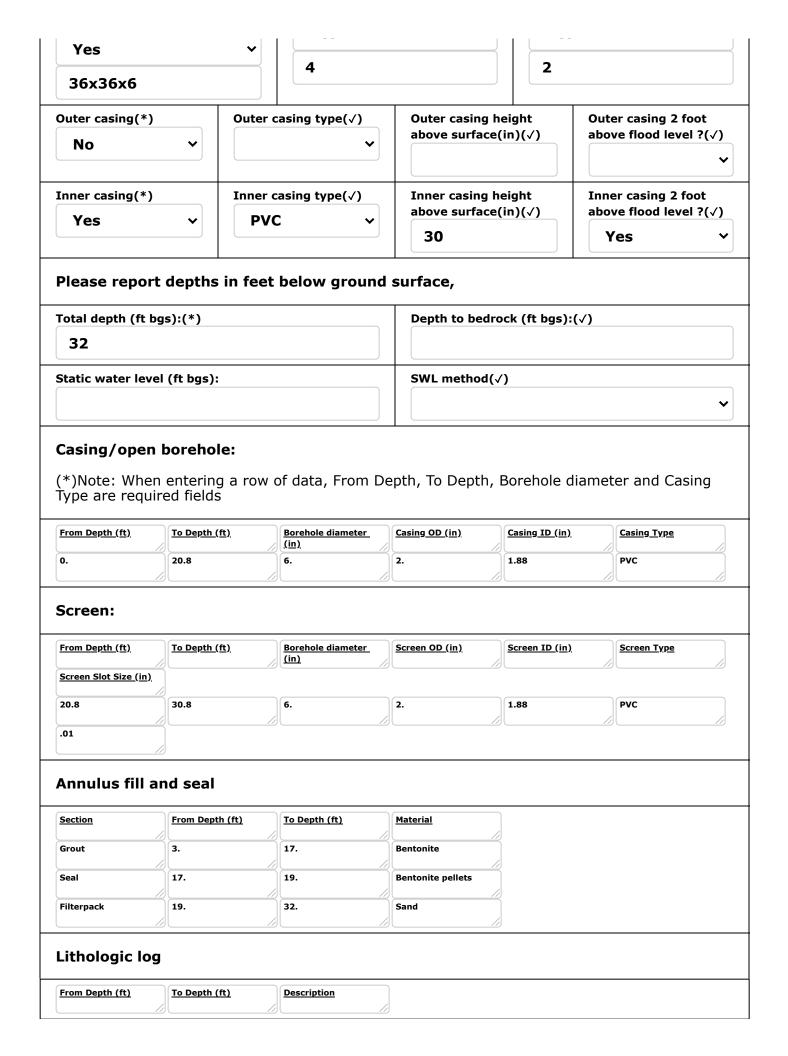
RKumari

Thank you for submitting your information via the Kentucky Energy and Environment Cabinet eForms website. Please save a copy of this submittal for your records. We recommend saving a copy as a .mht, .html, or .htm file. Your Submittal ID and Transaction ID will be included in an email after EEC Staff have reviewed your submittal. The Submittal ID for this transaction is 362656 and was submitted on June 06, 2023 06:17 PM Eastern Time. If you need to contact EEC regarding your submission, please reference your Submittal ID.


The eForm Submittal ID allows you to use the data from this submittal as a template and/or download a copy of your submittal.

UNIFORM KENTUCKY WATER/MONITORING WELL REPORTING RECORD

Use this form to report installation, modification or decommissioning of any temporary or permanent monitoring or water wells


Form must be completed and submitted to the Division of Water within 60 days of completion of work

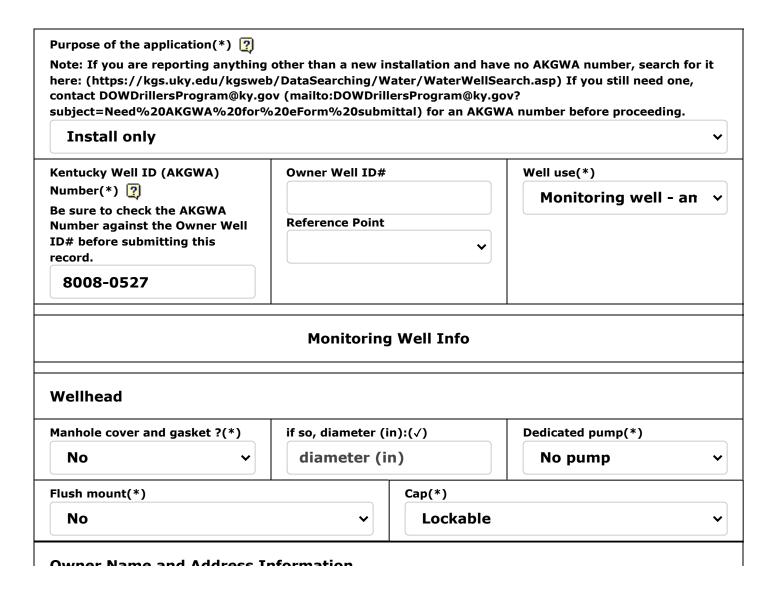
(*) indicates a required field; (✓) indicates a field may be required based on user input or is an optionally required field

WIIEL NAINE AND AUDIESS INDUMATION "Enter business name if owner is an organization. Enter first name/middle initial/last name if owner is an individual" Owner Business name(√) Owner first name(√) Owner middle Owner last name(√) initial **Big Rivers Electric Corp** Owner first nan Owner last nam Middle i Owner Owner address(*) Owner city(*) Owner state(*) zipcode(*) 9000 State Hwy 2096 **Robards** Kentucky 42452 Owner telephone:(*) 270-521-7927 Site Name, Address and Agency Information Please check the checkbox if site address is same as the owner address Agency Interest (AI) Number: Program type **Permit or ID Number** AI #; leave blank if unl Site Name(*) Site telephone: **Big Rivers Electric Corp** ###-###-### Site Address(*) Site city(*) Site state(*) Site zipcode(*) **Robards** 9000 State Hwy 2096 **Kentucky** 42452 Supporting Documentation Site Map/Sketch Map(√) **Upload file Well location Upload file** Well Diagram (monitoring well) Upload file Bacteria analysis (if applicable) Upload file Approved variance (if applicable) Upload file **Drilling log (optional) Upload file** Other laboratory analysis report (optional) Upload file Aquifer test results (optional) **Upload file** Casing/Screen Supplemental Info (if applicable) **Upload file** Other documentation (optional) Upload file **Well Specifications**

Yes		•	Unsuitable for Ir	ntended u	se(*)
Nicebourg warmit warning	12/*)		With drawn I now		-42(*)
Discharge permit required No	I?(*)	~	Withdrawal pern	nit require	ed?(*)
		•	140		T
artesian/flowing(*)	If so, h	neight (in):(√)	Nested wells(*)		If so, number:(√)
No Y			No	•	
Well Location					
Vell latitude(decimal degi	rees)	Well longitude(d	lecimal degrees)	Method	i(*)
(*) <u>Driller Viewer</u> http://watermaps.ky.gov	v/well)	(*)		GPS	S •
37.636833	,	-87.500928	3		
JSGS 7.5' quadrangle(*)		County(*)		Physio	graphic region(*)
ROBARDS	•	Webster	•		Coal Field v
Surface elevation(ft)(*)		Surface elevation	n method(*)	Well in	flood zone?(*)
381.77		GPS	~	No	~
Construction					
Install start date(*)			Install end date(
Install start date(*) 4/26/2023			4/26/2023	,	mbinations(/)
Install start date(*) 4/26/2023 Drilling method(*)		•	4/26/2023 Specify drilling r	method co	
Install start date(*) 4/26/2023		•	4/26/2023 Specify drilling r	method co	mbinations(√) thod combinations
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no	Multipl	e screens ?(*)	4/26/2023 Specify drilling r Specify dril	nethod co ling me	thod combinations Specify development
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)	Multipl No		4/26/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	thod combinations
Install start date(*) 4/26/2023 Orilling method(*) Sonic Orilling method has no		e screens ?(*)	4/26/2023 Specify drilling r Specify dril	nethod co ling me	Specify development method
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)		e screens ?(*)	4/26/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(\(\)
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No	No	e screens ?(*)	4/26/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(<) Specify
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No Surface Completion:	No	e screens ?(*)	4/26/2023 Specify drilling r Specify dril Well development method(*)	nethod co	Specify development method combinations(<) Specify
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)	No	e screens ?(*) v tive surface type(√)	4/26/2023 Specify drilling r Specify dril Well development method(*) Pumping Protective surface	nethod co	Specify development method combinations(√) Specify development Water-tight locking

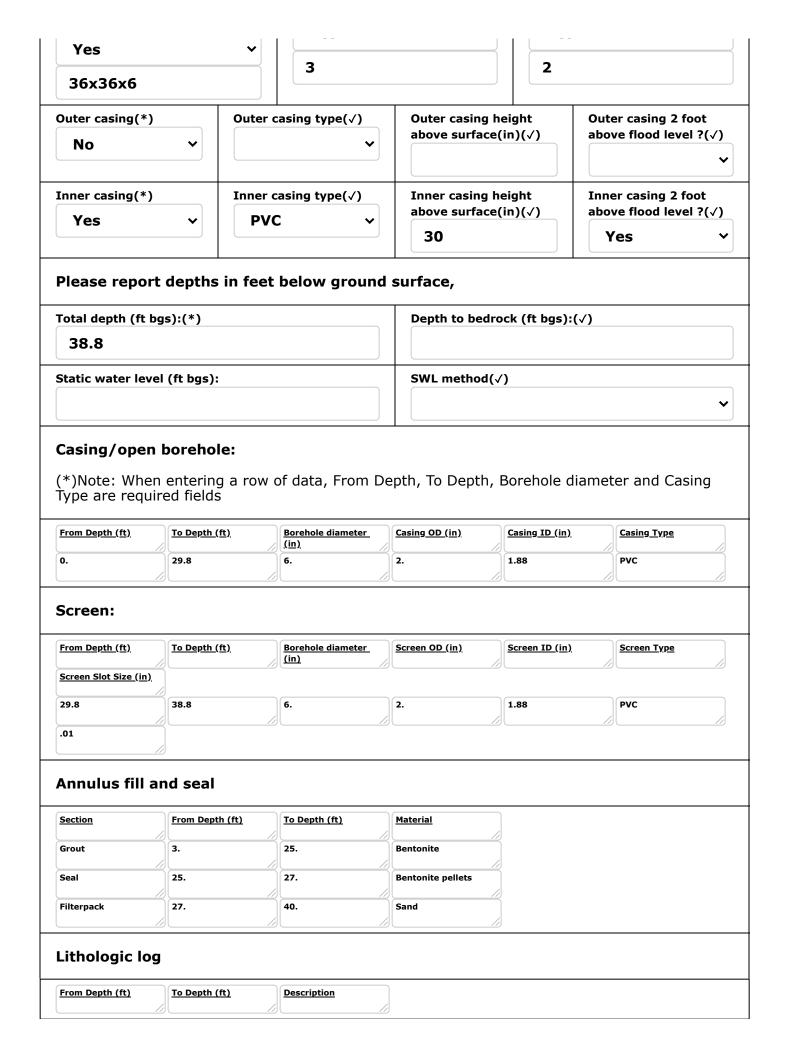
Comments	
Affirmation	
under my direction or supervision in accordar properly gather and evaluate the information manage the system, or those persons directly submitted is, to the best of my knowledge an are significant penalties for submitting false in	nent/electronic submittal and all attachments were prepared note with a system designed to assure that qualified personnel submitted. Based on my inquiry of the person or persons who responsible for gathering the information, the information d belief, true, accurate, and complete. I am aware that there information, including the possibility of fine and imprisonment his transmission constitutes my signature and I am responsible e or by the people I represent.
Date affirmed(*)	6/6/2023
Driller first name(*)	William
Driller first name(*) Driller middle initial	R
Driller middle initial	R
Driller middle initial Driller last name(*)	R Gordon

Thank you for submitting your information via the Kentucky Energy and Environment Cabinet eForms website. Please save a copy of this submittal for your records. We recommend saving a copy as a .mht, .html, or .htm file. Your Submittal ID and Transaction ID will be included in an email after EEC Staff have reviewed your submittal. The Submittal ID for this transaction is 362573 and was submitted on June 06, 2023 06:07 PM Eastern Time. If you need to contact EEC regarding your submission, please reference your Submittal ID.


The eForm Submittal ID allows you to use the data from this submittal as a template and/or download a copy of your submittal.

UNIFORM KENTUCKY WATER/MONITORING WELL REPORTING RECORD

Use this form to report installation, modification or decommissioning of any temporary or permanent monitoring or water wells


Form must be completed and submitted to the Division of Water within 60 days of completion of work

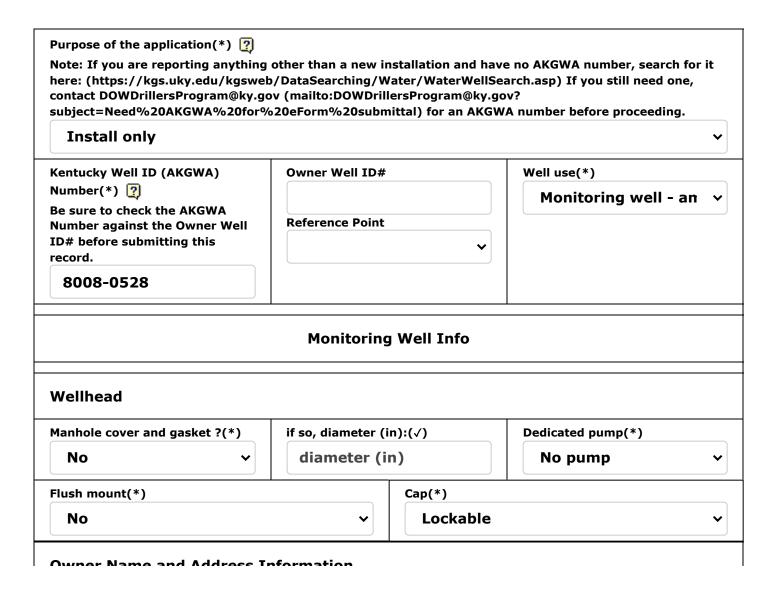
(*) indicates a required field; (✓) indicates a field may be required based on user input or is an optionally required field

WIIEL NAINE AND AUDIESS INDUMATION "Enter business name if owner is an organization. Enter first name/middle initial/last name if owner is an individual" Owner Business name(√) Owner first name(√) Owner middle Owner last name(√) initial **Big Rivers Electric Corp** Owner first nan Owner last nam Middle i Owner Owner address(*) Owner city(*) Owner state(*) zipcode(*) 9000 State Hwy 2096 **Robards** Kentucky 42452 Owner telephone:(*) 270-521-7927 Site Name, Address and Agency Information Please check the checkbox if site address is same as the owner address Agency Interest (AI) Number: Program type **Permit or ID Number** AI #; leave blank if unl Site Name(*) Site telephone: **Big Rivers Electric Corp.** ###-###-### Site Address(*) Site city(*) Site state(*) Site zipcode(*) **Robards** 9000 State Hwy 2096 **Kentucky** 42452 Supporting Documentation Site Map/Sketch Map(√) **Upload file Well location Upload file** Well Diagram (monitoring well) Upload file Bacteria analysis (if applicable) Upload file Approved variance (if applicable) Upload file **Drilling log (optional) Upload file** Other laboratory analysis report (optional) Upload file Aquifer test results (optional) **Upload file** Casing/Screen Supplemental Info (if applicable) **Upload file** Other documentation (optional) Upload file **Well Specifications**

Yes		•	Unsuitable for Ir	ntended u	se(*)
Nicebourg warmit warning	12/*)		With drawn I now	wit wa a wind	-42(*)
Discharge permit required No	I!(*)	•	Withdrawal pern	nit require	ed r(*)
		•	140		
artesian/flowing(*)	If so, h	neight (in):(√)	Nested wells(*)		If so, number:(√)
No Y			No	~	
Well Location					
Vell latitude(decimal degi	rees)	Well longitude(d	lecimal degrees)	Method	I(*)
(*) <u>Driller Viewer</u> (http://watermaps.ky.gov	v/well)	(*)		GPS	>
37.636178	,	-87.500928			
JSGS 7.5' quadrangle(*)		County(*)		Physio	graphic region(*)
ROBARDS	~	Webster	•		Coal Field 💙
Surface elevation(ft)(*)		Surface elevation	n method(*)	Well in	flood zone?(*)
387.26		GPS	~	No	•
Lonstruction					
Install start date(*) 4/26/2023			Install end date(
Install start date(*) 4/26/2023			4/27/2023	,	mbinations(/)
Install start date(*) 4/26/2023 Drilling method(*)		•	4/27/2023 Specify drilling r	nethod co	
Install start date(*) 4/26/2023		•	4/27/2023 Specify drilling r	nethod co	mbinations(√) thod combinations
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no	Multipl	e screens ?(*)	4/27/2023 Specify drilling r Specify dril Well development	nethod co ling me	thod combinations Specify development
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)	Multipl No		4/27/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	thod combinations
Install start date(*) 4/26/2023 Orilling method(*) Sonic Orilling method has no		e screens ?(*)	4/27/2023 Specify drilling r Specify dril Well development	nethod co ling me	Specify development method
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)		e screens ?(*)	4/27/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(√)
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No	No	e screens ?(*)	4/27/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(\(\)
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No Surface Completion:	No	e screens ?(*)	4/27/2023 Specify drilling r Specify dril Well development method(*)	nethod co	Specify development method combinations(\(\)
Install start date(*) 4/26/2023 Drilling method(*) Sonic Drilling method has no annular space(*)	No	e screens ?(*) v tive surface type(√)	4/27/2023 Specify drilling r Specify dril Well development method(*) Pumping Protective surface	nethod co	Specify development method combinations(√) Specify development combinations(√)

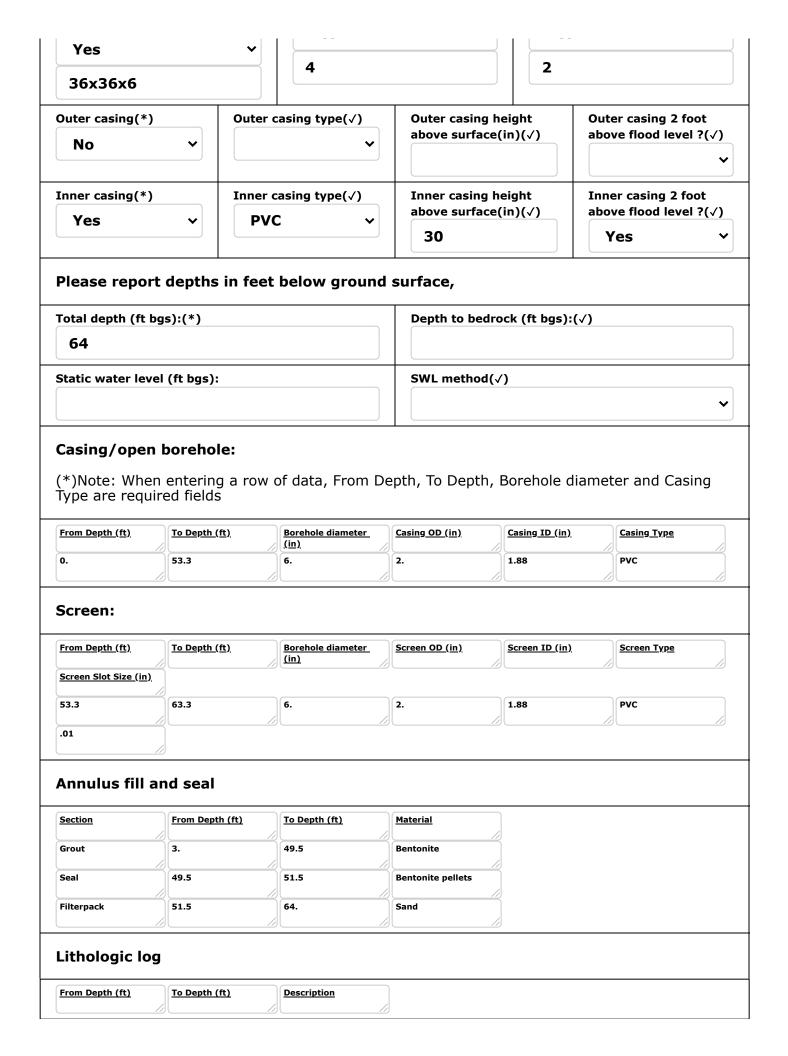
Comments	
Affirmation	
under my direction or supervision in accordar properly gather and evaluate the information manage the system, or those persons directly submitted is, to the best of my knowledge and are significant penalties for submitting false in	nent/electronic submittal and all attachments were prepared note with a system designed to assure that qualified personnel submitted. Based on my inquiry of the person or persons who responsible for gathering the information, the information d belief, true, accurate, and complete. I am aware that there information, including the possibility of fine and imprisonment his transmission constitutes my signature and I am responsible e or by the people I represent.
Date affirmed(*)	6/6/2023
Driller first name(*)	William
Driller first name(*) Driller middle initial	R
Driller middle initial	R
Driller middle initial Driller last name(*)	R Gordon

Thank you for submitting your information via the Kentucky Energy and Environment Cabinet eForms website. Please save a copy of this submittal for your records. We recommend saving a copy as a .mht, .html, or .htm file. Your Submittal ID and Transaction ID will be included in an email after EEC Staff have reviewed your submittal. The Submittal ID for this transaction is 362649 and was submitted on June 06, 2023 06:12 PM Eastern Time. If you need to contact EEC regarding your submission, please reference your Submittal ID.


The eForm Submittal ID allows you to use the data from this submittal as a template and/or download a copy of your submittal.

UNIFORM KENTUCKY WATER/MONITORING WELL REPORTING RECORD

Use this form to report installation, modification or decommissioning of any temporary or permanent monitoring or water wells


Form must be completed and submitted to the Division of Water within 60 days of completion of work

(*) indicates a required field; (✓) indicates a field may be required based on user input or is an optionally required field

WIIEL NAINE AND AUDIESS INDUMATION "Enter business name if owner is an organization. Enter first name/middle initial/last name if owner is an individual" Owner Business name(√) Owner first name(√) Owner middle Owner last name(√) initial **Big Rivers Electric Corp** Owner first nan Owner last nam Middle i Owner Owner address(*) Owner city(*) Owner state(*) zipcode(*) 9000 State Hwy 2096 **Robards** Kentucky 42452 Owner telephone:(*) 270-521-7927 Site Name, Address and Agency Information Please check the checkbox if site address is same as the owner address Agency Interest (AI) Number: Program type **Permit or ID Number** AI #; leave blank if unl Site Name(*) Site telephone: **Big Rivers Electric Corp** ###-###-### Site Address(*) Site city(*) Site state(*) Site zipcode(*) **Robards** 9000 State Hwy 2096 **Kentucky** 42452 Supporting Documentation Site Map/Sketch Map(√) **Upload file Well location Upload file** Well Diagram (monitoring well) Upload file Bacteria analysis (if applicable) Upload file Approved variance (if applicable) Upload file **Drilling log (optional) Upload file** Other laboratory analysis report (optional) Upload file Aquifer test results (optional) **Upload file** Casing/Screen Supplemental Info (if applicable) **Upload file** Other documentation (optional) Upload file **Well Specifications**

Yes		•	Unsuitable for Ir	ntended u	se(*)			
Nicologica	12(*)		With discussion and					
Discharge permit required No	I!(*)	•	Withdrawal pern	nit require	edr(*)			
		•	110		T			
artesian/flowing(*)	If so, h	eight (in):(√)	Nested wells(*)		If so, number:(√)			
No Y			No	~				
Well Location								
Vell latitude(decimal degr	rees)	Well longitude(d	ecimal degrees)	Method	i(*)			
) <u>Driller Viewer</u> http://watermaps.ky.gov	v/well)	()		GP5	s •			
37.636194	e, wen,	-87.500947						
JSGS 7.5' quadrangle(*)		County(*)		Physio	graphic region(*)			
ROBARDS	~	Webster	•		Coal Field V			
Surface elevation(ft)(*)		Surface elevatio	n method(*)	Well in	flood zone?(*)			
387.88		GPS	•	No	•			
Install start date(*)			Install end date(
Install start date(*) 4/28/2023			4/28/2023		mhination of ()			
install start date(*) 4/28/2023 Drilling method(*)			4/28/2023 Specify drilling r	nethod co				
install start date(*) 4/28/2023		•	4/28/2023 Specify drilling r	nethod co	mbinations(√) thod combinations			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no	Multipl	e screens ?(*)	4/28/2023 Specify drilling r Specify dril Well development	nethod co ling me	thod combinations Specify development			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no annular space(*)	Multipl No		4/28/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	thod combinations			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no		e screens ?(*)	4/28/2023 Specify drilling r Specify dril Well development	nethod co ling me	Specify development method			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no annular space(*)		e screens ?(*)	4/28/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(√)			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No	No	e screens ?(*)	4/28/2023 Specify drilling r Specify dril Well development method(*)	nethod co ling me	Specify development method combinations(✓) Specify			
Install start date(*) 4/28/2023 Drilling method(*) Sonic Drilling method has no annular space(*) No Surface Completion:	No	e screens ?(*)	4/28/2023 Specify drilling r Specify dril Well development method(*)	nethod co	Specify development method combinations(✓) Specify			
Sonic Drilling method(*) Sonic Drilling method has no annular space(*)	No	e screens ?(*) v tive surface type(√)	4/28/2023 Specify drilling r Specify dril Well development method(*) Pumping Protective surface	nethod co	Specify development method combinations(√) Specify development Water-tight locking			

Comments	
Affirmation	
under my direction or supervision in accordar properly gather and evaluate the information manage the system, or those persons directly submitted is, to the best of my knowledge and are significant penalties for submitting false in	nent/electronic submittal and all attachments were prepared note with a system designed to assure that qualified personnel submitted. Based on my inquiry of the person or persons who responsible for gathering the information, the information d belief, true, accurate, and complete. I am aware that there information, including the possibility of fine and imprisonment his transmission constitutes my signature and I am responsible e or by the people I represent.
Date affirmed(*)	6/6/2023
Driller first name(*)	William
Driller first name(*) Driller middle initial	R
Driller middle initial	R
Driller middle initial Driller last name(*)	R Gordon

Well Development Summary Sebree Station - Green CCR Landfill Robards, KY

Well Identification		Well Development (gallons and date)		(gallons and date) (gallons and days)		3 Well 3 Borehole Volumes (gallons) (gallons)		Clear-Low Turbidity During Development?	3 Well Volumes Purged?	3 Borehole Volumes Purged?
				Newly Installed Chara	cterization W	/ells				
MW-105	5	6.5	8	19.5 gallons	12.26	27.71	No	Yes	No	
10100-103	4/27/2023	4/28/2023	4/29/2023	3 days	12.20	27.71	Cloudy Light Brown - Developed Dry	163	140	
MW-106S	22			22 gallons	13.88	40.32	No	Yes	No	
1000	4/28/2023			1 days	13.00	40.32	Cloudy Brown - Developed Dry	165	NO	
MW-106D	38.75			38.75 gallons	21.38	36.83	No	Yes	Yes	
IVIVV-100D	4/29/2023			1 days	21.30	30.03	Light Gray - Developed Dry	162	Yes	

WELL DEVELOPMENT RECORD

Project Nar	me:	Green LF M\	N Install	Project Nu	mber:	156465			Well Numb	per: MW-105		
Project Info	ormation					Elevation o	of Monitoring	g Well				
Facility Nan	ne:	BREC Green	Station			Ground Surfa	ce Elevation (GS):	3	378.90		
Location:		Green CCR L	andfill; Roba	rds, Kentucky	/	Top of Casing	Top of Casing Elevation (TOC): 381.77					
Well Inforn	nation					Borehole Vo	rehole Volume Calculation: Filter Pack Porosity = 30%					
Date Well II	nstalled:		04/26/23			Water Colu	ımn =	25.05	feet	Filter Pack = 12.00 ft Saturated Filter Pack = 12.00 ft		
Total Depth	n of Well:		33.87	feet from	TOC	1 Well Volu	ıme =	4.09	gallons	3 Well Volume = 12.26 gallons		
Depth to To	op of Screen:		23.67	feet from	TOC	1 well volume ((gallons) = initia	I height of water	r column (ft) x .:	16		
Length of C	asing Screened:		10.00	feet		Filter Pack V	olume=	5.15	gallons			
Borehole Di	iameter:		6.25	inches		Filter pack volu	ıme (gallons) = s	aturated boreh	ole filter pack vo	olume (assuming 30% porosity) - saturated well filter pack volume		
Well Casing	Diameter:		2.00	inches		3 Borehole Vol	ume =	27.71	gallons			
Type of For	mation Screene	d:	Clay w/ Silt			3 Borehole Vol	umes (gallons) =	3 x (saturated v	well casing volu	ume + saturated filter pack)		
Developme	ent Method		-			U		-				
Equipment:	:			Method De	scription:							
Surge		Bail		A pump was	used to dev	elop the well	by surging b	efore pumpir	ng. The pump	p was set at a moderate pumping rate as to get readings before going dry.		
Airlift		Pump	Х	Turbidity val	ue of OOR =	out of range	of instrumer	nt.				
Observatio	ns During Deve	lopment				-	:		:			
		Depth to	Total	Fluid Re	emoved	Temp.	рН	S.C.	Turbidity	Fluid Appearance and Remarks		
Date	Time	Water* (ft)	Depth* (ft)	Gallons	Total	(ºC)	(units)	(μS/cm)		(turbidity, color, odor, etc.)		
04/27/23	2:50:00 PM	8.82	33.76	0.25	0.25	17.8	8.40	1282	OOR	Brown, cloudy		
04/27/23	3:10:00 PM	17.26	33.76	2.5	2.5	17.6	8.50	1231	OOR	Brown, cloudy		
04/27/23	3:20:00 PM	31.34	33.76	5.0	5.0	17.3	8.10	1211	OOR	Brown, cloudy		
04/27/23	3:22:00 PM	Dry			5					Developed Dry		
04/28/23	7:40:00 AM	9.96	33.76	1.5	6.5	15.5	6.50	2520	OOR	Brown, cloudy		
04/28/23	7:42:00 AM	12.61	33.76	3.0	8.0	15.3	6.50	2330	OOR	Brown, cloudy		
04/28/23	7:45:00 AM	26.32	33.76	4.5	9.5	15.1	6.60	2240	OOR	Brown, cloudy		
04/28/23	7:50:00 AM	31.45	33.76	6.0	11.0	15.2	6.50	2210	OOR	Brown, cloudy		
04/28/23	7:53:00 AM	Dry		6.5	11.5					Developed Dry		
04/29/23	7:42:00 AM	9.22	33.76	2.0	13.5	14.8	6.50	1850	OOR	Brown, cloudy		
04/29/23	7:48:00 AM	22.32	33.76	4.0	15.5	14.5	6.50	1800	OOR	Brown, cloudy		
04/29/23	7:53:00 AM	32.01	33.76	8.0	19.5	14.6	6.50	1650	OOR	light cloudy brown; Developed Dry		

*from TOC unless otherwise noted in Remarks

Project Na	ıme:	Green LF MW	Install	Project N	umber:	156465			Well Num	nber: MW-106S	
Project Inf	formation					Elevation	of Monitor	ing Well			
Facility Na	me:	BREC Green St	ation			Ground Sur	face Elevatio	n (GS):	3	384.75	
Location:		Green CCR Lar	dfill; Robards,	Kentucky		Top of Casi	ng Elevation (TOC):	3	387.26	
Well Infor	mation					Borehole \	/olume Calc	ulation:		Filter Pack Porosity = 30%	
Date Well	Installed:		04/26/23			Water Co	lumn =	28.35	feet	Filter Pack = 12.00 ft Saturated Filter Pack =	12.00 ft
Total Dept	h of Well:		41.51	feet from	TOC	1 Well Vo	lume =	4.63	gallons	3 Well Volume = 13.88 gallons	
Depth to T	op of Scree	en:	31.31	feet from	тос	1 well volume	e (gallons) = ini	tial height of water c	olumn (ft) x .16	6	
Length of	Casing Scre	ened:	10.00	feet		Filter Pack	Volume=	8.81	gallons		
Borehole [Diameter:		8.00	inches		Filter pack vo	lume (gallons)	= saturated borehole	filter pack vol	olume (assuming 30% porosity) - saturated well filter pack volume	
Well Casin	g Diametei	f:	2.00	inches		3 Borehole Vo	olume =	40.32	gallons		
Type of Fo	rmation Sc	reened:	Clay w/ Silt			3 Borehole Vo	olumes (gallons	s) = 3 x (saturated we	ll casing volum	me + saturated filter pack)	
Developm	ent Metho	d									
Equipmen	t:			+	escription:						
Surge		Bail							ing. The pur	mp was set at a moderate pumping rate as to get readings be	efore going
Airlift		Pump	Х	dry. Turbid	ity value of	OOR = out	of range of i	nstrument.			
						-			-		
Observation	ons During	Development		T		T _	T		I =	T	
	- ·	Depth to	Total	Fluid Re		Temp.	pH	S.C.	Turbidity		
Date 04/28/23	755	Water* (ft) 13.16	Depth* (ft) 41.66	Gallons 0.5	Total 0.5	(ºC) 15.2	(units) 7.2	(μS/cm) 556	OOR	(turbidity, color, odor, etc.)	
04/28/23	815	19.26	41.66	2.0	2	15.1	7.2	501	OOR	cloudy brown	
04/28/23	820	24.56	41.66	5.0	5	14.8	7.2	521	OOR	cloudy brown	
04/28/23	825	29.34	41.66	6.0	6	14.3	6.9	743	OOR	cloudy brown	
04/28/23	830	34.22	41.66	7.5	7.5	14.5	6.9	709	OOR	cloudy brown	
04/28/23	835	39.26	41.66	10.0	10.0	15.6	6.9	740	OOR	light cloudy brown; Developed Dry	
04/28/23	1132	18.21	41.66	1.0	11.0	18.4	7.0	712	OOR	cloudy brown	
04/28/23	1137	24.73	41.66	2.0	13.0	17.2	6.9	760	OOR	cloudy brown	
04/28/23	1143	31.76	41.66	2.0	15.0	16.5	6.8	800	OOR	cloudy brown	
04/28/23	1145	39.45	41.66	2.0	17.0	16.2	6.8	812	OOR	cloudy brown; Developed Dry	
04/28/23	1425	18.21	41.66	0.50	17.5	18.7	6.8	890	OOR	cloudy brown	
04/28/23	1430	27.24	41.66	2.5	20.0	18.1	6.7	887	OOR	cloudy brown	
04/28/23	1435	38.4	41.66	2.0	22.0	18.1	6.7	900	OOR	cloudy brown; Developed Dry	

*from TOC unless otherwise noted in Remarks

091294 Form WCI OP6-1

WELL DEVELOPMENT RECORD

Page 1 of 2

		:						RECORD		Page 1 of 2
Project Na	ame:	Green LF MW	Install	Project N	umber:	156465	·		Well Nur	ımber: MW-106D
Project Inf	formation					Elevation	of Monitor	ing Well		
Facility Na	me:	BREC Green St	ation			Ground Sur	face Elevatio	n (GS):	3	385.300
Location:		Green CCR Lar	ndfill; Robards,	Kentucky		Top of Casi	ng Elevation	(TOC):		387.880
Well Infor	mation					Borehole \	olume Cal	ulation:		Filter Pack Porosity = 30%
Date Well	Installed:		04/28/23			Water Co	lumn =	43.6	66 feet	Filter Pack = 12.00 ft Saturated Filter Pack = 12.00 ft
Total Dept	th of Well:		66.08	feet from	тос	1 Well Vo	lume =	7.1	.3 gallons	3 Well Volume = 21.38 gallons
Depth to T	op of Scre	en:	55.88	feet from	TOC	1 well volume	e (gallons) = ini	tial height of water	column (ft) x .:	.16
Length of	Casing Scre	ened:	10.00	feet		Filter Pack	Volume=	5.1	.5 gallons	
Borehole [Diameter:		6.25	inches		Filter pack vo	lume (gallons)	= saturated boreho	le filter pack vo	volume (assuming 30% porosity) - saturated well filter pack volume
Well Casin	g Diamete	r:	2.00	inches		3 Borehole Vo	olume =	36.8	3 gallons	3
Type of Fo	rmation Sc	reened:	Sandstone w/	Shale Interl	oeds	3 Borehole Vo	olumes (gallon	s) = 3 x (saturated v	vell casing volu	lume + saturated filter pack)
Developm	ent Metho	od								
Equipmen	t:			Method D	escription:					
Surge		Bail				•			ping. The pu	oump was set at a moderate pumping rate as to get readings before going dry
Airlift		Pump	Х	Turbidity v	alue of OOI	R = out of ra	nge of instr	ument.		
Observation	ons During	Development	•	•	÷		÷	:	÷	
		Depth to	Total	Fluid Re	emoved	Temp.	рН	S.C.	Turbidity	ry Fluid Appearance and Remarks
Date	Time	Water* (ft)	Depth* (ft)	Gallons	Total	(ºC)	(units)	(μS/cm)		(turbidity, color, odor, etc.)
04/29/23	730	22.42	66.35	0.50	0.50	14.9	7.9	424	OOR	grey, cloudy
04/29/23	735	62.13	66.35	4.00	4.00	14.6	7.4	518	OOR	grey, cloudy
04/29/23		Dry	66.35	0.5	4.5					Developed Dry
04/29/23	1037	31.62	66.35	0.25	4.75	16.3	7.9	287	OOR	grey, cloudy
04/29/23	1040	42.67	66.35	2.0	6.75	15.9	7.8	284	OOR	grey, cloudy
04/29/23	1047	51.82	66.35	4.0	10.75	15.2	7.5	289	OOR	grey, cloudy
04/29/23	1053	61.48	66.35	5.0	15.75	15.6	7.5	285	OOR	light grey, cloudy
04/29/23		Dry	66.35	5.5	21.25					Developed Dry
04/29/23	1535	29.20	66.35	0.50	21.8	20.60	7.8	312	OOR	grey, cloudy
04/29/23	1540	33.35	66.35	2.0	23.8	17.5	7.6	347	OOR	light grey, cloudy
04/29/23	1545	41.6	66.35	4.0	27.8	17.2	7.5	341	OOR	light grey, cloudy
04/29/23	1550	59.3	66.35	5.0	32.8	17.0	7.5	334	OOR	light grey, cloudy
04/29/23		Dry	66.35	6.0	38.8					Developed Dry
04/29/23										
04/29/23										
04/29/23										

*from TOC unless otherwise noted in Remarks

091294 Form WCI OP6-1

Well Development Green Station.xisxMW-106D

Big Rivers Electric Corporation Green Station Landfill

Monitoring Well Surveyed Locations Surveyed May 19, 2023

Client: Big Rivers Electric Corporation

Field Surveyor: Mitch Lander

Licensed Surveyor: James D. Cansler, LPLS

Survey Method: GPS (RTK) Equipment: Carlson BRX7

Control System: BREC Green Station Landfill Control (Local)

Primary Reference Point: PN 1

Associated Engineers, Inc. (AEI) has been retained by Big Rivers Electric Corporation for the purpose of surveying the location of ten (10) ground water monitoring wells at Big Rivers Electric Corporation's Green Station Landfill. The location and elevation of the surface, well pad, and top of well casing were recorded at each location. The naming convention for the wells was provided to AEI by the client. Below is the tabulated location information for each well:

Owensboro, Kentucky Phone: (270) 684-8450 2740 North Main Street, Madisonville, Kentucky 42431 Phone; (270) 821-7732 • Fax: (270) 821-7789 Lexington, Kentucky Phone: (859) 286-3000

Well Number	MW-105	MW-2	MW-106D	MW-106S	MW-3A
Northing	479,265.66	479,137.94	479,033.25	479,027.34	477,478.53
Easting	1,493,006.72	1,492,992.66	1,492,996.71	1,492,997.32	1,493,022.67
Top of Casing Elev.	381.77	391.82	387.88	387.26	386.27
Top of Pad Elev.	378.96	389.51	385.27	384.86	380.55
Ground Elev.	378.90	389.41	385.30	384.75	380.47
Latitude	37°38'12.60"	37°38'11.33"	37°38'10.30"	37°38'10.24"	37*37'54.93*
Longitude	087°30'03.34"	087°30'03.48"	087*30'03.41"	087°30'03.40"	087°30'02.73"
HRMS*	0.067	0.038	0.042	0.075	0.052
VRMS**	0.103	0.081	0.081	0.176	0.125

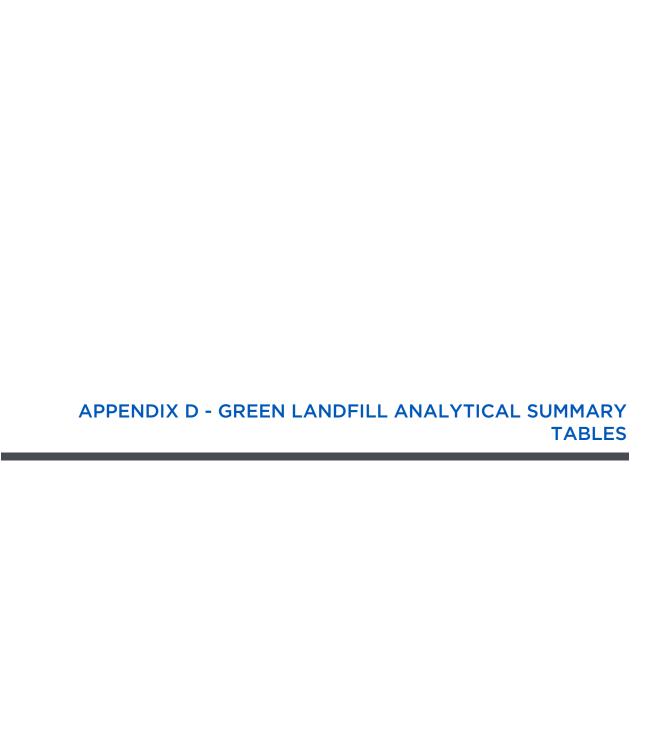
Well Number	MW-104	MW-4	MW-6	MW-1	MW-5
Northing	476,983.54	476,125.40	476,447.24	479,651.92	476,085.26
Easting	1,492,953.97	1,492,902.40	1,491,223.27	1,490,854.99	1,492,394.76
Top of Casing Elev.	395.40	391.11	388.10	422.56	389.81
Top of Pad Elev.	392.60	388.64	386.24	420.48	387.45
Ground Elev.	392.44	388.62	385.55	420.11	387.28
Latitude	37°37'50.03"	37°37'41.53"	37°37'44.41"	37°38'16.02"	37°37'41.04"
Longitude	087*30'03.47"	087°30'03.91"	087°30'24.85"	087°30'30.17"	087°30'10.21"
HRMS*	0.024	0.030	0.025	0.027	0.049
VRMS**	0.066	0.065	0.041	0.039	0.074

*Horizontal Root-Mean-Square (HRMS)

**Vertical Root-Mean-Square (VRMS)

If there are any further questions feel free to contact me at 270-821 7732 jcansler@associatedengineers.com

James D. Cansler, LPLS


May 31, 2023

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 •• 816-333-9400 •• 816-333-3690 •• www.burnsmcd.com

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	3/26/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018
	awrs						Baseline Events	3				Assessment	Re-Sampling
Boron		mg/L	1.67	1.49	2.25	1.70	1.71 J	1.68	1.85 B	1.79	1.92	NA	1.41
Calcium		mg/L	29.1	31.8 B	33.0	30.9	20.8	28.1	27.1	29.9 B	26.4	NA	26.5
Chloride		mg/L	9.03 JB	0.501 JB	6.60 B	6.02 B	5.56 B F1	5.30 B	5.12 B F1	5.71 B	4.07 F1 B	NA	6.34 B
Fluoride	4.0	mg/L	ND J	ND JB	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J	ND J F1	NA	ND J
pH (Field Measurement)		s.u.	7.39	7.24	7.57	7.19	7.63	7.54	7.45	7.48	7.63	NA	7.08
Sulfate		mg/L	25.2	22.8 JB	22.9	20.7 B	28.4	24.0 B	25.3 B	23.4	24.9 JB	NA	23.5
Total Dissolved Solids		mg/L	598	588	585	585	605	630	614	627	636	NA	585
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	ND	ND J	ND B	ND	ND	ND JB	0.00297 B	ND JB		ND JB	ND J
Arsenic	0.01	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND JB		ND JB	ND J
Barium	2.0	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J F1	ND J		ND JB	ND J
Beryllium	0.004	mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
Cadmium	0.005	mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
Chromium	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J		ND JB	ND
Cobalt	0.006	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J		ND JB	ND J
Fluoride	4.0	mg/L	ND J	ND J	ND J	ND JB	ND J F1	ND JB	ND J F1	ND J		ND J	ND J
Lead	0.015	mg/L	ND J	ND J	ND J	ND	ND	ND	ND	ND J		ND	ND J
Lithium	0.04	mg/L	0.0293 J	0.0317 J	0.0326 J	0.0286 J	0.0342 J	0.0396 J	0.0314 J	0.0315 J		0.0319 J	0.0298 J
Mercury	0.002	mg/L	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
Molybdenum	0.1	mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND		ND J	ND J
Radium 226	5.0	pCi/L	1.05	1.02	0.676	1.02	0.694	0.666	0.491	0.601		1.92	0.882
Radium 228	5.0	pCi/L	1.03	1.02	0.070	1.02	0.034	0.000	0.431	0.001		1.32	0.002
Selenium	0.05	mg/L	ND	ND	ND	ND	ND	ND	ND J	ND		ND	ND
Thallium	0.002	mg/L	ND	ND J	ND	ND J	ND	ND	ND J	ND		ND	ND

- B = Compound was found in the blank and sample.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- F1 = MS and/or MSD Recovery is outside acceptance limits.

GWPS = Groundwater Protection Standard

- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- mg/L = milligrams per liter
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable.
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- NA = Not Analyzed
- ND = Not Detected at or above Method Detection Limit
- pCi/L = picocuries per Liter
- s.u. = standard units
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	9/28/2018	4/22/2019	9/30/2019	4/6/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/9/2022	6/22/2023	11/7/2023
	aw o							Assessme	ent				
Boron	-	mg/L	1.94 B	1.73 B	1.68 D2,M4	1.69 D1,M3	1.66 D2,M4	1.45 D1,M4	1.68 D1,M1,M4	1.71 D1,M2	1.82 D2,M1	1.92 D1,M1,M2	1.65 D1
Calcium		mg/L	28.5 B	32.1	29.1 D2	27.7 D1,M3	26.4 D2	31.6 D1,M1	26.4 D1,M1	31 D1,M2	31.2 D2,M2	28.6 D1,M1,M2	25.2 D1
Chloride		mg/L	6.17 B	6.41 B,F1	7.5	6.5	6.6	6.4	6.2	13.9	5.7	5.7	5.7
Fluoride	4.0	mg/L	ND JB	0.521 J	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6
pH (Field Measurement)		s.u.	8.43	7.87	7.79 H3	7.22	6.88	6.90	7.28	6.67	7.62	8.51	7.94
Sulfate	-	mg/L	22.5 B	35.1 B F1	19	21	24	42 D	33 D	48	30	31	30
Total Dissolved Solids	-	mg/L	616	568 B	444 H1	488	388	582	584	672	602	520	684
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.000254 JB	ND M1 V1 U	<0.005	<0.005	<0.005 U	<0.005 M2, U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	ND JB	0.00167 JB	0.0005 V1 J	0.0019	<0.0010	0.0005 J	<0.0010 M1, M2, U	0.0004 J	0.0008 J	0.0005 J	0.0016
Barium	2.0	mg/L	ND J	0.0862 J	0.091 D2	0.087	0.077	0.081	0.078 M2	0.077	0.085	0.071	0.079
Beryllium	0.004	mg/L	NA	0.000533 J	ND D2 U	<0.0020	<0.0020	<0.0020 U	<0.0020 M2, U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Cadmium	0.005	mg/L	NA	0.000299 J	ND VI U	<0.0010	<0.0010	0.0001 J	<0.0010 M2, U	<0.001 U	<0.001 U	<0.001 U	<0.001 U
Chromium	0.1	mg/L	NA	0.00354 B	ND U	0.0011 J	<0.0020	<0.0020 U	<0.0020 M2, U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Cobalt	0.006	mg/L	NA	0.000571 J	ND U	<0.004	<0.004	<0.004 U	<0.004 M2, U	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.521 J	0.6	0.5	0.6	0.5	0.6	0.5	0.6	0.5	0.6
Lead	0.015	mg/L	NA	0.000279 J	ND V1 U	<0.002	<0.002	<0.002 U	<0.002 M2, U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	0.0279 J	0.0295 J	ND D2 M3 U	0.03	<0.20 M1	0.03	0.03 M1, M2	0.03	0.03	0.03	0.03
Mercury	0.002	mg/L	ND	ND	ND V1 U	<0.0005	<0.0005	<0.0005 U	<0.0005 M1, M2, U	0.0002 J	<0.0005 U	<0.0005 U	<0.0005 U
Molybdenum	0.1	mg/L	NA	0.00105 J	ND U	<0.01	<0.01	<0.01 U	<0.01 M1, M2, U	0.002 J	<0.01 U	<0.01 U	<0.01 U
Radium 226	5.0	pCi/L	0.905	0.689	0.782	0.808	0.564	0.412	1.53	2.36 J	1.46 J	0.805 J	0.176 J
Radium 228	5.0	poi/L	0.905	0.009	0.733	0.000	0.504	0.412	1.55	2.000	1.400	0.005 0	0.1700
Selenium	0.05	mg/L	NA	0.00105 J	ND U	<0.003	<0.003	<0.003 U	<0.003 M2, U	<0.003 M1, U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	NA	0.000498 J	0.0001 V1 J	0.0001 J	0.0001 J	<0.0020 U	<0.0020 M1, M2, U	<0.002 U	<0.002 U	<0.002 U	<0.002 U

B = Compound was found in the blank and sample.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

F1 = MS and/or MSD Recovery is outside acceptance limits.

GWPS = Groundwater Protection Standard

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

mg/L = milligrams per liter

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable.

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018
	3					E	Baseline Events					Assessment	Re-Sampling
Boron	-	mg/L	ND J	ND J	ND J	ND J	ND JB	ND J	0.113 JB	ND JB	ND J	NA	ND J
Calcium	-	mg/L	119	116 B	140	140 B	126	152	154	121	150	NA	155
Chloride	-	mg/L	126 B	125 B	129 B	133	142 B	129 B	145 B	136 B	129 B	NA	154 B
Fluoride	4.0	mg/L	ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1	ND J	NA	ND J
pH (Field Measurement)	-	s.u.	6.81	6.59	6.7	6.78	7.12	7.04	6.77	6.69	6.86	6.64	6.40
Sulfate	-	mg/L	80.0	84.5 J	85.5 J	90.1	89.8	83.2	92.0 JB	90.8	88.6 JB	NA	107
Total Dissolved Solids	-	mg/L	764	780	830	880	862	918	913	818	970	NA	884
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND B	ND JB	NA	ND JB	ND J
Arsenic	0.01	mg/L	0.00703 J	0.00633	0.0110	0.0159	0.0462	0.00755	0.0381	0.00527	NA	0.0327 B	0.0119
Barium	2.0	mg/L	ND J	ND J	0.280	0.319	0.347	0.332	0.308	ND J	NA	0.369	0.323
Beryllium	0.004	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Cadmium	0.005	mg/L	ND J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Chromium	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND JB	ND
Cobalt	0.006	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	NA	ND JB	ND J
Fluoride	4.0	mg/L	ND J	ND	ND J	ND JB F1	ND J	ND JB	ND JB	ND JB F1	NA	ND J	ND J
Lead	0.015	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND J
Lithium	0.04	mg/L	ND J	ND	ND	ND	ND J	ND J	ND JB	ND	NA	ND	ND
Mercury	0.002	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Molybdenum	0.1	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	ND JB	NA	ND J	ND J
Radium 226	5.0	pCi/L	0.533	ND	0.46	ND	0.856	0.73	0.968	0.537	NA	1.18	0.733
Radium 228	5.0	poi/L	0.555	IND	0.46	ואט	0.836	0.73	0.900	0.557	INA	1.10	0.733
Selenium	0.05	mg/L	ND	ND	ND	ND JB	ND	ND	ND JB	ND	NA	ND	ND
Thallium	0.002	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	2022							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	9/28/2018	4/23/2019	10/1/2019	4/7/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/10/2022	6/24/2023	11/7/2023
	aw. o							Assessment					
Boron		mg/L	0.0630 JB	0.101 JB	ND D2 U	<0.10	<0.10	<0.10 U	<0.10 U	<0.10 U	<1.0 D2, U	<0.10 U	<0.10 U
Calcium		mg/L	165 B	156	166 D1	145 D1	157 D1	179 D1	193 D1	190 D1	216 D1	192 D1	179 D1
Chloride		mg/L	159 B	144	108 D	120 D	231 D	264 D	301 D	159 D	233 D	218	185 D
Fluoride	4.0	mg/L	ND JB	0.193 J	0.3	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.3
pH (Field Measurement)		s.u.	7.02	7.15	7.39 H3	6.92	6.22	6.69	6.27	6.37	6.92	7.54	7.23
Sulfate		mg/L	108 B	105	79.0 D	85 D	117 D	199 D	205 D	128 D	150	156	159
Total Dissolved Solids		mg/L	937	918 B	930 H1	806	914	1040	1070	1130	1230	1610	1060
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.0000670 JB	ND V1 U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	0.0211 B	0.00738 B	0.0129 D2	0.0033	0.0095	0.0259	0.025	0.0331 J	0.0501	0.0323	0.0283
Barium	2.0	mg/L	0.367	0.362	0.380 D2	0.238	0.336	0.363	0.329	0.348 J	0.351	0.340	0.270
Beryllium	0.004	mg/L	NA	0.000281 J	ND D2 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U
Cadmium	0.005	mg/L	NA	ND	ND V1 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U
Chromium	0.1	mg/L	NA	0.00122 JB	ND D2 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U
Cobalt	0.006	mg/L	NA	0.00382 J	ND D2 U	<0.004	<0.004	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.193 J	0.3	0.2	0.3	0.2	0.3	0.2	0.2	0.2	0.3
Lead	0.015	mg/L	NA	ND	ND V1 U	<0.002	<0.002	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	ND	ND	ND D2 VI U	0.007 J	0.006 V1, J	0.006 J	0.006 J	0.006 J	0.006 J	0.006 J	0.005 J
Mercury	0.002	mg/L	ND	ND	ND V1 U	<0.0005	<0.0005	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U
Molybdenum	0.1	mg/L	NA	0.00210 J	0.003 J	0.002 J	0.002 J	0.003 J	0.002 J	0.003 J	0.003 J	0.005 J	0.003 J
Radium 226	5.0	pCi/L	0.803	0.391	0.136	0.529	0.493	1.26	0.591	1.27 J	1.59 J	1.50 J	0.001 J
Radium 228	5.0	pCi/L	0.003	0.331	0.834	0.529	0.493	1.20	0.591	1.27	1.090	1.50 0	0.0013
Selenium	0.05	mg/L	NA	ND	ND U	<0.003	<0.003	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	NA	0.0000800 J	ND V1 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	3/26/2016	5/23/2016	8/18/2016	11/14/2016	2/1/2017	5/2/2017	8/8/2017	9/6/2017	10/6/2017	6/5/2018	7/11/2018
	GWF3						Baseline Events	1				Assessment	Re-Sampling
Boron	-	mg/L	0.145	0.135 J	0.279 J	0.213 J	0.235 JB	0.232 J	0.304 JB	0.376 J	0.313	NA	0.177 J
Calcium		mg/L	431	322 B	362	365 B	327	420	421	438 B	408	NA	469
Chloride		mg/L	2630 HB	3070	2150 B	2150 B	2220 B	2120 B	1790 B	2270 B	1870 B	NA	2180 B
Fluoride	4.0	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16	ND J	NA	ND J
pH (Field Measurement)		s.u.	6.92	6.86	6.95	6.75	7.17	7.11	6.81	6.9	6.95	6.84	6.55
Sulfate		mg/L	1330	1330	1190	1660	1080	1030 B	942	1130	1030 B	NA	1010
Total Dissolved Solids		mg/L	4440	5010	4170	4450	4270	5170	5010	5020	5300	NA	4540
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	ND	ND J	ND JB	ND JB	ND	ND JB	ND JB	ND JB	NA	ND JB	ND
Arsenic	0.01	mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	NA	ND JB	ND J
Barium	2.0	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND J	ND J
Beryllium	0.004	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Cadmium	0.005	mg/L	ND J	ND J	ND	ND	ND J	ND J	ND	ND	NA	ND J	ND J
Chromium	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J	NA	ND JB	ND
Cobalt	0.006	mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND JB	ND J
Fluoride	4.0	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	3.16	NA	ND J	ND J
Lead	0.015	mg/L	ND J	ND	ND	ND	ND	ND	ND J	ND J	NA	ND	ND J
Lithium	0.04	mg/L	0.669	0.516	0.648	0.677	0.689	0.746	0.767	0.762	NA	0.699	0.790
Mercury	0.002	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Molybdenum	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND
Radium 226	5.0	pCi/L	1.38	0.386	0.472	1.15	1.15	0.923	1.53	1.03	NA	1.18	1.43
Radium 228	5.0	PO//L	1.50	0.500	0.472	1.13	1.13	0.020	1.55	1.00	IVA	1.10	1.70
Selenium	0.05	mg/L	ND	ND	ND J	ND JB	ND	ND	ND	ND	NA	ND J	ND
Thallium	0.002	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J	NA	ND	ND

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	2022							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	9/28/2018	4/23/2019	10/1/2019	4/7/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/10/2022	6/24/2023	11/8/2023
	awis							Assessment					
Boron	-	mg/L	0.257 JB	0.259 JB	ND D2 U	0.26	0.28	0.25	0.37	0.28	<1.0 D2, U	0.30	0.31
Calcium	-	mg/L	447 B	411	490 D1	425 D1	423 D1	438 D1	483 D1	428 D1	553 D1	531 D1	475 D1
Chloride		mg/L	2040 B	1850	4570 D	3220 D	1200 D	3460 D	1780 D	1820 D	2530 D	1820 D	1190 D,J
Fluoride	4.0	mg/L	ND JB	0.387 J	0.4	0.5	0.4	0.4	<0.20 U	0.4	0.4	0.5	0.4
pH (Field Measurement)		s.u.	7.98	7.23	7.33 H3	6.86	6.61	7.26	6.77	6.68	6.99	7.82	7.37
Sulfate		mg/L	1130 B	1080	1680 D	1840 D	1830 D	2110 D	2380 D	752 D	1720 D	1140 D,M2	2530 D,J
Total Dissolved Solids		mg/L	4940	4250 B	6900 H1	5860	5680	5940	6490	5220	5350	5090	3630 J
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.000102 JB	ND V1 U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	ND JB	0.000575 JB	ND D2 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.001 U	<0.001 U	<0.001 U	<0.001 U
Barium	2.0	mg/L	ND J	0.0474 J	0.051 D2 U	0.042	0.043	0.042	0.045	0.038	0.04	0.035	0.038
Beryllium	0.004	mg/L	NA	0.000199 J	ND D2 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U
Cadmium	0.005	mg/L	NA	0.000164 J	ND V1 U	0.0001 J	<0.0010	0.0002 J	<0.0010 U	0.0001 J	<0.0010 U	<0.0010 U	<0.0010 U
Chromium	0.1	mg/L	NA	0.00168 JB	ND D2 U	<0.0020	0.0006 J	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U
Cobalt	0.006	mg/L	NA	0.000243 J	0.008	<0.004	0.004	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.387 J	0.4	0.5	0.4	0.4	<0.20 U	0.4	0.4	0.5	0.4
Lead	0.015	mg/L	NA	0.000137 J	ND V1 U	<0.002	<0.002	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	0.766	0.678	0.79 D1	0.68	0.80 D2	0.75	0.76	0.65	0.61	0.64	0.71
Mercury	0.002	mg/L	ND	ND	ND V1 U	< 0.0005	<0.0005	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U
Molybdenum	0.1	mg/L	NA	ND	ND D2 U	<0.01	<0.01	<0.01 U	<0.01 U	<0.01 U	<0.01 U	<0.01 U	<0.01 U
Radium 226	5.0	pCi/L	1.21	0.641	0.139	1.06	1.51	1.25	1.46	1.46 J	2.3 J	1.43 J	2.45 J
Radium 228	5.0	POIL	1.21	0.041	0.734	1.00	1.51	1.20	1.40	1.400	2.00	1.400	2.430
Selenium	0.05	mg/L	NA	0.00103 J	ND D2 U	<0.003	<0.003	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	NA	0.000860 J	ND V1 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000								DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	3/29/2016	5/23/2016	8/18/2016	10/26/201	6	2/1/2017	5/2/2017	8/8/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018
	GWF5						E	Baseline Events	}				Assessment	Re-Sampling
Boron	-	mg/L	0.602	0.498 J	1.58	1.7		1.54 B	2.09	2.51 B	2.87 B	1.36	NA	0.751 J
Calcium	-	mg/L	660	386 B	464	558		591	774	743	739	828	NA	822
Chloride		mg/L	1450 B	939 B	952 B	1000	В	1420 B	1320 B	1360 B	1880 B	1730 B	NA	1430 B
Fluoride	4.0	mg/L	ND J	ND	ND J	ND .	JB	ND J	1.06 B	ND	ND JB	ND J	NA	ND J
pH (Field Measurement)		s.u.	6.36	6.83	7.08	6.61		7.28	7.1	6.84	6.64	6.93	6.86	6.58
Sulfate		mg/L	1830	1640	1420	1420	В	1620	1430 B	1600 B	2020	1590 B	NA	1460
Total Dissolved Solids	-	mg/L	3700	4250	3440	3250		4420	4550	4890	4700 H	6220	NA	4880
APPENDIX IV CONSTITUENTS														
Antimony	0.006	mg/L	ND	ND J	ND JE	B ND		ND	ND JB	ND JB	ND JB	NA	ND JB	ND
Arsenic	0.01	mg/L	ND	ND J	ND J	ND		ND J	ND J	ND J	ND JB	NA	ND JB	ND J
Barium	2.0	mg/L	ND J	ND J	ND J	ND	JB	ND J	ND J	ND J	ND JB	NA	ND J	ND J
Beryllium	0.004	mg/L	ND	ND	ND	ND		ND	ND	ND	ND	NA	ND	ND
Cadmium	0.005	mg/L	ND J	ND	ND	ND		ND	ND	ND	ND	NA	ND	ND
Chromium	0.1	mg/L	ND	ND J	ND	ND		ND	ND	ND	ND	NA	ND JB	ND
Cobalt	0.006	mg/L	ND	ND J	ND	ND		ND	ND	ND	ND	NA	ND JB	ND J
Fluoride	4.0	mg/L	ND	ND	ND J	ND	JB	ND J	ND B	ND	ND JB	NA	ND J	ND J
Lead	0.015	mg/L	ND J	ND J	ND	ND		ND	ND	ND	ND	NA	ND	ND J
Lithium	0.04	mg/L	1.39	0.838	1.13	1.25		1.35	1.59	1.77	1.66	NA	1.81	1.91
Mercury	0.002	mg/L	0.00027	0.000224	ND J	0.000248		0.000302	0.000717	0.000825	0.000485	NA	0.000824	0.000832
Molybdenum	0.1	mg/L	ND J	ND J	ND	ND		ND J	ND	ND	ND	NA	ND	ND
Radium 226	5.0	pCi/L	1.26	0.592	ND	0.536		1,22	1.43	1.94	1.19	NA	1.62	2.00
Radium 228	5.0	po/L	1.20	0.532	IND	0.530		1.22	1.40	1.34	1.13	INA	1.02	2.00
Selenium	0.05	mg/L	ND J	ND J	ND J	ND		ND J	ND	ND	ND J	NA	ND J	ND
Thallium	0.002	mg/L	ND	ND	ND	ND	J	ND	ND	ND	ND	NA	ND	ND

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	9/28/2018	4/22/2019	10/1/2019	4/7/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/10/2022	6/24/2023	11/7/2023
	awis							Assessmen	t				
Boron		mg/L	1.33 B	1.25 B	1.75 D2	0.83	1.70 D2	1.38 D1	1.43 D1	0.87	1.26 D2	1.20 D1	0.31
Calcium		mg/L	722 B	730	690 D1	464 D1	823 D1	764 D1	841 D1	534 D1	871 D1	725 D1	702 D1
Chloride		mg/L	1310 B	1510	1910 D	1560 D	2030 D	2470 D	1910 D	704 D	2270 D	1130 D	1090 D
Fluoride	4.0	mg/L	ND JB	0.102 J	0.2	0.2	0.2	0.2	<0.20 U	0.2	0.2	0.2	0.2
pH (Field Measurement)		s.u.	8.06	7.26	7.36 H3	6.70	6.64	7.12	6.52	6.68	7.05	7.69	7.16
Sulfate		mg/L	1400 B	1440	2490 D	4000 D	2080 D	2330 D	1780 D	1230 D	2500 D	1650 D	1890
Total Dissolved Solids		mg/L	5170	4840 B	4820 H1	5120	4470	5040	5610	5740	3850	4660 J	4080
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.0000360 JB	ND V1 U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	ND JB	0.000445 JB	ND D2 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U
Barium	2.0	mg/L	ND J	0.0308 JB	0.029 D2 J	0.022	0.031	0.029	0.030	0.022	0.025	0.023	0.02
Beryllium	0.004	mg/L	NA	ND	ND D2 U	<0.0020	<0.0040 D2	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U
Cadmium	0.005	mg/L	NA	ND	ND V1 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U
Chromium	0.1	mg/L	NA	0.00110 JB	ND D2 U	0.0008 J	<0.0020	<0.0020 U	<0.0020 U	0.0008 J	0.0006 J	0.0018 J	0.0008 J
Cobalt	0.006	mg/L	NA	0.000415 J	ND U	<0.004	< 0.004	<0.004 U	<0.004	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.102 J	0.2	0.2	0.2	0.2	<0.20 U	0.2	0.2	0.2	0.2
Lead	0.015	mg/L	NA	ND	ND V1 U	<0.002	<0.002	<0.0020 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	1.81	1.73	ND D2 V1 U	0.82	1.73 D2	1.44	1.44 D2	0.79	1.1 D1	1.20 D1	0.99 D1
Mercury	0.002	mg/L	0.000680	0.000825	0.0004 V1 J	0.0003 J	0.0003 J	0.0004 J	0.0002 J	0.0002 J	0.0007	0.0004 J	0.0004 J
Molybdenum	0.1	mg/L	NA	ND	ND D2 U	0.002 J	<0.01	<0.01 U	<0.01 U	0.002 J	<0.01 U	<0.01 U	<0.01 U
Radium 226	5.0	pCi/L	1.51	1.66	0.451	1.26	0.877	0.982	0.551	2.55 J	1.6 J	2.09 J	1.32 J
Radium 228	5.0	poi/L	1.51	1.00	0.804	1.20	0.077	0.302	0.551	2.550	1.00	2.03	1.02 0
Selenium	0.05	mg/L	NA	0.00211 J	ND U	0.023	<0.003	0.003	<0.003 U	0.028	0.002 J	0.003	0.001 J
Thallium	0.002	mg/L	NA	0.0000410 J	ND V1 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	2023							DATE					
APPENDIX III CONSTITUENTS	GWPS	Units	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/7/2017	10/6/2017	6/5/2018	7/11/2018
	amo						Baseline Events					Assessment	Re-Sampling
Boron		mg/L	0.217	0.0896 J	0.216 J	0.214 J	0.222 JB	0.241 J	0.257 JB	0.276 B	0.262	NA	0.207 J
Calcium		mg/L	452	189 B	374	399	335	464	423	407 B	383	NA	469
Chloride		mg/L	1630 B	521	688 B	755 B	734 B	722 B	945 B	779 B	608 B	NA	941 B
Fluoride	4.0	mg/L	ND J	ND	ND J	ND	ND J	ND JB	ND	3.69	ND J	NA	ND J
pH (Field Measurement)		s.u.	6.76	6.74	6.99	6.61	7.14	7.44	6.87	7.13	7.06	6.88	6.40
Sulfate		mg/L	1760 HB	876	1780	1740 B	1880	1760 B	2060 B	1920	1600 B	NA	1800
Total Dissolved Solids		mg/L	4210	1660	3470	3610	3680	4250	4130	4120	4390	NA	4100
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB	NA	ND JB	ND
Arsenic	0.01	mg/L	ND	ND J	ND JB	ND J	ND J	ND J	ND J	ND JB	NA	ND JB	ND J
Barium	2.0	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND J	ND J
Beryllium	0.004	mg/L	ND	ND	ND J	ND	ND	ND	ND	ND	NA	ND	ND
Cadmium	0.005	mg/L	ND J	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Chromium	0.1	mg/L	ND	ND J	ND	ND	ND J	ND J	ND	ND J	NA	0.00363 B	ND
Cobalt	0.006	mg/L	ND	ND J	ND J	ND J	ND	ND J	ND	ND J	NA	ND JB	ND J
Fluoride	4.0	mg/L	ND J	ND	ND J	ND	ND J	ND	ND	3.69	NA	ND J	ND J
Lead	0.015	mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND	NA	ND J	ND J
Lithium	0.04	mg/L	0.521	0.136	0.305	0.325	0.368	0.415	0.405	0.353	NA	0.459	0.481
Mercury	0.002	mg/L	ND	ND	ND	ND	ND	ND	0.00351	ND	NA	ND	ND
Molybdenum	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND
Radium 226	5.0	pCi/L	1.16	0.736	0.959	0.957	0.765	0.888	1.54	0.773	NA	0.862	1.42
Radium 228	5.0	po/L	1.10	0.730	0.505	0.957	0.705	0.000	1.04	0.773	INA	0.002	1.42
Selenium	0.05	mg/L	ND	ND	ND	ND	ND J	ND J	ND	ND	NA	ND J	ND
Thallium	0.002	mg/L	ND	ND	ND J	ND J	ND	ND J	ND	ND J	NA	ND J	ND

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

H1 = Sample analysis performed pasts holding time

H3 = Sample received and analyzed past holding time

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	9/28/2018	4/22/2019	9/30/2019	4/7/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/9/2022	6/24/2023	11/7/2023
	GWF5							Assessme	ent				
Boron		mg/L	0.263 JB	0.271 JE	ND D2 U	0.25	0.24	0.24	0.23	0.26	<1.0 D2, V1, U	0.24	0.21
Calcium		mg/L	441 B	446	476 D1	464 D1	495 D1	498 D1	453 D1	500 D1	561 D1	485 D1	439 D1
Chloride		mg/L	1140 B	931	1500 D	1860 D	1800 D	2080 D	2250 D	850 D	1930 D	1020 D	992 D
Fluoride	4.0	mg/L	ND JB	0.128	J 0.2	0.2	0.2	0.2	<0.2 U	<0.2 U	0.2	0.3	0.2
pH (Field Measurement)		s.u.	7.99	7.15	7.41 H3	6.77	6.52	6.92	6.67	6.59	6.94	7.71	7.25
Sulfate		mg/L	1890 B	1800	2990 D	3720 D	973 D	3440 D	1000 D	877 D	3080 D	1900 D	2390 D
Total Dissolved Solids		mg/L	4540	4360 E	3 5320 H1	4960	5170	5000	5630	4900	4630 H2,J-	4220 H2,J	4650
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.0000700 JE	ND V1 U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	ND JB	0.000424 JE	ND D2 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.001 U	<0.0010 U	<0.0010 U	<0.0010 U
Barium	2.0	mg/L	ND J	0.0167	J 0.016 D2 J	0.014	0.014	0.014	0.013	0.013	0.012	0.012	0.011
Beryllium	0.004	mg/L	NA	ND	ND D2 U	<0.0020	<0.0040 D2	<0.0020 U	<0.0020 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Cadmium	0.005	mg/L	NA	ND	ND V1 U	<0.0010	<0.0010	0.0006 J	<0.0010 U	<0.001 U	<0.001 U	<0.001 U	<0.001 U
Chromium	0.1	mg/L	NA	0.00159 JE	0.0033	<0.0020	0.0008 J	<0.0020 U	<0.0020 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Cobalt	0.006	mg/L	NA	0.000288	J ND U	<0.004	<0.004	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.128	J 0.2	0.2	0.2	0.2	<0.2 U	<0.2 U	0.2	0.3	0.2
Lead	0.015	mg/L	NA	0.0000860	J ND V1 U	<0.002	<0.002	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	0.425	0.434	0.40 D1	0.38	0.42 D2	0.39	0.35	0.39	0.33	0.33	0.36
Mercury	0.002	mg/L	ND	ND	ND V1 U	<0.0005	<0.0005	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	0.0002 J
Molybdenum	0.1	mg/L	NA	ND	ND D2 U	<0.01	<0.01	<0.01 U	<0.01 U	<0.01 U	<0.01 U	<0.01 U	<0.01 U
Radium 226	5.0	pCi/L	1.37	0.945	0.368	1.48	1.68	1.24	1.02	2.67 J	1.37 J	1.69 J	1.12 J
Radium 228	5.0	POIL	1.57	0.340	0.730	1.40	1.00	1.24	1.02	2.07	1.57	1.090	1.120
Selenium	0.05	mg/L	NA	0.000624 J	ND U	<0.003	<0.003	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	NA	0.0000890 J	ND V1 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.002 U	<0.002 U	0.0001 J	<0.002 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- J- = Qualifid as estimated biased low during data review.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	2023							DATE					
APPENDIX III CONSTITUENTS	GWPS	Units	3/29/2016	5/23/2016	8/18/2016	10/26/2016	2/1/2017	5/2/2017	8/7/2017	9/5/2017	10/5/2017	6/4/2018	7/10/2018
	GWF3					!	Baseline Events	}				Assessment	Re-Sampling
Boron		mg/L	0.156	0.137 J	0.193 J	0.168 J	0.173 B	0.179 J	0.167 JB	0.199 J	0.178	NA	0.155 J
Calcium		mg/L	467	374 B	373	400	320	415	365	382 B	376	NA	386
Chloride		mg/L	167 B	149 B	136 JB	150 B	125 B	129 B	128 B	123 B	138 B	NA	147 B
Fluoride	4.0	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J	ND J	NA	ND J
pH (Field Measurement)		s.u.	6.66	6.65	6.96	6.6	6.92	6.97	6.76	6.95	6.86	NA	6.50
Sulfate		mg/L	2250 HB	3340	2550	2610 B	2700	2600 B	2820 B	2490	2700 B	NA	2120
Total Dissolved Solids		mg/L	4060	4280	4350	4470	4720	4700	4830	4890	4910	NA	4500
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	ND	ND J	ND JB	ND	ND	ND JB	ND JB	ND JB	NA	ND JB	ND
Arsenic	0.01	mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND JB	NA	ND JB	ND J
Barium	2.0	mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND J	ND J
Beryllium	0.004	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Cadmium	0.005	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Chromium	0.1	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J	NA	ND JB	ND
Cobalt	0.006	mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND JB	ND J
Fluoride	4.0	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND	ND J	NA	ND J	ND J
Lead	0.015	mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND J
Lithium	0.04	mg/L	0.0475 J	0.0527	0.0555	0.0524	0.0607	0.0724	0.0589	0.0554	NA	0.0650	0.0592
Mercury	0.002	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND
Molybdenum	0.1	mg/L	ND J	ND J	ND J	ND B	ND J	ND J	ND J	ND J	NA	ND J	ND J
Radium 226	5.0	pCi/L	0.741	0.386	ND	0.751	ND	ND	0.462	ND	NA	0.392	0.532
Radium 228	5.0	po/L	0.741	0.300	טאו	0.751	ואט	IND	0.402	ועטוו	INA	0.382	0.552
Selenium	0.05	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND J	ND
Thallium	0.002	mg/L	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H2 = Initial analysis within holding time. Reanalysis was past holding time
- H3 = Sample received and analyzed past holding time
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable.
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	2023							DATE					
APPENDIX III CONSTITUENTS	GWPS	Units	9/28/2018	4/22/2019	9/30/2019	4/6/2020	9/22/2020	4/22/2021	9/23/2021	4/20/2022	12/9/2022	6/24/2023	11/8/2023
	awis							Assessm	ent				
Boron		mg/L	0.196 JB	0.194 JB	ND D2 U	0.19	0.19	0.18	0.18	0.2	<1.0 D2, V1, U	0.19	0.15 M2
Calcium		mg/L	356 B	421	431 D1	458 D1	417 D1	376 D1	417 D1	451 D1	474 D1	408 D1	375 D1, M3
Chloride		mg/L	142 B	142	230 D	181 D	286 D	276 D	130 D, M2	148 D	204 D	144 D	192 D, M3
Fluoride	4.0	mg/L	ND JB	0.409 J	0.5	0.4	0.5	0.4	<0.20 M2, U	0.3	0.5	0.5	0.5 J-
pH (Field Measurement)		s.u.	7.94	6.86	7.15 H3	6.36	6.32	6.72	6.87	6.75	6.88	7.64	7.42
Sulfate		mg/L	2420	2200	3830 D	4650 D	2380 D, H2	3460 D	1620 D, M2	1570 D	3030 D, J	2360 D	8480 D, M3
Total Dissolved Solids		mg/L	4820	4780 B	4830 H1	4610	4740	5050	5080	4860	4560 H2, J-	4760 H2,J	4030
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	NA	0.0000920 JB	ND V1 U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	ND JB	0.000722 JB	ND V1 U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U
Barium	2.0	mg/L	ND J	0.0128 J	0.010 D2 J	0.011	0.011	0.014	0.009	0.011	0.01	0.011	0.009
Beryllium	0.004	mg/L	NA	ND	ND D2 U	<0.0020	<0.0020 V1	<0.0020 U	<0.0020 U	<0.0020 V1, U	<0.0020 U	<0.0020 U	<0.0020 U
Cadmium	0.005	mg/L	NA	ND	ND V1 U	0.0001 J	<0.0010	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U	<0.0010 U
Chromium	0.1	mg/L	NA	0.00196 JB	ND U	<0.0020	0.0006 J	0.0006 J	0.0006 J	<0.0020 U	<0.0020 U	0.0008 J	<0.0020 U
Cobalt	0.006	mg/L	NA	0.000276 J	ND U	< 0.004	<0.004	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U	<0.004 U
Fluoride	4.0	mg/L	ND JB	0.409 J	0.5	0.4	0.5	0.4	<0.20 M2, U	0.3	0.5	0.5	0.5 J-
Lead	0.015	mg/L	NA	ND	ND V1 U	<0.002	<0.002	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.0005 U
Lithium	0.04	mg/L	0.0558	0.0633	0.05 D2 V1 J	0.05	0.05 D2, J	0.05	0.04	0.05	0.04	0.04	0.04
Mercury	0.002	mg/L	ND	ND	ND V1 U	<0.0005	<0.0005	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0002 U
Molybdenum	0.1	mg/L	NA	0.000972 J	ND D2 U	<0.01	<0.01	<0.01 U	<0.01 U	<0.01 U	<0.01 U	0.002 J	<0.002 U
Radium 226	5.0	pCi/L	NDU	0.450	0.548	0.744	0.380	0.674	0.109	0.404 J	1.29 J	1.40 J	0.220 J
Radium 228	5.0	ρCl/L	טועוו	0.450	0.698	0.744	0.300	0.074	0.109	0.404 3	1.280	1.400	0.22013
Selenium	0.05	mg/L	NA	0.00110 J	ND U	<0.003	<0.003	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	NA	0.0000610 J	ND V1 U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U	<0.0020 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- J- = Qualifid as estimated biased low during data review.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H2 = Initial analysis within holding time. Reanalysis was past holding time
- H3 = Sample received and analyzed past holding time
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable.
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

	0000							DATE					
APPENDIX III CONSTITUENTS	2023 GWPS	Units	3/29/2019	4/10/2019	10/25/2019	4/17/2020	10/1/2020	5/26/2021	9/23/2021	4/22/2022	12/10/2022	6/24/2023	11/7/2023
	GWF3							Characterization			•		
Boron		mg/L	0.1880 JB	0.2710 JB	ND D2, U	0.21	0.23 D2	0.26 M4	0.25	0.25	0.26 D1	0.26	0.24
Calcium		mg/L	465 B	502	505 D1	527 D1	491 D1	459 D1,M1,M2	466 D1	486 D	536 D1	477 D1	496 D1
Chloride		mg/L	1430	1430 B	1610 D	2630 D	2220 D	1650 D	1430 M2	3080 D	3450 D, M2	3000 D	2490 D, M3
Fluoride	4.0	mg/L	ND	0.3230 JB	0.4	0.3	0.3	0.4	0.4 M2, Y2	0.4	0.4 M2,J	<0.2 U	0.3 J-
pH (Field Measurement)		s.u.	6.88	6.99	6.86	6.58	6.91	7.55	6.22	5.98	6.91	7.77	7.33
Sulfate		mg/L	2870	2880 B	2440 D	4710 D	2730 D	1970 D	1900 D, M1	1100 D	4480 D, M2	4010	4190 D, M3
Total Dissolved Solids		mg/L	6990	6690	7330	6320	6270	7330	7230	6500	5810	7990	5770
APPENDIX IV CONSTITUENTS													
Antimony	0.006	mg/L	0.0001 JB	0.0001 JB	ND U	<0.005	<0.005	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U	<0.005 U
Arsenic	0.01	mg/L	0.0022 J	0.0021 J	0.0039	0.0013	0.0013	0.0008 J	0.0010	0.0015	0.001	0.0011	0.0010
Barium	2.0	mg/L	0.0243 J	0.0216 JB	0.030	0.018	0.018	0.016	0.017	0.017	0.016	0.016	0.016
Beryllium	0.004	mg/L	ND	ND	ND U	<0.0020	<0.0020 D2	<0.0020 U	<0.0020 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Cadmium	0.005	mg/L	ND	ND	0.0004 J	<0.0010	<0.0010	0.0001 J	0.0006 J	0.0004 J	0.0015	0.0003 J	0.0004 J
Chromium	0.1	mg/L	0.0047 B	0.0036	0.0066	0.0020	0.0013 J	0.0012 J	<0.0020 U	0.001 J	0.0007 J	<0.0020 U	0.0006 J
Cobalt	0.006	mg/L	0.0059 B	0.0052	0.011	0.005	0.005	<0.004 U	<0.004 U	0.005	0.004	0.004	0.004
Fluoride	4.0	mg/L	ND	0.3230 JB	0.4	0.3	0.3	0.4	0.4 M2, Y2	0.4	0.4 M2,J	<0.2 U	0.3 J-
Lead	0.015	mg/L	0.0011 J	0.0002 J	0.003	<0.002	<0.002	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U
Lithium	0.04	mg/L	0.0281 J	0.0286 J	0.02	0.02	0.02 D2	0.02 M1	0.03	0.03	0.03	0.04	0.05
Mercury	0.002	mg/L	ND	ND ^	ND U	< 0.0005	<0.0005	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U	<0.0005 U
Molybdenum	0.1	mg/L	0.0015 J	0.0010 J	0.005 J	0.003 J	<0.01 D2	0.002 J	<0.01 U	<0.01 U	<0.01 U	<0.01 U	<0.01 U
Radium 226	5.0	pCi/L	0.7760	0.3190 U	0.126	0.655	0.422	0.385	1.36	0.71 J	1.29	0.797 J	0.710 J
Radium 228	3.0	po/L	0.7700	0.5190	1.52	0.033	0.422	0.303	1.50	0.713	1.23	0.737 3	0.7103
Selenium	0.05	mg/L	ND	ND	ND U	<0.003	<0.003 D2	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U	<0.003 U
Thallium	0.002	mg/L	ND	ND	ND U	<0.0020	<0.0020	0.0001 J	<0.0020 U	<0.002 U	<0.002 U	<0.002 U	<0.002 U

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- J- = Qualifid as estimated biased low during data review.
- B = Compound was found in the blank and sample.
- F1 = MS and/or MSD Recovery is outside acceptance limits.
- D1 = Sample required dilution due to high concentration of target analyte
- D2 = Sample required dilution due to matrix interference
- H1 = Sample analysis performed pasts holding time
- H3 = Sample received and analyzed past holding time
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable.
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
- M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
- U = Target analyte was analyzed for, but was below detection limit
- V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

								DAT	Έ						
APPENDIX III CONSTITUENTS	2023 GWPS	Units	6/24/2023	4/10/2019											
	GWPS				1	I.		Character	ization	1	1		I.		
Boron		mg/L	NA	NA											
Calcium		mg/L	NA	NA											
Chloride		mg/L	NA	NA										1	
Fluoride	4.0	mg/L	NA	NA											
pH (Field Measurement)		s.u.	6.56	6.22											
Sulfate		mg/L	NA	NA											
Total Dissolved Solids		mg/L	NA	NA										1	
APPENDIX IV CONSTITUENTS															
Antimony	0.006	mg/L	NA	NA											
Arsenic	0.01	mg/L	0.0153	0.0103										1	
Barium	2.0	mg/L	NA	NA											
Beryllium	0.004	mg/L	NA	NA											
Cadmium	0.005	mg/L	NA	NA											
Chromium	0.1	mg/L	NA	NA											
Cobalt	0.006	mg/L	NA	NA											
Fluoride	4.0	mg/L	NA	NA											
Lead	0.015	mg/L	NA	NA											
Lithium	0.04	mg/L	NA	NA										1	
Mercury	0.002	mg/L	NA	NA											
Molybdenum	0.1	mg/L	NA	NA											
Radium 226	5.0	pCi/L	NA	NA											
Radium 228	5.0	po/L	INA	INA											1
Selenium	0.05	mg/L	NA	NA											
Thallium	0.002	mg/L	NA	NA									_		

GWPS = Groundwater Protection Standard

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

U = Target analyte was analyzed for, but was below detection limit

				DATE															
APPENDIX III CONSTITUENTS	2023 GWPS	Units	6/24/2023	4/10/2019															
	GWPS		Characterization																
Boron		mg/L	NA	NA															
Calcium		mg/L	NA	NA															
Chloride		mg/L	NA	NA															
Fluoride	4.0	mg/L	NA	NA															
pH (Field Measurement)		s.u.	6.77	6.69															
Sulfate		mg/L	NA	NA															
Total Dissolved Solids		mg/L	NA	NA															
APPENDIX IV CONSTITUENTS																			
Antimony	0.006	mg/L	NA	NA															
Arsenic	0.01	mg/L	0.0607	0.0832															
Barium	2.0	mg/L	NA	NA															
Beryllium	0.004	mg/L	NA	NA															
Cadmium	0.005	mg/L	NA	NA															
Chromium	0.1	mg/L	NA	NA															
Cobalt	0.006	mg/L	NA	NA															
Fluoride	4.0	mg/L	NA	NA															1
Lead	0.015	mg/L	NA	NA															1
Lithium	0.04	mg/L	NA	NA															1
Mercury	0.002	mg/L	NA	NA															
Molybdenum	0.1	mg/L	NA	NA															
Radium 226	5.0	pCi/L	NA	NA															
Radium 228	5.0		INA	INA															i
Selenium	0.05	mg/L	NA	NA															
Thallium	0.002	mg/L	NA	NA												_			

GWPS = Groundwater Protection Standard

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

U = Target analyte was analyzed for, but was below detection limit

				DATE															
APPENDIX III CONSTITUENTS	2023 GWPS	Units	6/24/2023	4/10/2019															
	GWPS		Characterization																
Boron		mg/L	NA	NA															
Calcium		mg/L	NA	NA															
Chloride		mg/L	NA	NA															
Fluoride	4.0	mg/L	NA	NA															
pH (Field Measurement)		s.u.	7.26	7.07															
Sulfate		mg/L	NA	NA															
Total Dissolved Solids		mg/L	NA	NA															
APPENDIX IV CONSTITUENTS																			
Antimony	0.006	mg/L	NA	NA															
Arsenic	0.01	mg/L	< 0.10 U	0.0012															
Barium	2.0	mg/L	NA	NA															
Beryllium	0.004	mg/L	NA	NA															
Cadmium	0.005	mg/L	NA	NA															
Chromium	0.1	mg/L	NA	NA															
Cobalt	0.006	mg/L	NA	NA															
Fluoride	4.0	mg/L	NA	NA															1
Lead	0.015	mg/L	NA	NA															1
Lithium	0.04	mg/L	NA	NA															1
Mercury	0.002	mg/L	NA	NA															
Molybdenum	0.1	mg/L	NA	NA															1
Radium 226	5.0	pCi/L	NA	NA							_								
Radium 228	3.0		INA _															<u> </u>	<u> </u>
Selenium	0.05	mg/L	NA	NA															
Thallium	0.002	mg/L	NA	NA							_					_			

GWPS = Groundwater Protection Standard

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

U = Target analyte was analyzed for, but was below detection limit

MW-2 Arsenic Characterization Study - Groundwater Laboratory Results

BREC Sebree Green CCR Landfill Robards, KY

		2023 GWPS	Sample Location: Depth: Date: Lab ID:	MW-105 20.8' - 30.8 6/24/2023 50348165003	MW-106S 28.8' - 38.8' 6/24/2023 50348165005	MW-106D 53.3' - 63.3' 6/24/2023 50348165007	DUP 53.3' - 63.3' 6/24/2023 50348165009	MW-2 37.8'-47.8' 6/24/2023 50348165003
					Characteriza	ation Well		Compliance Well
Analytical Method	Analyte		Unit			Field Dup	licate Pair	
Laboratory Ground	water Results							
EPA 6010	Arsenic (total)	0.01	mg/L	0.0153	0.0607	<0.01 U	<0.01 U	0.0323
EPA 6020	Arsenic (dissolved; 0.45 μm)	0.01	mg/L	0.0140	0.0556	0.0011	0.0012	0.0065
EPA 6020	Arsenic (dissolved; 0.20 μm)	0.01	mg/L	0.0138	0.0592	0.0011	0.0013	0.0058
IC-ICP-CR-MS	Arsenic (III)	0.01	mg/L	0.00730	0.0601	0.00103 J	0.00104 J	0.00516
IC-ICP-CR-MS	Arsenic (V)	0.01	mg/L	0.00695	0.0125	<0.0005 U	<0.0005 U	0.00116
EPA 6010	Iron (total)	NA	mg/L	38.2	9.18	0.444	0.446	2.580
SM 3500-Fe	Ferric Iron (dissolved)	NA	mg/L	34.9	na	<0.20 U	<0.20 U	1.2
Field Water Quality	Parameters							
Field	рН	NA	s.u.	6.56	6.77	7.26	7.26	6.33
Field	Specific Conductivity	NA	mS/cm	2.33	1.49	0.615	0.615	1.91
Field	ORP	NA	mV	-109.0	-101.0	-106.0	-106.0	-94.0
Field	DO	NA	mg/L	0.0	0.0	0.0	0.0	0.0
Field	Ferrous Iron	NA	mg/L	3.27	ORR	0.44	0.41	1.33
Field	Turbidity	NA	NTU	58.4	3.90	16.70	16.70	18.9
Field	Temperature	NA	°C	19.45	16.00	19.04	19.04	16.34

Notes:

Orange Shading - groundwater concentration exceeds the GWPS.

 μm - micrometers

°C = degree Celsius

As = arsenic

DO = dissolved oxygen

EPA = Environmental Protection Agency

IC-ICP-CR-MS = Ion Chromatography-Inductively Coupled Plasma Mass Spectrometry

J = Estimated result (by the laboratory or during the data evaluation)

mg/L = milligram per liter

mS/cm = millisiemens per centimeter

mV = millivolts

NA = not applicable

na = not available

NTU = Nephelometric turbidity units

ORP = oxidation reduction potential

ORR = over range of instrument detection/sensitivity

s.u. = standard unit

U = Target analyte was analyzed for, but was below detection limit

MW-2 Arsenic Characterization Study - Soil Laboratory Results

BREC Sebree Green CCR Landfill Robards, KY

			2023 GWPS	Sample Location: Depth: Date:	MW-105 15'-17' 4/25/2023	MW-105 23'-25' 4/25/2023	MW-105 28'-30' 4/25/2023	MW-105 31'-32' 4/25/2023	MW-106S 22'-24' 4/26/2023	DUP-1 22'-24' 4/26/2023	MW-106S 37'-39' 4/26/2023	MW-106D 51'-53' 4/27/2023	MW-106D 58'-60' 4/27/2023
	1							Char	acterization Well		•		
Analytical Method	A	nalyte		Unit					Field Dupli	icate Pair			
Soil Results								1					
EPA 6020		rsenic		mg/kg	6.3	6.2	3.0	26.2	2.4	3.6	3.6	6.6	1.5
EPA 6010		Iron		mg/kg	20,500	23,600	24,700	56,400	17,800	15,500	25,000	45,900	21,600
Laboratory	Mition Leaching Procedure (SPL	oisture DN		%	19.5	22.0	17.6	10.7	19.6	20.2	17.0	4.8	4.7
EPA 6010		rsenic	0.01	mg/L	<0.010 U	0.056	0.012	0.024	0.046	0.058	0.036	<0.010 U	<0.010 U
EPA 6010		Iron	0.01	mg/L	3.6	141	35.8	39.7	152	189	74.2	<0.10 U	6.3
	scence (XRF) Soil Results (7/2			IIIg/ E	0.0	141	00.0	00.7	102	100	74.2	40.10 0	0.0
,	l ' í	•		I	ND	ND	ND	8 +/- 2	ND	ND	ND	13 +/- 4	ND
Field	A	rsenic		mg/kg	8 +/- 3	10 +/- 3	ND	ND ND	ND	8 +/- 2	ND	14 +/- 4	ND
					19,970 +/- 254	22,203 +/- 253	14,539 +/- 215	17,988 +/- 215	14,255 +/- 172	18,084 +/- 207	22,965 +/- 257	43,079 +/- 651	17,974 +/- 304
Field		Iron		mg/kg	22,378 +/- 275	24,146 +/- 266	15,114 +/- 225	21,622 +/- 266	21,832 +/- 263	17,767 +/- 211	18,390 +/- 276	53,023 +/- 714	24,624 +/- 304
X-Ray Diffraction ()	XRD) Laboratory Soil Results			ı			,			,	,		
Laboratory	Quartz	SiO2		%	43.0	45.0	47.0	19.0	50.0		60.0	19.0	42.0
Laboratory	Plagioclase Feldspar	(Na,Ca)AlSi3O8		%	8	6	11	11	6		14	10	20
Laboratory	K-Feldspar	KAISi3O8		%	4	4	4	5	4		4	3	7
Laboratory	Calcite	CaCO3		%	2	0	0	0	0		0	0	1
Laboratory	Halite	NaCl		%	0	0	0	0	0		0	5	2
Laboratory	Dolomite	(Ca,Mg)(CO3)2		%	4	0	2	0	0		0	0	0
Laboratory	Siderite	FeCO3		%	1	0	0	1	0		0	3	2
Laboratory	Goethite	alpha-FeOOH		%	0	0	0	9	0		0	0	0
Laboratory	Kaolinite	Al2Si2O5(OH)4		%	3	2	2	19	3		5	13	13
Laboratory	Chlorite	(Mg,Al)6(Si,Al)4O10(OH)8		%	1	1	1	1	1		2	12	2
Laboratory	Illite / Mica	KAI2(Si3AIO10)(OH)2		%	27	17	24	21	10		13	30	9
Laboratory	Mixed-Layered Illite/Smectite	K0.5Al2(Si,Al)4O10(OH)2 2H20		%	8	25	10	15	26		3	5	3
	Total			%	100	100	100	100	100		100	100	100
	% Illite in ML I/S			%	75	70	70	80	50		75	85	70
	% IIIIE III WL 1/3			Description	CLAY, w/ silt, some very fine Sand	Clay, some silt, trace very fine Sand	Clay, some silt, trace very fine Sand	Weathered Sandstone (very fine-fine grain), some iron staining.	Clay, trace silt, iro	n oxide staining.	Clay, trace-some silt; trace fine sand. Grades to graveling bottom	Shale	Sandstone, fine- grain, micaceous, organic streaks
				Color	Dark Yellowish Brown (10YR 3/4)	Very Dark Grey (2.5Y 3/1)	Grayish Brown (10YR 5/2)	Light Tan	Brown (1	0YR 5/3)	Dark Grey (10YR 4/1)	Dark Grey	Grey
				Location	Sample Above MW Screen	Sample Within MW Screen	Sample Within MW Screen	Sample Below MW Screen	Sample Above	e MW Screen	Sample Within MW Screen	Sample Above MW Screen	Sample Within MW Screen

Notes:

Field XRF results include two field analysis results using a portable XRF instrument. Each field test represents an average of three XRF readings

Orange highlight - SPLP concentration exceeds the GWPS
EPA = Environmental Protection Agency

GWPS - Groundwater Protection Standard

% - percent

mg/kg - milligrams per kilogram

mg/L - milligrams per liter MW - Monitoring Well

ND - not detected

U = Target analyte was analyzed for, but was below detection limit

APPENDIX E - GREEN SURFACE IMPOUNDMENT ANALYTICAL SUMMARY TABLES

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-11

APPENDIX III	2023		DATE									
CONSTITUENTS	Calculated		4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/26/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	5/7/2018
CONSTITUENTS	Background	Units				Baseline	Events				Detection	Events
Boron	0.9744	mg/L	0.818 JB	0.645 J	0.736 JB^	0.736 J	0.920 JB	0.754 JB	0.695 JB	0.802 J	0.769 J	0.879
Calcium	415	mg/L	371	378 B	243	291	276	326 B	321	299	315 B	317
Chloride	3,967	mg/L	1070 B	1740 B	1880 B	2000 B	1880 B	1910 B	2360 B	1520 B	1940 B	1860 B
Fluoride	0.891	mg/L	ND J	ND J	ND JB^	ND	ND JB	ND JB	ND	ND JB	ND J F1	ND J
pH (Field Measurement)	6.367 - 7.552	s.u.	7.23	7.24	7.29	7.22	7.20	7.04	6.89	6.88	6.86	7.18
Sulfate	2,023	mg/L	1170	1400	1150	1150 B	1060	1010 B	1410	797 J	1050 B	1020 B
Total Dissolved Solids	5,418	mg/L	3920 H	4610	4840	4490	4930	4830	5100	4880	5080	5070
APPENDIX IV CONSTIUENTS												
Antimony		mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB	NA	NA
Arsenic		mg/L	ND J	ND	ND	ND J	ND J	ND JB	ND J	ND JB	NA	NA
Barium		mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	NA
Beryllium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Cadmium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Chromium		mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J	NA	NA
Cobalt		mg/L	0.00494 J	0.00267 J	0.00277 J	0.00138 J	0.00131 J	0.00129 J	0.000654 J	0.000619 J	NA	NA
Fluoride		mg/L	ND J	ND J	ND J	ND	ND J	ND J	ND	ND JB	NA	NA
Lead		mg/L	ND	ND JB	ND	ND	ND	ND	ND J	ND	NA	NA
Lithium		mg/L	0.0365 J	0.0685	0.0651	0.0544	0.0591	0.0545	0.0615	0.0596	NA	NA
Mercury		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Molybdenum		mg/L	0.0163	ND J	ND J	ND J	ND J	ND J	ND J	ND	NA	NA
Radium 226		pCi/L	1.35	0.975	1.61	1.86	1.66	2.18	2.69	2.08	NA	NA
Radium 228		POI/L	1.55	0.975	1.01	1.80	1.00	2.10	2.09	2.00	INA	IVA
Selenium		mg/L	ND	ND J	ND J	ND	ND J	ND JB	ND	ND J	NA	NA
Thallium		mg/L	ND J	ND	ND	ND	ND	ND J	ND J	ND	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- H = Sample was prepped or analyzed beyond the specified holding time
- ^ = ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,DLCK or MRL standard; Instrument related QC is outside acceptance limits
- F1 = MS and/or MSD Recovery is outside acceptance limits
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was accept
- M2 = Matrix spike recovery was low; the method control sample recovery was accepta
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.
- U = Target analyte was analyzed for, but was below detection limit

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-11

ADDENDIV III	2023							DATE				
APPENDIX III CONSTITUENTS	Calculated		9/27/2018	4/29/2019	1	0/3/2019	4/8/2020	9/25/2020	4/23/2021	9/24/2021	4/21/2022	10/1/2022
CONSTITUENTS	Background	Units						Detection Eve	ents			
Boron	0.9744	mg/L	0.671 B	0.717	ND	D2, M2. M4, U	0.78 M2, M4	<1.00 D2, M2	0.78 M4	<1.0 D2, U	0.84 M1	0.71 M2
Calcium	415	mg/L	312	345	318	D1, M1	316 D1. M2	335 D2,M3	343 D1, M2	347 D1, M1, M2	315 D1,M3	339 D1,M3
Chloride	3,967	mg/L	2000 B	1900	3900	D	2270 D	2620 D	3190 D	2040 D	2900 D	2900 D
Fluoride	0.891	mg/L	ND J	0.227 J	0.2		0.2	0.2	0.2	0.2	0.2	0.2
pH (Field Measurement)	6.367 - 7.552	s.u.	6.70	7.11	6.86		6.78	6.98	7.11	6.57	6.85	7.13
Sulfate	2,023	mg/L	1080 B	949 B	971		1210 D	1280 D	1600 D	1980 D	1710 D	1450 D
Total Dissolved Solids	5,418	mg/L	5020	4890 B	682		4650	4510	5130	5030	4760	4850
APPENDIX IV CONSTIUENTS												
Antimony		mg/L	NA	NA	NA	l l	NA	NA	NA	NA	NA	NA
Arsenic		mg/L	NA	NA	NA	l l	NA	NA	NA	NA	NA	NA
Barium		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Beryllium		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Cadmium		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Chromium		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Cobalt		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Fluoride		mg/L	NA	0.227 J	0.2		0.2	0.2	0.2	0.2	0.2	0.2
Lead		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Lithium		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Mercury		mg/L	NA	NA	NA	ı	NA	NA	NA	NA	NA	NA
Molybdenum		mg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA
Radium 226		pCi/L	NA	NA	NA		NA	NA	NA	NA	NA	NA
Radium 228		POI/L	INA	INA	INA		INC	INA	IVA	INA	INA	IVA
Selenium		mg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA
Thallium		mg/L	NA	NA	NA		NA	NA	NA	NA	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- H = Sample was prepped or analyzed beyond the specified holding time
- ^ = ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,DLCK or MRL standard; Instrument related QC is outside acceptance limits
- F1 = MS and/or MSD Recovery is outside acceptance limits
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.
- U = Target analyte was analyzed for, but was below detection limit

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-12

	2023		DATE										
APPENDIX III CONSTITUENTS	Calculated		4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	4/29/2018	5/7/2018
	Background	Units				Baseline E	vents				D	etection Even	ts
Boron	0.9744	mg/L	0.174 JB	0.186 J	0.280 JB	0.286 J	0.335 JB	0.306 JB	0.296 JB	0.334 J	0.274 J	0.717	0.352
Calcium	415	mg/L	68.6	95.1 B	81.0	99.4	87.7	90.9 B	88.5	94.5	92 B	345	93.5
Chloride	3,967	mg/L	29.0 B	32.4 B	26.9 B	26.2 B	24.6 JB	21.7 B	21.0 JB	19.8 B	17.4 B	1900	15.4
Fluoride	0.891	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J	ND J
pH (Field Measurement)	6.367 - 7.552	s.u.	7.85	7.4	7.52	7.33	7.65	5.02	6.56	7.07	7.07	7.11	7.34
Sulfate	2,023	mg/L	168	146	95.7	64.0 B	54	41.3 B	33.8 J	25.3 J	19.7 B	949 B	13.5 B
Total Dissolved Solids	5,418	mg/L	472	745	726	677	679	676	674	758	641	4890 B	649
APPENDIX IV CONSTIUENTS													
Antimony		mg/L	0.00204	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB	NA		NA
Arsenic		mg/L	0.00596	0.00566	ND J	ND J	ND J	ND JB	ND J	ND JB	NA		NA
Barium		mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	NA		NA
Beryllium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA		NA
Cadmium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA		NA
Chromium		mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND J	NA		NA
Cobalt		mg/L	ND	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	NA		NA
Fluoride	-	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	NA	0.227 J	NA
Lead		mg/L	ND J	ND JB	ND	ND	ND	ND	ND J	ND J	NA		NA
Lithium	-	mg/L	0.0100 J	0.0194 J	0.0173 J	0.0208 J	0.0215 J	0.0169 JB	0.0244 J	0.0229 J	NA		NA
Mercury		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA		NA
Molybdenum		mg/L	0.0769	0.0234	0.0141	0.0123	0.0100	ND JB	ND J	ND J	NA		NA
Radium 226 Radium 228		pCi/L	0.842	ND	ND	0.954	0.361	0.556	0.566	ND	NA		NA
Selenium		mg/L	ND J	ND	ND	ND	ND	ND JB	ND	ND	NA		NA
Thallium		mg/L	ND	ND	ND	ND	ND	ND JB	ND	ND	NA		NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value B = Compound was found in the blank and sample
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-12

	2023						DATE				
APPENDIX III CONSTITUENTS	Calculated		9/27/2018	4/29/2019	10/4/2019	4/8/2020	9/25/2020	4/23/2021	9/24/2021	4/21/2022	10/1/2022
	Background	Units					Detection E	vents			
Boron	0.9744	mg/L	0.335 B	0.290	ND D2, U	0.31	<1.00 D2	0.31	<1.0 D2, U	0.31	0.27
Calcium	415	mg/L	96.4	93.1	92.0 D2	98.3 D2	89.6 D2	91.5 D1	91.8 D2	93.6 D1	87.2 D1
Chloride	3,967	mg/L	15.5 B	15.1	14.0	13.9	13.5	14.7	16.2	11.1	15.7
Fluoride	0.891	mg/L	ND J	0.428 J	0.4	0.4	0.4	0.4	0.4	0.4	0.4
pH (Field Measurement)	6.367 - 7.552	s.u.	6.84	7.36	7.07	6.90	6.83	7.33	6.52	6.77	7.30
Sulfate	2,023	mg/L	14.3	11.9 B	11	9	8	14	31 D	4 J	41
Total Dissolved Solids	5,418	mg/L	595	618 B	546	532	658	576	622	582 J+	684
APPENDIX IV CONSTIUENTS											
Antimony		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoride		mg/L	NA	0.428 J	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Lead		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Molybdenum		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226		pCi/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 228											
Selenium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value J+ = Qualified as estimated potential high bias during data review.

B = Compound was found in the blank and sample

U = Target analyte was analyzed for, but was below detection limit

D1 = Sample required dilution due to high concentration of target analysis

D2 = Sample required dilution due to matrix interference

D = Results reported from dilution

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-13

	2023											
APPENDIX III CONSTITUENTS	Calculated		4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	4/29/2018
	Background	Units				Baselin	e Events				Detection	Events
Boron	0.9744	mg/L	ND B	ND J	ND JB	ND J	ND JB	ND JB	ND JB	ND J	ND J	0.717
Calcium	415	mg/L	93.0	95.1 B	85.1	94.5	82.8	90.2 B	92.3	94.3	92.2 B	345
Chloride	3,967	mg/L	20.5 B	25.2 B	22.3 B	24.8 B	22.2 JB	21.4 B	21.6 JB	21.3 JB	19.9 B	1900
Fluoride	0.891	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	ND J	0.227 J
pH (Field Measurement)	6.367 - 7.552	s.u.	6.78	6.9	6.97	6.86	7.22	8.25	6.48	6.64	6.62	7.11
Sulfate	2,023	mg/L	118	118	106	104 B	96.2	98.1 J	96.6	88.0	96.4 B	949 B
Total Dissolved Solids	5,418	mg/L	699	721	684	704	678	714	702	727	695	4890 B
APPENDIX IV CONSTIUENTS			·		·	·	·	·				
Antimony		mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB	NA	
Arsenic		mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	NA	
Barium		mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	
Beryllium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	
Cadmium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	
Chromium		mg/L	ND	ND J	ND	ND	ND	ND	ND	ND J	NA	
Cobalt		mg/L	0.00378 J	0.00221 J	0.0018 J	0.00149 J	0.000720 J	0.00115 J	0.0009 J	0.000981 J	NA	
Fluoride		mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	ND JB	NA	0.227 J
Lead		mg/L	ND J	ND JB	ND	ND	ND	ND	ND	ND	NA	
Lithium		mg/L	0.00929 J	0.0104 J	0.0123 J	0.0104 J	0.0113 J	ND	0.0111 J	ND	NA	
Mercury		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	
Molybdenum		mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	
Radium 226 Radium 228		pCi/L	ND	ND	ND	ND	ND	0.164	0.47	0.749	NA	
Selenium		mg/L	ND	ND	ND J	ND	ND	ND	ND	ND	NA	
Thallium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-13

	2023								DATE				
APPENDIX III CONSTITUENTS	Calculated		5/7/2018	9/27/2018	4/29/2019	10/4	/2019	4/8/2020	9/25/2020	4/23/2021	9/24/2021	4/21/2022	10/1/2022
	Background	Units						De	etection Events				
Boron	0.9744	mg/L	ND J	0.0565 JB	0.0392 J	ND	D2, U	<0.10	<1.00 D2	<0.10 U	<1.0 D2, U	<0.10 U	<0.10 U
Calcium	415	mg/L	94.3	95.6	95.1	87.4	D2	86.6 D2	84.9 D2	90.1 D1	87.9 D2	91.4 D1	94.9 D1
Chloride	3,967	mg/L	21.0	26.6 B	24.4	24.6		22.8	33.3 D	26.4 D	32.3 D	25.3	23.2
Fluoride	0.891	mg/L	ND J	ND J	0.271 J	0.2		0.3	0.4 D	0.2	0.2	0.2	0.2
pH (Field Measurement)	6.367 - 7.552	s.u.	7.03	6.54	6.94	6.75		6.53	6.80	6.77	6.51	6.61	6.88
Sulfate	2,023	mg/L	87.6 B	109 B	98.6 B	41		117 D	87 D	82 D	121 D	93	87
Total Dissolved Solids	5,418	mg/L	673	697	711 B	586		608	552	706	754	676 J+	840
APPENDIX IV CONSTIUENTS				-	•		-						
Antimony		mg/L	NA	NA	NA	NA	١	NA	NA	NA	NA	NA	NA
Arsenic		mg/L	NA	NA	NA	NA	١	NA	NA	NA	NA	NA	NA
Barium		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Beryllium		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Cadmium		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Chromium		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Cobalt		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Fluoride		mg/L	NA	NA	0.271 J	0.2	2	0.3	0.4 D	0.2	0.2	0.2	0.2
Lead		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Lithium		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Mercury		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Molybdenum		mg/L	NA	NA	NA	NA	٨	NA	NA	NA	NA	NA	NA
Radium 226 Radium 228		pCi/L	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Selenium		mg/L	NA	NA	NA	NA	١	NA	NA	NA	NA	NA	NA
Thallium		mg/L	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value. J+ = Qualified as estimated potential high bias during review.

- B = Compound was found in the blank and sample.
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-14

	2023		DATE									
APPENDIX III CONSTITUENTS	Calculated		4/1/2016	6/2/2016	8/16/2016	10/25/2016	1/27/2017	5/1/2017	8/11/2017	9/20/2017	10/9/2017	5/7/2018
	Background	Units				Baseline Ev	vents				Detection	Events
Boron	0.9744	mg/L	0.196 JB	0.186 J	0.234 JB	0.209 J	0.250 JB	0.234 JB	0.277 JB	0.273 J	0.241 J	0.254
Calcium	415	mg/L	194	194 B	171	193	183	193 B	193	187	194 B	189
Chloride	3,967	mg/L	161 B	184 B	185 B	193 B	191 B	185 B	212 B	230 B	199 B	198 B
Fluoride	0.891	mg/L	ND J	ND J	ND J	ND JB	ND J	ND JB	ND JB	ND JB	ND J	ND
pH (Field Measurement)	6.367 - 7.552	s.u.	6.63	6.35	7.43	7.34	7.78	5.23	7.33	7.13	7.32	7.26
Sulfate	2,023	mg/L	188	219	216	215 B	221	197 B	179	198 J	185	222 B
Total Dissolved Solids	5,418	mg/L	1080	1130	1140	1130	1150	1170	1150	1240	1170	1180
APPENDIX IV CONSTIUENTS												
Antimony		mg/L	ND	ND JB	ND JB	ND	ND JB	ND JB	ND JB	ND JB	NA	NA
Arsenic		mg/L	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	NA	NA
Barium		mg/L	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	NA
Beryllium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Cadmium	-	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Chromium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND J	NA	NA
Cobalt		mg/L	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	NA
Fluoride	-	mg/L	ND J	ND J	ND J	ND JB	ND	ND JB	ND J	ND JB	NA	NA
Lead	-	mg/L	ND	ND JB	ND	ND	ND	ND	ND	ND J	NA	NA
Lithium	-	mg/L	0.0400 J	0.0488 J	0.0477 J	0.0456 J	0.0486 J	0.0437 J	0.0494 J	0.0496 J	NA	NA
Mercury	-	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Molybdenum	-	mg/L	ND J	ND J	ND	ND	ND	ND	ND	ND	NA	NA
Radium 226 Radium 228		pCi/L	1.54	1.42	1.86	1.55	1.31	2.17	2.85	1.8	NA	NA
Selenium		mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA
Thallium	-	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
- B = Compound was found in the blank and sample.
- U = Target analyte was analyzed for, but was below detection limit
- D1 = Sample required dilution due to high concentration of target analysis
- D2 = Sample required dilution due to matrix interference
- D = Results reported from dilution
- M1 = Matrix spike recovery was high; the method control sample recovery was acceptable
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable
- M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

GREEN SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY MW-14

	2023							DATE				
APPENDIX III CONSTITUENTS	Calculated		9/27/2018	4/28/2019	4/29/2019	10/3/2019	4/8/2020	9/25/2020	4/23/2021	9/24/2021	4/21/2022	10/1/2022
	Background	Units						Detection Events				
Boron	0.9744	mg/L	0.232 B	0.717	0.206	ND D2, U	0.20	<1.00 D2	0.17	<1.0 D2, U	0.16	0.14
Calcium	415	mg/L	200	345	206	194 D1	195 D1	194 D2	199 D1	212 D1	181 D,D1	200 D1
Chloride	3,967	mg/L	189 B	1900	165	262 D	121 D	131 D	117 D	186 D	159 D	137 D
Fluoride	0.891	mg/L	ND J	0.227 J	0.342 J	0.3	0.3	0.3	0.2	0.3	0.3	0.3
pH (Field Measurement)	6.367 - 7.552	s.u.	6.57	7.11	7.05	6.77	6.57	6.75	6.88	6.52	6.52	6.99
Sulfate	2,023	mg/L	231 B	949 B	222 B	871 D	183 D	221 D	180 D	324 D	286 D	178
Total Dissolved Solids	5,418	mg/L	1100	4890 B	1180 B	1120 H2	1030	946	1040	1050	1230	1060
APPENDIX IV CONSTIUENTS												
Antimony		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoride		mg/L	NA	0.227 J	0.342 J	0.3	0.3	0.3	0.2	0.3	0.3	0.3
Lead		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lithium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Molybdenum		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226 Radium 228		pCi/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium		mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

GWPS = Groundwater Protection Standard

mg/L = milligrams per liter

NA = Not Analyzed

ND = Not Detected at or above Method Detection Limit

pCi/L = picocuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

B = Compound was found in the blank and sample.

U = Target analyte was analyzed for, but was below detection limit

D1 = Sample required dilution due to high concentration of target analysis

D2 = Sample required dilution due to matrix interference

D = Results reported from dilution

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

M4 = The analysis of the spiked sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable.

APPENDIX F - GREEN LANDFILL LABORATORY
ANALYTICAL REPORTS

Certificate of Analysis 3061146

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 10/12/2023 15:18

Project Name: Green Landfill Semiannual Groundwater

Workorder:

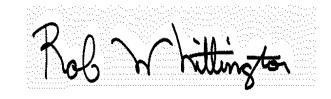
3061146

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 06/26/2023 12:20.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3061146-01	MW1/		Groundwater	06/22/2023 10:00	06/26/2023 12:20	Greg Dick
3061146-02	MW2/		Groundwater	06/24/2023 07:50	06/26/2023 12:20	Greg Dick
3001140-02	IVIVVZ/		Groundwater	00/24/2020 07:50	00/20/2023 12:20	Greg Blok
3061146-03	MW3A/		Groundwater	06/23/2023 10:10	06/26/2023 12:20	Greg Dick
3061146-04	MW4/		Groundwater	06/22/2023 16:30	06/26/2023 12:20	Greg Dick
3061146-05	MW5/		Groundwater	06/22/2023 12:40	06/26/2023 12:20	Greg Dick
3061146-06	MW6/		Groundwater	06/22/2023 10:40	06/26/2023 12:20	Greg Dick
3061146-07	DUPLICATE/		Groundwater	06/23/2023 10:40	06/26/2023 12:20	Greg Dick
3061146-08	FIELD BLANK/		Water	06/24/2023 13:00	06/26/2023 12:20	Greg Dick
<u>LabNumber</u>	<u>Measurement</u>	<u>Value</u>				
3061146-01	Field Conductance	980				
	Field pH	7.15				
	Field Temp (C)	15.50				
3061146-02	Field Conductance	1910				
	Field pH	6.33				
	Field Temp (C)	16.34				
3061146-03	Field Conductance	7400				
	Field pH	6.94				
	Field Temp (C)	15.27				
3061146-04	Field Conductance	6040				
	Field pH	6.52				
	Field Temp (C)	16.19				
3061146-05	Field Conductance	5690				
	Field pH	6.47				
	Field Temp (C)	15.33				
3061146-06	Field Conductance	4920				
	Field pH	6.60				
	Field Temp (C)	16.57				
3061146-07	Field Conductance	7400				
000111001	Field pH	6.94				
	Field Temp (C)	15.27				

Work Order Comments:

Corrected Report:

This report has been issued as a revision of the previous report dated 8/1/2023@1630. Additional QC Data has been added to report.

Lab Sample ID: **3061146-01** Sample Collection Date Time: 06/22/2023 10:00 Description: **MW1** Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Arsenic	0.0005	-	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Barium	0.071		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Boron	1.92	D1, M1, M2	mg/L	1.00	1.00	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:32	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Calcium	28.6	D1, M1, M2	mg/L	4.00	1.30	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:32	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:29	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Lithium	0.03		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB
Sodium	199	D1, M3	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:35	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:08	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	998		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	8.51	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/27/2023 15:36	06/28/2023 09:37	JEP
Total Dissolved Solids	520		mg/L	100	100	2540 C-2015	06/28/2023 13:05	06/28/2023 13:05	HAG
Total Organic Carbon	1.0		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 21:32	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.208	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	0.597	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	0.805	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	0.805	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	5.7	mg/L	0.5	0.4	SW846 9056	07/03/2023 14:43	07/03/2023 14:43	CSC
Fluoride	0.5	mg/L	0.2	0.2	SW846 9056	07/05/2023 13:30	07/05/2023 13:30	CSC
Sulfate	31	mg/L	1	0.5	SW846 9056	07/03/2023 14:43	07/03/2023 14:43	CSC

Lab Sample ID: **3061146-02** Sample Collection Date Time: 06/24/2023 07:50 Description: **MW2** Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Arsenic	0.0323		mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Barium	0.340		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:38	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Calcium	192	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:44	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Iron	22.8	D1	mg/L	1.00	0.500	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:41	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Lithium	0.006	J	mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Molybdenum	0.005	J	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB
Sodium	58.4	D1	mg/L	2.60	1.00	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:41	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:10	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	12	J	mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	1890		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.54	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	1610		mg/L	250	250	2540 C-2015	06/28/2023 13:05	06/28/2023 13:05	HAG
Total Organic Carbon	1.4		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 21:54	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.546	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	0.950	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	1.50	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.50	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	218	D	mg/L	2.5	1.8	SW846 9056	07/03/2023 15:38	07/03/2023 15:38	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	07/05/2023 13:57	07/05/2023 13:57	CSC

Analyte	Result Fla	ng Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	156	mg/L	1	0.5	SW846 9056	07/03/2023 15:10	07/03/2023 15:10	CSC

Lab Sample ID: **3061146-03** Sample Collection Date Time: 06/23/2023 10:10 Description: **MW3A** Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Barium	0.035		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Boron	0.30		mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:47	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Calcium	531	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:54	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:47	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Lithium	0.64		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB
Sodium	354	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 17:54	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:12	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	113		mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	8260		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.82	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	5090		mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	0.6		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 22:15	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.379	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.05	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	1.43	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.43	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1820	D	mg/L	10.0	7.2	SW846 9056	07/03/2023 13:16	07/03/2023 13:16	CSC
Fluoride	0.5		mg/L	0.2	0.2	SW846 9056	07/05/2023 14:25	07/05/2023 14:25	CSC

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	1140	D, M2	mg/L	20	10	SW846 9056	07/03/2023 13:16	07/03/2023 13:16	CSC

Lab Sample ID: **3061146-04** Sample Collection Date Time: 06/22/2023 16:30 Description: **MW4** Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Barium	0.023		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Boron	1.20	D1	mg/L	1.00	1.00	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:10	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Calcium	725	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:13	MRWD
Chromium	0.0018	J	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:06	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Lithium	1.20	D1	mg/L	0.20	0.05	SW846-6020 A	06/27/2023 10:46	06/30/2023 14:48	AKB
Mercury	0.0004	J	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Selenium	0.003		mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB
Sodium	291	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:13	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:15	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	45		mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	6620		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.69	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	4660	H2	mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	0.7		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 22:36	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.161	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.93	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	2.09	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	2.09	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1130	D	mg/L	5.0	3.6	SW846 9056	07/03/2023 14:11	07/03/2023 14:11	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	07/05/2023 14:52	07/05/2023 14:52	CSC

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	1650	D	mg/L	10	5	SW846 9056	07/03/2023 14:11	07/03/2023 14:11	CSC

Lab Sample ID: **3061146-05**Description: **MW5**Sample Collection Date Time: 06/22/2023 12:40
Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Barium	0.012		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Boron	0.24		mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:16	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Calcium	485	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:22	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:16	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Lithium	0.33		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB
Sodium	200	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:22	MRWD
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:28	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	44		mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	5340		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.71	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	4220	H2	mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	0.7	M7	mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 22:58	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	-0.261	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.69	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	1.69	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.69	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1020	D	mg/L	5.0	3.6	SW846 9056	07/03/2023 15:05	07/03/2023 15:05	CSC
Fluoride	0.3		mg/L	0.2	0.2	SW846 9056	07/05/2023 15:19	07/05/2023 15:19	CSC

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	1900	D	mg/L	10	5	SW846 9056	07/03/2023 15:05	07/03/2023 15:05	CSC

Lab Sample ID: **3061146-06**Description: **MW6**Sample Collection Date Time: 06/22/2023 10:40
Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Barium	0.011		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Boron	0.19		mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:25	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Calcium	408	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:32	MRWD
Chromium	0.0008	J	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:25	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Lithium	0.04		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Molybdenum	0.002	J	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB
Sodium	443	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:32	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:31	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	4450		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.64	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	4760	H2	mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	2.2		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 23:19	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.047	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.35	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	1.40	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.40	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	144	D	mg/L	5.0	3.6	SW846 9056	07/03/2023 16:00	07/03/2023 16:00	CSC
Fluoride	0.5		mg/L	0.2	0.2	SW846 9056	07/05/2023 15:47	07/05/2023 15:47	CSC

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	2360	D	mg/L	10	5	SW846 9056	07/03/2023 16:00	07/03/2023 16:00	CSC

Lab Sample ID: **3061146-07**Description: **DUPLICATE**Sample Collection Date Time: 06/23/2023 10:40
Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Barium	0.038		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Boron	0.32		mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:44	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Calcium	515	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:51	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:44	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Lithium	0.58		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB
Sodium	334	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:51	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:33	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	78		mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	8340		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	7.87	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	4860		mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	0.7		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/28/2023 23:41	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.278	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.37	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	1.65	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	1.65	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	4460	D	mg/L	50.0	36.0	SW846 9056	07/06/2023 18:04	07/06/2023 18:04	CSC
Fluoride	0.5		mg/L	0.2	0.2	SW846 9056	07/05/2023 17:09	07/05/2023 17:09	CSC

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	1180 D	mg/L	10	5	SW846 9056	07/03/2023 16:55	07/03/2023 16:55	CSC

Lab Sample ID: **3061146-08**Description: **FIELD BLANK**Sample Collection Date Time: 06/24/2023 13:00
Sample Received Date Time: 06/26/2023 12:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Barium	ND	U	mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:54	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:54	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Copper	0.010		mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Iron	ND	U	mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:54	MRWD
Lead	0.0009	J	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Lithium	ND	U	mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB
Sodium	ND	U	mg/L	0.26	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 18:54	MRWD
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:35	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
Specific Conductance (Lab)	97		umhos/cm	1	1	2510 B-2011	06/26/2023 16:01	06/28/2023 16:55	JEP
pH (Lab)	5.85	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	ND	U	mg/L	50	50	2540 C-2015	06/28/2023 13:05	06/28/2023 13:05	HAG
Total Organic Carbon	0.6		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/29/2023 00:02	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.118	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	3.48	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	3.60	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	3.60	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	ND	U	mg/L	0.5	0.4	SW846 9056	07/03/2023 16:05	07/03/2023 16:05	CSC
Fluoride	ND	M1, U	mg/L	0.2	0.2	SW846 9056	07/05/2023 18:04	07/05/2023 18:04	CSC

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	ND	U	mg/L	1	0.5	SW846 9056	07/03/2023 16:05	07/03/2023 16:05	CSC

Notes for work order 3061146

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
H2	Initial analysis within holding time. Reanalysis was past holding time.
Н3	Sample received and analyzed past holding time.
J	Estimated value.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
M7	Matrix spike recovery was low.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL

MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery
RPD	Relative Percent Difference
>	Greater than

Less than

Method Detection Limit

Metals by SW846 6000 Series Methods Madisonville - Quality Control

Name Pack			Reporting		Spike	Source		%REC		RPD		
Blank (BCF2432-EPA 200.2 Blank (BCF2432-BLK1) Properate (207/2023 10-46, Analyzad: 6/27/2023 17-10 Blork (BCF2432-BLK2) Properate (207/2023 10-46, Analyzad: 6/29/2023 18-00 Mg/L U U U U U U U U U	Analyte	Result		Units	•		%RFC		RPD		Notes	
Propored (8272023 10.46, Analyzed: 6272023 17:10		Result	Liiiil	Onito	LOVE	Result	JUINEO	Limito	TUD	Liillit	140.63	
Prepared: 6127/2023 10:46, Analyzed: 6127/2023 17:10	Batch BCF2432 - EPA 200.2											
Beroin	Blank (BCF2432-BLK1)											
Calcium	Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023	17:10										
Mo	Boron	ND	0.10	mg/L							U	
Sedition ND 0.26 mg	Calcium	ND	0.40	mg/L							U	
Blank (BCF2432-BLK2) Prepared: 6/27/2023 10.46, Analyzed: 6/29/2023 18.03 Molybdenum ND	Iron	ND	0.100	mg/L							U	
Propared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:03 Mg/L M	Sodium	ND	0.26	mg/L							U	
Mercury ND 0.001 mg/L U U U U U U U U U	Blank (BCF2432-BLK2)											
Mercury ND 0.005 mg/L	Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023	18:03										
Antimony ND 0.005 mg/L U 0 Arsenic ND 0.0010 mg/L U 0 Baryllium ND 0.0040 mg/L U 0 Cadmium ND 0.0040 mg/L U 0 Cadmium ND 0.0010 mg/L U 0 Cobait ND 0.0020 mg/L U 0 Cobait ND 0.0030 mg/L U 0 Cobait ND 0.003 mg/L U 0 Copper ND 0.003 mg/L U 0 Lead ND 0.003 mg/L U 0 Lead ND 0.003 mg/L U 0 Lithium ND 0.003 mg/L U 0 Lithium ND 0.003 mg/L U 0 Lithium ND 0.003 mg/L U 0 Selenium ND 0.003 mg/L U 0 Tallium ND 0.003 mg/L 0.005 mg/L 0 Tallium ND 0.003 mg/L 0.55 mg/L 85-115 Calcium 6.09 0.40 mg/L 6.25 mg/L 85-115 Calcium 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.005 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.005 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.006 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.006 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.006 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.006 0.005 mg/L 0.005 mg/L 0.005 mg/L 85-115 Calcium 0.006 0.006 mg/L 0.005 mg/L 0.	Molybdenum	ND	0.01	mg/L							U	
Arsenic ND 0.0010 mg/L U U Barlum ND 0.0020 mg/L U U U Cadmium ND 0.0020 mg/L U U U Cadmium ND 0.0020 mg/L U U U Chromium ND 0.0020 mg/L U U U Chromium ND 0.0020 mg/L U U U U U U U U U U U U U U U U U U U	Mercury	ND	0.0005	mg/L							U	
Barlum ND 0.004 mg/L U U Beryllium ND 0.0020 mg/L U U Cadamium ND 0.0010 mg/L U U Chromium ND 0.0020 mg/L U U Cobalt ND 0.003 mg/L U U Copper ND 0.003 mg/L U U Lead ND 0.002 mg/L U U Selenium ND 0.003 mg/L U U Selenium ND 0.002 mg/L U	Antimony	ND	0.005	mg/L							U	
Beryllium	Arsenic	ND	0.0010	mg/L							U	
Cadmium ND 0.0010 mg/L U Chromium ND 0.0020 mg/L U Cobalt ND 0.004 mg/L U Copper ND 0.003 mg/L U Lead ND 0.002 mg/L U Selenium ND 0.002 mg/L U Selenium ND 0.002 mg/L U Thallium ND 0.002 mg/L U Cost (8F2F432-8S1) Description (8/27/2023) 17:13 Boron 0.12 0.10 mg/L 0.125 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Cols (8F2432-8S2) Descriptions (8/27/2023) 18:06 Descriptions (8/27/2023) 18:06 Descriptions (8/27/2023) 18:06 <td colspan<="" td=""><td>Barium</td><td>ND</td><td>0.004</td><td>mg/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td></td>	<td>Barium</td> <td>ND</td> <td>0.004</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td>	Barium	ND	0.004	mg/L							U
Chromium	Beryllium	ND	0.0020	mg/L							U	
Cobalt ND 0.004 mg/L U U Copper ND 0.002 mg/L U U Lead ND 0.002 mg/L U U Lithium ND 0.002 mg/L U U Selenium ND 0.003 mg/L U U Thallium ND 0.0020 mg/L U U CS (BCF2432-BSL) Frepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:13 S 97.4 85-115 Boron 0.12 0.10 mg/L 6.25 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 97.4 85-115 Sodium 5.08 0.26 mg/L 6.25 97.4 85-115 CS (BCF2432-BSL) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 5.01 mg/L 0.025	Cadmium	ND	0.0010	mg/L							U	
Copper	Chromium	ND	0.0020	mg/L							U	
Lead ND 0.002 mg/L U Lithium ND 0.02 mg/L U Selenium ND 0.003 mg/L U Thallium ND 0.0020 mg/L U Locs (BCF2432-BS1) Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:13 Boron 0.12 0.10 mg/L 6.25 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 98.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Locs (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.002 mg/L 0.0025 104 85-115 Mercury 0.0026 0.0005 mg/L 0.0025 103 85-115 Mercury 0.0065 0.005 mg/L 0.0025 104 85-115 Mercury 0.0665 0.005 mg/L 0.0025	Cobalt	ND	0.004	mg/L							U	
Lithium ND 0.02 mg/s UD 1.003	Copper	ND	0.003	mg/L							U	
Selenium ND 0.003 mg/L U U Thallium ND 0.002 mg/L U U CS (BCF2432-BSL) Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:13 Boron 0.12 0.10 mg/L 6.25 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 98.4 85-115 Bron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 98.4 85-115 CES (BCF2432-BSL) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Mercury 0.0026 0.005 mg/L 0.0025 104 85-115 Mercury 0.0026 0.0005 mg/L 0.0025 104 85-115 Antimony 0.065 0.005 mg/L 0.0025 104 85-115 Artimony 0.066 0.000 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 96.8 85-115 Barium 0.0599 0.0020 mg/L 0.0625 96.8 85-115 Barium 0.0599 0.0020 mg/L 0.0625 96.8 85-115 Cadmium 0.0599 0.0010 mg/L 0.0625 96.8 85-115 Cadmium 0.0616 0.0020 mg/L 0.0625 96.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cadadium 0.0616 0.0020 mg/L 0.0625 98.8 85-115 Cadadium 0.0616 0.0626 0.0626 98.8 85-115 Cadadium 0.0616 0.0626 0.0626 98.8	Lead	ND	0.002	mg/L							U	
Thailium	Lithium	ND	0.02	mg/L							U	
LCS (BCF2432-BS1) Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:13 Boron 0.12 0.10 mg/L 0.125 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 104 85-115 Barium 0.062 0.004 mg/L 0.0625 96.7 85-115 Barium 0.0599 0.0020 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Copper 0.062 0.002 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.002 mg/L 0.0625 98.8 85-115 Copper 0.062 0.002 mg/L 0.0625 98.8 85-115 Cladii 0.061 0.004 mg/L 0.0625 98.8 85-115 Copper 0.062 0.002 mg/L 0.0625 98.8 85-115 Copper 0.062 0.002 mg/L 0.0625 99.8 85-115 Copper 0.062 0.002 mg/L 0.0625 99.8 85-115	Selenium	ND	0.003	mg/L							U	
Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:13 Boron 0.12 0.10 mg/L 0.125 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Arsenic 0.0604 0.001 mg/L 0.0625 96.7 85-115 Beryllium 0.052 0.04 mg/L 0.0625 98.6 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.8 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6	Thallium	ND	0.0020	mg/L							U	
Boron 0.12 0.10 mg/L 0.125 97.4 85-115 Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.005 mg/L 0.0625 104 85-115 Arsenic 0.064 0.001 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Cobalt 0.061	LCS (BCF2432-BS1)											
Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 99.8 85-115 LCS (BCF2432-B52) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.0625 104 85-115 Arsenic 0.064 0.001 mg/L 0.0625 104 85-115 Barium 0.062 0.004 mg/L 0.0625 96.7 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.2 85-115 Copper 0.062 </td <td>Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023</td> <td>17:13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023	17:13										
Calcium 6.09 0.40 mg/L 6.25 97.4 85-115 Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 98.6 85-115 Chromium 0.06	Boron	0.12	0.10	mg/L	0.125		97.4	85-115				
Iron 6.15 0.100 mg/L 6.25 98.4 85-115 Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.005 mg/L 0.0625 104 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.001 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.2 85-115 Cobalt 0.0621	Calcium	6.09		-			97.4	85-115				
Sodium 5.68 0.26 mg/L 6.25 90.8 85-115 LCS (BCF2432-BS2) Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.8 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 <	Iron			_								
Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:06 Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625	Sodium	5.68	0.26				90.8	85-115				
Molybdenum 0.07 0.01 mg/L 0.0625 104 85-115 Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium	LCS (BCF2432-BS2)											
Mercury 0.0026 0.0005 mg/L 0.00250 103 85-115 Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium	Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023	18:06										
Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Molybdenum	0.07	0.01	mg/L	0.0625		104	85-115				
Antimony 0.065 0.005 mg/L 0.0625 104 85-115 Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Mercury	0.0026	0.0005	mg/L	0.00250		103	85-115				
Arsenic 0.0604 0.0010 mg/L 0.0625 96.7 85-115 Barium 0.062 0.004 mg/L 0.0625 98.6 85-115 Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Antimony	0.065	0.005		0.0625		104	85-115				
Beryllium 0.0599 0.0020 mg/L 0.0625 95.8 85-115 Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Arsenic	0.0604	0.0010		0.0625		96.7	85-115				
Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Barium	0.062	0.004	mg/L	0.0625		98.6	85-115				
Cadmium 0.0597 0.0010 mg/L 0.0625 95.5 85-115 Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Beryllium	0.0599	0.0020	mg/L	0.0625		95.8	85-115				
Chromium 0.0616 0.0020 mg/L 0.0625 98.6 85-115 Cobalt 0.061 0.004 mg/L 0.0625 98.2 85-115 Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Cadmium	0.0597	0.0010	mg/L	0.0625		95.5	85-115				
Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Chromium	0.0616	0.0020	mg/L	0.0625		98.6	85-115				
Copper 0.062 0.003 mg/L 0.0625 98.8 85-115 Lead 0.062 0.002 mg/L 0.0625 99.8 85-115 Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Cobalt	0.061	0.004	mg/L	0.0625		98.2	85-115				
Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Copper	0.062	0.003		0.0625		98.8	85-115				
Lithium 0.06 0.02 mg/L 0.0625 94.9 85-115 Selenium 0.058 0.003 mg/L 0.0625 92.2 85-115	Lead	0.062		mg/L			99.8	85-115				
	Lithium	0.06	0.02	mg/L	0.0625		94.9	85-115				
Thallium 0.0619 0.0020 mg/L 0.0625 99.0 85-115	Selenium	0.058	0.003	mg/L	0.0625		92.2	85-115				
	Thallium	0.0619	0.0020	mg/L	0.0625		99.0	85-115				

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Donortin «		Cnilco	Course		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Alialyte	Nesuit	LIIIIII	Units	Level	i vesuit	MEG	LIIIIIIS	KFD	LIIIIII	NOIGS
Batch BCF2432 - EPA 200.2										
Matrix Spike (BCF2432-MS1)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/27	7/2023 19:22									
Boron	1.84	1.00	mg/L	0.125	1.92	NR	80-120			D2, M2
Calcium	34.2	4.00	mg/L	6.25	28.6	89.4	80-120			D2
Iron	6.35	1.00	mg/L	6.25	ND	102	80-120			D2
Sodium	190	2.60	mg/L	6.25	199	NR	80-120			D2, M3
Matrix Spike (BCF2432-MS2)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/29	9/2023 18:40									
Mercury	0.0024	0.0005	mg/L	0.00250	ND	94.3	80-120			
Antimony	0.065	0.005	mg/L	0.0625	ND	105	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120			
Arsenic	0.0632	0.0010	mg/L	0.0625	0.0005	100	80-120			
Barium	0.137	0.004	mg/L	0.0625	0.071	105	80-120			
Beryllium	0.0607	0.0020	mg/L	0.0625	ND	97.1	80-120			
Cadmium	0.0601	0.0010	mg/L	0.0625	ND	96.2	80-120			
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120			
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.6	80-120			
Copper	0.060	0.003	mg/L	0.0625	ND	96.7	80-120			
Lead	0.060	0.002	mg/L	0.0625	ND	96.0	80-120			
Lithium	0.08	0.02	mg/L	0.0625	0.03	91.7	80-120			
Selenium	0.058	0.003	mg/L	0.0625	ND	92.7	80-120			
Thallium	0.0601	0.0020	mg/L	0.0625	ND	96.1	80-120			
Matrix Spike Dup (BCF2432-MSD1)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/27	7/2023 19:25									
Boron	1.91	1.00	mg/L	0.125	1.92	NR	80-120	3.55	20	D2, M2
Calcium	33.4	4.00	mg/L	6.25	28.6	76.3	80-120	2.42	20	D2, M2
Iron	6.09	1.00	mg/L	6.25	ND	97.4	80-120	4.28	20	D2
Sodium	187	2.60	mg/L	6.25	199	NR	80-120	1.94	20	D2, M3
Matrix Spike Dup (BCF2432-MSD2)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/29	9/2023 18:42									
Antimony	0.062	0.005	mg/L	0.0625	ND	99.3	80-120	5.36	20	
Molybdenum	0.06	0.01	mg/L	0.0625	ND	103	80-120	4.48	20	
Mercury	0.0023	0.0005	mg/L	0.00250	ND	92.7	80-120	1.71	20	
Arsenic	0.0606	0.0010	mg/L	0.0625	0.0005	96.1	80-120	4.23	20	
Barium	0.133	0.004	mg/L	0.0625	0.071	99.5	80-120	2.77	20	
Beryllium	0.0554	0.0020	mg/L	0.0625	ND	88.6	80-120	9.18	20	
Cadmium	0.0569	0.0010	mg/L	0.0625	ND	91.0	80-120	5.50	20	
Chromium	0.0593	0.0020	mg/L	0.0625	ND	95.0	80-120	4.50	20	
Cobalt	0.058	0.004	mg/L	0.0625	ND	93.0	80-120	4.80	20	
Copper	0.057	0.003	mg/L	0.0625	ND	91.9	80-120	5.05	20	
Lead	0.057	0.002	mg/L	0.0625	ND	91.1	80-120	5.22	20	
Lithium	0.08	0.02	mg/L	0.0625	0.03	84.8	80-120	5.26	20	
Selenium	0.056	0.003	mg/L	0.0625	ND	89.6	80-120	3.44	20	

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	•									
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2432 - EPA 200.2										
Post Spike (BCF2432-PS1)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed	1: 6/27/2023 19:29									
Boron	2.08	1.00	mg/L	0.125	1.92	131	75-125			D2, M1
Calcium	37.2	4.00	mg/L	6.25	28.6	137	75-125			D2, M1
Iron	6.80	1.00	mg/L	6.25	ND	109	75-125			D2
Sodium	208	2.60	mg/L	6.25	199	137	75-125			D2, M3
Post Spike (BCF2432-PS2)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed	1: 6/29/2023 18:45									
Mercury	0.0025	0.0005	mg/L	0.00250	ND	98.4	75-125			
Antimony	0.064	0.005	mg/L	0.0625	ND	102	75-125			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	75-125			
Arsenic	0.0620	0.0010	mg/L	0.0625	0.0005	98.4	75-125			
Barium	0.135	0.004	mg/L	0.0625	0.071	102	75-125			
Beryllium	0.0572	0.0020	mg/L	0.0625	ND	91.6	75-125			
Cadmium	0.0593	0.0010	mg/L	0.0625	ND	94.9	75-125			
Chromium	0.0605	0.0020	mg/L	0.0625	ND	96.8	75-125			
Cobalt	0.059	0.004	mg/L	0.0625	ND	95.0	75-125			
Copper	0.059	0.003	mg/L	0.0625	ND	94.0	75-125			
Lead	0.058	0.002	mg/L	0.0625	ND	92.1	75-115			
Lithium	0.08	0.02	mg/L	0.0625	0.03	85.7	75-125			
Selenium	0.057	0.003	mg/L	0.0625	ND	91.3	75-125			
Thallium	0.0573	0.0020	mg/L	0.0625	ND	91.6	75-125			

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2393 - Default Prep Micro										
LCS (BCF2393-BS1)										
Prepared: 6/26/2023 15:57, Analyzed: 6/27/20	023 16:23									
pH (Lab)	5.07		Std. Units	5.00		101	98.8-101.2			
Duplicate (BCF2393-DUP1)	Source: 3061147-0	1								
Prepared: 6/26/2023 15:57, Analyzed: 6/27/20	023 16:23									
pH (Lab)	7.78	0.10	Std. Units		7.77			0.129	10	НЗ
Batch BCF2395 - Default Prep Micro										
Blank (BCF2395-BLK1)										
Prepared: 6/26/2023 16:01, Analyzed: 6/28/20	023 16:55									
Specific Conductance (Lab)	ND	1	umhos/cm							U
LCS (BCF2395-BS1)										
Prepared: 6/26/2023 16:01, Analyzed: 6/28/20	023 16:55									
Specific Conductance (Lab)	1400		umhos/cm	1410		99.5	80-120			
Duplicate (BCF2395-DUP1)	Source: 3064032-0	1								
Prepared: 6/26/2023 16:01, Analyzed: 6/28/20	023 16:55									
Specific Conductance (Lab)	1200	1	umhos/cm		1200			0.167	0.938	
Batch BCF2466 - Default Prep Wet Chem										
Blank (BCF2466-BLK1)										
Prepared: 6/28/2023 17:10, Analyzed: 6/28/20	023 17:10									
Chemical Oxygen Demand	ND	13	mg/L							U
LCS (BCF2466-BS1)										
Prepared: 6/28/2023 17:10, Analyzed: 6/28/20	023 17:10									
Chemical Oxygen Demand	124	13	mg/L	125		99.2	90-110			
Duplicate (BCF2466-DUP1)	Source: 3061146-0	6								
Prepared: 6/28/2023 17:10, Analyzed: 6/28/20	023 17:10									
Chemical Oxygen Demand	ND	13	mg/L		ND				25	U

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2466 - Default Prep Wet Chem										
Matrix Spike (BCF2466-MS1)	Source: 3061146-06									
Prepared: 6/28/2023 17:10, Analyzed: 6/28/	/2023 17:10									
Chemical Oxygen Demand	251	13	mg/L	250	ND	100	90-110			
Matrix Spike Dup (BCF2466-MSD1)	Source: 3061146-06									
Prepared: 6/28/2023 17:10, Analyzed: 6/28/	/2023 17:10									
Chemical Oxygen Demand	252	13	mg/L	250	ND	101	90-110	0.398	10	
Batch BCF2502 - Default Prep Micro										
LCS (BCF2502-BS1)										
Prepared: 6/27/2023 15:36, Analyzed: 6/28/	/2023 9:37									
pH (Lab)	5.04		Std. Units	5.00		101	98.8-101.2			
Duplicate (BCF2502-DUP1)	Source: 3064063-03									
Prepared: 6/27/2023 15:36, Analyzed: 6/28/	/2023 9:37									
pH (Lab)	6.78	0.10	Std. Units		6.77			0.148	10	H3
Batch BCF2535 - Default Prep Wet Chem										
Blank (BCF2535-BLK1)										
Prepared: 6/28/2023 9:14, Analyzed: 6/28/2	2023 20:28									
Total Organic Carbon	ND	0.5	mg/L							U
LCS (BCF2535-BS1)										
Prepared: 6/28/2023 9:14, Analyzed: 6/28/	2023 20:49									
Total Organic Carbon	4.8	0.5	mg/L	5.00		96.2	80-120			
Duplicate (BCF2535-DUP1)	Source: 3061146-05									
Prepared: 6/28/2023 9:14, Analyzed: 7/5/20	023 16:31									
Total Organic Carbon	0.7	0.5	mg/L		0.7			4.03	25	
Duplicate (BCF2535-DUP2)	Source: 3063918-02									
Prepared: 6/28/2023 9:14, Analyzed: 7/5/20	023 20:57									
Total Organic Carbon	1.4	0.5	mg/L		1.6			11.3	25	

Conventional Chemistry Analyses Madisonville - Quality Control

		5 "		0.11			0/ DEC		222	
Analyta	Result	Reporting Limit	Units	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notos
Analyte	Result	LIIIII	UTIILS	Level	Result	70REC	LITTIES	KPD	LIIIIII	Notes
Batch BCF2535 - Default Prep Wet Chem										
Matrix Spike (BCF2535-MS1)	Source: 3061146-05	i								
Prepared: 6/28/2023 9:14, Analyzed: 7/5/2023	3 16:53									
Total Organic Carbon	2.5	0.5	mg/L	2.50	0.7	72.8	80-120			M7
Matrix Spike (BCF2535-MS2)	Source: 3063918-02	!								
Prepared: 6/28/2023 9:14, Analyzed: 7/5/2023	3 21:19									
Total Organic Carbon	6.0	0.5	mg/L	5.00	1.6	87.9	80-120			
Batch BCF2540 - Default Prep Wet Chem										
Blank (BCF2540-BLK1)										
Prepared: 6/28/2023 13:05, Analyzed: 6/28/20	023 13:05									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2540-BS1)										
Prepared: 6/28/2023 13:05, Analyzed: 6/28/20	023 13:05									
Total Dissolved Solids	1500	25	mg/L	1500		99.9	80-120			
Duplicate (BCF2540-DUP1)	Source: 3061146-01									
Prepared: 6/28/2023 13:05, Analyzed: 6/28/20	023 13:05									
Total Dissolved Solids	508	100	mg/L		520			2.33	10	
Duplicate (BCF2540-DUP2)	Source: 3064088-01									
Prepared: 6/28/2023 13:05, Analyzed: 6/28/20	023 13:05									
Total Dissolved Solids	304	50	mg/L		298			1.99	10	
Batch BCF2838 - Default Prep Wet Chem										
Blank (BCF2838-BLK1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/20	023 16:45									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2838-BS1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/20	023 16:45									
Total Dissolved Solids	1490	25	mg/L	1500		99.4	80-120			

Conventional Chemistry Analyses Madisonville - Quality Control

	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2838 - Default Prep Wet Chem										
Duplicate (BCF2838-DUP1)	Source: 3032610-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023 16:45										
Total Dissolved Solids	1040	100	mg/L		1070			3.03	10	
Duplicate (BCF2838-DUP2)	Source: 3063392-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023 16:45										
Total Dissolved Solids	7800	100	mg/L		7780			0.205	10	

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0014 - Default Prep IC										
Blank (BCG0014-BLK1)										
Prepared: 7/3/2023 12:06, Analyzed: 7/3/2023 12:06	3									
Fluoride	ND	0.2	mg/L							U
Blank (BCG0014-BLK2)										
Prepared: 7/3/2023 12:06, Analyzed: 7/3/2023 12:06	3									
Fluoride	ND	0.2	mg/L							U
Chloride	ND	0.5	mg/L							U
Sulfate	ND	1	mg/L							U
LCS (BCG0014-BS1)										
Prepared: 7/3/2023 11:39, Analyzed: 7/3/2023 11:39)									
Fluoride	4.7		mg/L	5.00		93.7	90-110			
LCS (BCG0014-BS2)										
Prepared: 7/3/2023 11:39, Analyzed: 7/3/2023 11:39)									
Fluoride	4.7		mg/L	5.00		93.7	90-110			
Chloride	12.1		mg/L	12.5		96.8	90-110			
Sulfate	24		mg/L	25.0		96.7	90-110			
Matrix Spike (BCG0014-MS1) Sour	ce: 3061146-03									
Prepared: 7/3/2023 18:17, Analyzed: 7/3/2023 18:17	7									
Chloride	0.0		mg/L	12.5	1640	NR	75-125			M1, U
Fluoride	5.4		mg/L	5.00	0.4	99.6	75-125			
Sulfate	917		mg/L	25.0	1030	NR	75-125			M2
Matrix Spike Dup (BCG0014-MSD1) Sour	ce: 3061146-03									
Prepared: 7/3/2023 18:45, Analyzed: 7/3/2023 18:45	5									
Fluoride	5.2		mg/L	5.00	0.4	94.9	75-125	4.42	15	
Chloride	0.0		mg/L	12.5	1640	NR	75-125		15	M1, U
Sulfate	965		mg/L	25.0	1030	NR	75-125	5.05	15	M2
Batch BCG0086 - Default Prep IC										
Blank (BCG0086-BLK1)										
Prepared: 7/3/2023 12:06, Analyzed: 7/3/2023 12:06	3									
Chloride	ND	0.5	mg/L							U
Fluoride	ND	0.2	mg/L							U
Sulfate	ND	1	mg/L							U

Ion Chromatography Madisonville - Quality Control										
	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0086 - Default Prep IC										
LCS (BCG0086-BS1)										
Prepared: 7/3/2023 11:38, Analyzed: 7/3/	/2023 11:38									
Chloride	12.0		mg/L	12.5		96.3	90-110			
Fluoride	5.0		mg/L	5.00		101	90-110			
Sulfate	24		mg/L	25.0		95.3	90-110			
Matrix Spike (BCG0086-MS1)	Source: 3061146-08									
Prepared: 7/3/2023 22:28, Analyzed: 7/3/	/2023 22:28									
Fluoride	5.8		mg/L	5.00	0.0	115	75-125			
Chloride	13.3		mg/L	12.5	0.06	106	75-125			
Sulfate	27		mg/L	25.0	0.2	107	75-125			
Matrix Spike Dup (BCG0086-MSD1)	Source: 3061146-08									
Prepared: 7/3/2023 22:56, Analyzed: 7/3/	/2023 22:56									
Fluoride	6.5		mg/L	5.00	0.0	129	75-125	11.4	15	M1
Chloride	15.1		mg/L	12.5	0.06	120	75-125	12.6	15	
Sulfate	31		mg/L	25.0	0.2	122	75-125	13.4	15	
Certified Analyses included in this Repo	ort									
Analyte	Certifications									
2510 B-2011 in Water										
Specific Conductance (Lab)	KY Drinking Water Mdv (Madisonville (241), 825 I	,		` ,	,	•	,			
2540 C-2015 in Water										

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

5310 C-2014 in Water

Total Organic Carbon KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) ADEM Drinking Water Mdv (41880) WV Wastewater Madisonville (241), 825 Industrial Rd

Madisonville, KY 42431 MS Drinking Water MADV

HACH 8000 in Water

Chemical Oxygen Demand KY Wastewater Mdv (00030) VA NELAC MDV (460210) WV Wastewater Madisonville (241), 825 Industrial Rd

Madisonville, KY 42431

SM 4500-H+ B-2011 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3061146
Shipped By: Client	Temperature: 5.70° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	☑
Check if Collector Signature Present	☑
Check if bottles are intact	☑
Check if bottles are correct	abla
Check if bottles have sufficient volume	☑
Check if samples received on ice	☑
Check if VOA headspace is acceptable	
Check if samples received in holding time.	☑
Check if samples are preserved properly	

	Scheduled	101. 00/03/2023				
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater	Report To: Big Rivers Elect Station Greg Dick PO Box 24 Henderson, KY	tric Corporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,	lectric Corporation Reid/Green Station		
	Phone: <u>(270)</u> 84 PWS ID#:	14-5736	PO#:			
Please Print Legibly	State: K	<u> </u>	Quote#			
Collected by (Signature):	D formation*	***************************************	Compli	ance Monitoring? Yes No		
*For composite samples please indicate begin time, er	ad time and temp(oC)	at end time below:	Sample	es Chlorinated? Yes No		
Influent: Start DateStart time	End Date,	End Time	Temp (oC)			
Effluent: Start WateStart time	<i>₹</i>	End Time	Temp (oC)	·		
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Bottle Sample ID#	e and Preservative	Sample Description	Composite	Sample Analysis Requested		
3061146-03 C 06/13/13 1010 Pia	stic 500mL pH<2	MW3A	g/c	COD TOC		
Preser	w/H2SO4 vation Check: pH : _	√				
3061146-03 D 06/23 23 1010 Plasti	: 1L pH<2 w/HNO3 1 Rad 226 (Sub)		g/c .	Radium 226 (sub)		
Preser	vation Check: pH:_	<u></u>				
	c 1L pH<2 w/HNO3 1 Rad 228 (Sub)		g/c	Radium 228 (sub)		
1 (vation Check: pH :	<u>/_</u>				
	c 1L pH<2 w/HNO3 1 Rad 228 (Sub)		g/c	Radium 228 (sub)		
1	vation Check: pH:			Destruction Territoria		
	c 1L pH<2 w/HNO3 1 (Sub) vation Check: pH : _		g/c	Radium Total (sub)		
, t t	G 250mL pH<2 - w/H2SO4		g/c	тос		
Preser	vation Check: pH : _	<u>/</u>				
Preservation Check Performed by: <u>LED</u>						
Field data collected by: Greg Dick My Quil	Date (mm/dd/yy) ¿	06/23/23 Time (24 hr)	1010			
pH <u>6-94</u> Cond (umho) <u>7400</u>		1 .		ee CI (mg/L)		
Temp (oC) or						
Flow (MGD) or (CFS)			•			
Relinquished by: (Signature)	Received by: (Signat	ture)	Date (mm/	dd/yy) Time (24 hr)		
My Oú	Port		06/26	123 1220		
PACE- Check here if trip charge applied to	associated COC	Printed:	5/25/2023 8:29	205AM Page 29 of 73		

Scheduled for: <u>06/05/2023</u>

Page 30 of 73

Printed: 5/25/2023 8:29:05AM

			<u> </u>						
Client: Big River Reid/Green Statio	•	Station Gred Dick	etric C	orporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station			
Project: Green L	andfill Semia	annual Groun	dwater PO Box 24			PO Box 24			
			Henderson, K	Y 4241	9	Henderson,	KY 42419		
	•		Phone: <u>(270) !</u> PWS ID#:	844-57	<u>36</u>	PO#:			
Please Print Leg	jibły		State:	KY		Quote#			
Collected by (Sign	nature):	They &	tured information*		_	Compliance Monitoring? Yes No			
*For composite sa	imples please	indicate begin	time, end time and temp(oC) at en	d time below:	Sample	es Chlorinated? Yes No		
Influent: Start Dat	te	Start time	End Date	E	End Time >Te	emp (oC)	<u></u>		
Effluent: Start Da	te	Start time	End Date N/A End Date		End Time Te	emp (oC)			
LAB USE ONLY Workorder # 3061146 Sample ID#	Date	nformation* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample Analysis Requested		
3061146-04 A	06/22/8	_1630	Plastic 500mL pH<2 w/HNO3	1	MW 4	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
	.1 1		Preservation Check: pH:						
3061146-04 В <u>С</u>	6/24/23		Plastic 1L	1	MW4	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056		
3061146-04 C 🙎	6/22/23	<u> </u>	w/H2SO4	1	MW4	g/c	COD TOC		
			Preservation Check: pH:						
3061146-04 D _	06/2423	1630	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)		MW4	g/c	Radium 226 (sub)		
	. 1 .	14-	Preservation Check: pH:						
3061146-04 E	16/24/23	1630	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	,	MW4	g/c	Radium 228 (sub)		
Preservation Che	eck Performe	d by:	<u>v</u>						
Field data collecte	dbe de	Di Ga	Date (mm/dd/yy)	06/22	12.3 Time (24 br) 1	630			
	•		240 Res Cl (mg/L)	•	r		ee CI (mg/L)		
			Static Water Level				1		
Flow (MGD)		(CFS)							
Relinquished by: (Signatura)		Received by: (Sign	atura)		Date (mm/	/dd/yy) Time (24 hr)		
- Huz	عد (<u>Ku</u> S)	06/26			

Scheduled for: 06/05/2023

Page 31 of 73

Printed: 5/25/2023 8:29:05AM

	- Contradiction in						
Client: Big Rivers Electric Corporation Reid/Green Station		Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station			
Project: Green Landfill Semiannual Groundwater	Station Greg Dick		Greg Dick				
	PO Box 24 Henderson, KY 424	19	PO Box 24 Henderson,	KY 42419			
	Phone: (270) 844-5						
	PWS ID#:	700	PO#:	-			
Please Print Legibly	State: <u>ky</u>		Quote#	Quote#			
Collected by (Signature): The Chickening Collected by (Signature):	ormation*		Compli	ance Monitoring? Yes No <a>Z			
*For composite samples please indicate begin time, end	time and temp(oC) at e	nd time below:	Sample	es Chlorinated? Yes No			
Influent: Start DateStart timeN	End Date	End Time	emp (oC)				
Effluent: Start Date Start time		End TimeT					
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Bottle (25 hr):	Containers	Samela Danasintina	Composito				
Sample ID#		Sample Description	Composite	Sample Analysis Requested			
	1L pH<2 w/HNO3 1	MW4	g/c	Radium 228 (sub)			
Preservi	ation Check: pH : 🗹	_					
3061146-04 G 06/22/23 /470 Plastic	1L pH<2 w/HNO3 1 (Sub)	MW4	g/c	Radium Total (sub)			
Preserva	ation Check: pH : 🗸	_					
	250mL pH<2 1 w/H2SO4	MW4	g/c	TOC			
16-1-9	ation Check: pH : <u> </u>	-					
	ic 500mL pH<2 1 w/HNO3	MW5	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B			
	ation Check: pH :	-					
3061146-05 B <u>plo/22/23</u> <u>1240</u>	Plastic 1L 1	MW5	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056			
Preservation Check Performed by: (80				•			
Field data collected by: Greg Dick Sha O.:	- · · · · · · · · · · · · · · · · · · ·	12/2 MW-5	42.44				
Field data collected by:	Date (mm/dd/yy) <u>V6/</u>	22/25 Time (24 hr)	1490				
pH <u>6-47</u> Cond (umho) <u>5690</u>				11			
Temp (oC) or (oF) S	Static Water Level	DO (mg/L)	T	urb. (NTU)			
Flow (MGD) or (CFS) o	or (g/min)						
Relinquished by: (Signature)	Received by: (Signature)	<u> </u>	Date (mm/	idd/yy) Time (24 hr)			
My Oi	1 D		06/26/	1			
				44			

	L	Scheduled for: 06/05/2023						
Client: Big Rivers Electric Corporation Reid/Green Station			etric Co	rporation Reid/Green	Invoice To: Big Rivers E	lectric Corpo	oration Reid/Green Station	
Project: Green Landfill Semiannual Ground	water	Station Greg Dick PO Box 24 Henderson, KY	′ 42419	•	Greg Dick PO Box 24 Henderson,	KY 42419		
		Phone: (270) 8	<u>44-573</u>	<u>86</u>	PO#:		_	
Please Print Legibly		PWS ID#: State: <u>b</u>	<u>′Y</u>	_	Quote#			
Collected by (Signature):	ired inform	estion*			Complia	ance Monitor	ring? Yes No	
*For composite samples please indicate begin:			at end	I time below:	Sample	s Chlorinate	d? Yes No 🗹	
Influent: Start Date Start time					Temp (oC)			
Effluent: Start Date Start time								
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr):	Bottle and	j Preservative	Containers	Sample Description	Composite			
Sample ID#	Diam's !	(OO) -(1-O	<u>8</u>	, ,	·	Sample COD TOC	e Analysis Requested	
3061146-05 C 06/22/23 1240		500mL pH<2 H2SO4	'	MW5	g/c	002 100		
+ 1 ·		on Check: pH : _						
3061146-05 D 66/12/23 1240		pH<2 w/HNO3 226 (Sub)	1	MW5	g/c	Radium 221	6 (sub)	
	Preservation	on Check: pH : _	<u> </u>				•	
3061146-05 E 06/22/23 1240		pH<2 w/HNO3 228 (Sub)	1	MW5	g/c	Radium 22	8 (sub)	
ı	Preservation	on Check: pH : _	<u>/</u>					
3061146-05 F <u>06/1423 1240</u>	Rad :	pH<2 w/HNO3 228 (Sub) on Check: pH : _	,	MW5	g/c	Radium 22	8 (sub)	
3061146-05 G 06/22/23 1240		pH<2 w/HNO3		MW5	g/c	Radium Tot	tal (sub)	
,		(Sub) on Check: pH : _	1.					
3061146-05H 06/22/23 1240		i0mL pH<2	1	MW5	g/c	TOC		
	w /!	H2SÖ4 on Check: pH : _	1					
	FICSCI VALI	on Oneck. pm						
Preservation Check Performed by:	<u>り</u>					<u></u>	1	
Field data collected by:		Date (mm/dd/yy)	-,	Time (24 hr)				
pH Cond (umho)	·	Res Cl (mg/L)		Tot Ci (mg/L)	Fre	e CI (mg/L)	<u></u>	
Temp (oC) or (oF)	Sta	tic Water Level		DO (mg/L)	T(arb. (NTU) _		
Flow (MGD) or (CFS)	or	(g/mɨn) _						
Relinquished by: (Signature)	Re	ceived by: (Signa	ture)		Date (mm/	dd/yy)	Time (24 hr)	
My Qui	— <i>f</i>		<u> </u>		06/26	123	1221	
<u> </u>								
	<u> </u>					<u></u>		
PACE- Check here if trip charge app	lied to see	ncistad COC		Orinted:		05 434	Page 32 of 73	
. I FAVE VICENTICIS II UTU CHATUE ADD	8336			r Hilles.	-,,	~~ FUT!		

PACE- Check here if trip charge applied to associated COC

Chain of Custody

Scheduled for: <u>06/05/2023</u>

			•			l				
Client: Big Ri Reid/Green St		Corporation	Report To: Big Rivers Ele Station	ectric C	orporation Reid/Green	Invoice To: Big Rivers E		oration Reid/Green Statio		
Project: Gree	s I andfill Sen	niannual Ground	Greg Dick			Greg Dick				
	T CONTONIO		PO 80x 24			PO Box 24				
			Henderson, K	(Y 4241	9	Henderson,	KY 42419			
			Phone: (270) PWS ID#:	844-57	<u>36</u>	PO#:	<u> </u>	······		
Please Print I	_egibly		State:	KY		Quote#				
Collected by (S	ignature):	They C	الندا uired information*			Compl	iance Monito	oring? Yes No 👱		
*For composite	samples pleas	se indicate begin	time, end time and temp(oC	C) at en	d time below:	Sample	es Chlorinate	ed? Yes No		
Influent: Start I	Date	Start time	End Date	E	and Time	16 96p (oC)				
Effluent: Start	Date	Start time	End Date	End Time End Time End Time						
LAB USE ONL Workorder # 3061146	Date	I information* Collection : Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite				
Sample ID#			<u>.</u>	<u> වී</u>	Gampia desemplion	Composito	Samp	le Analysis Requested		
3061146-06 A	06/21/23	1145	Płastic 500mL pH<2 w/HNO3	₹ T	MW6	g/c	6020 Catcl 6020 Chro 6020 Arse 6010B Col Tot 6020 L 6020 Merc	Tot 6020 Cadmium Tot ium Tot 60108 Barium Tot 60108 Barium Tot mium Tot 6020 Cobalt Tot nic Tot 6020 Boron Tot pper Tot 6020 Antimony ead Tot 6020 Lithium Tot cury Tot 6020 Molybdenum Tot 60108		
			Preservation Check: pH:							
3061146-06 B	06/22/23	1175	Plastic 1L	1	MW6	g/c	Sulfate 90	Conductivity (Lab) TDS 56 Chloride 9056 Fluoride		
3061146-06 C	06/22/2	3 1175	Plastic 500mL pH<2 w/H2SO4	1	MW6	g/c	9056 COD TOC			
			Preservation Check: pH:							
3061146-06 D	06/22/23	1145	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)	,	MW6	g/c	Radium 22	26 (sub)		
			Preservation Check: pH:							
3061146-06 E	06/22/23	1/45	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	,	MW6	g/c	Radium 22	28 (sub)		
			Preservation Check: pH:							
Preservation (Check Perforn	ned by:	eD							
Field data colle	cted by: G.	. D. W. Sh	Date (mm/dd/yy	n ok/	2.2/23 Time (24 hr)	1145		<u> </u>		
		•	7920 Res CI (mg/L		•		ee Cl (ma/L)	•		
Temp (oC)	16.07 0	r (oF)	Static Water Level		DO (mg/L)	1	uro. (NTO)	***************************************		
Flow (MGD)		(CFS)	or (g/min)							
Relinquished b	y: (Signature)	··········	Received by: (Sign	nature)	***************************************	Date (mm	/dd/yy)	Time (24 hr)		
lh.	$\bigcap_{n \in \mathbb{N}} A_n$		\(()			06/26	122	1271		
	rane.					46166	123	/221		
										
PACE-	Check here it	f trip charge ap	plied to associated COC		Printed:	5/25/2023 8:29	:05AM	Page 33 of 73		

Printed: 5/25/2023 8:29:05AM

Chain of Custody

,	Scheduled for	: <u>06/05/2023</u>				
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Co	orporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Gre	en Station	
Project: Green Landfill Semiannual Groundwater	Grea Dick	9	Greg Dick PO Box 24 Henderson,	KY 42419		
	Phone: (270) 844-573	<u>36</u>	PO#:			
Please Print Legibly	PWS ID#: State: <u>kY</u>		Quote#			
Collected by (Signature):	nformation*	.	Compli	ance Monitoring? Yes	No	
*For composite samples please indicate begin time, e		I time below:	Sample	s Chlorinated? Yes	No	
	•		emp (oC)			
Influent: Start Date Start time	//H End DateE	nd Time 1	? [emp (oC)			
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Bott	de and Preservative	Sample Description	Composite			
Sample ID#			,	Sample Analysis Requ	uested	
	ic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW6 ,	g/c	Radium 228 (sub)		
, 1	rvation Check: pH :	18110		Page 15 - 1990 - 1 / 1 / 1 / 1		
***************************************	ic 1L pH<2 w/HNO3 1 (Sub)	MW6	g/c	Radium Total (sub)		
	rvation Check: pH :					
3061146-06 H 06/12/23 1/45 P	AG 250mL pH<2 1 w/H2SO4	MW6	g/c	тос		
	rvation Check: pH : <u>v</u>					
	astic 500mL pH<2 1 w/HNO3	DUPLICATE	g/c	Beryllium Tot 6020 Cadmit 6020 Calcium Tot 6010B S 6020 Chromium Tot 6020 6 6020 Arsenic Tot 6020 Bot 6010B Copper Tot 6020 Ar Tot 6020 Lead Tot 6020 Mc Tot 6020 Sodium Tot 6010	larium Tot Cobalt Tot on Tot ntimony thium Tot olybdenum	
	rvation Check: pH :					
3061146-07 B <u>06/23/23 1040</u>	Plastic 1L 1	DUPLICATE	g/c	pH (Lab) Conductivity (Lab Sulfate 9056 Chloride 9056 9056		
Preservation Check Performed by: (ED)				<u> </u>	·····	
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)	·········			
pH Cond (umho)				e CI (mg/L)		
Temp (aC) or (oF)	Static Water Level	DO (mg/L)	T i	urb. (NTU)		
Flow (MGD) or (CFS)	or (g/min)	·····				
Relinquished by: (Signature)	Received by: (Signature)	_	Date (mm/	dd/yy) Time (24 hr)		
My Out	15-D		06/26	1222		
PACE- Check here if trip charge applied to	associated COC	Printed: 5	/25/2023 8:29 :	05AM Page 34	4 of 73	

Scheduled for: 06/05/2023

Page 35 of 73

Printed: 5/25/2023 8:29:05AM

		Scheduled	101. 00/03/2023	11 4 639 07 (F3 21 21 16 21 16 10 27 1			
Client: Big Rivers Electric (Reid/Green Station Project: Green Landfill Sen		Station Gred Dick	tric Corporation Reid/Greer	Invoice To: Big Rivers Electric Corporation Reid/Green Station Greg Dick PO Box 24 Henderson, KY 42419			
.		Phone: (270) 8- PWS ID#:	<u>44-5736</u>	PO#:			
Please Print Legibly	Sh Oil	State: <u>K</u>	1	Quote#			
Collected by (Signature): *For composite samples pleas	•	ed information* e, end time and temp(oC)	at end time below:		es Chlorinated? Yes No		
Influent: Start Date	Start time	Eηφ Date	End Time	Те ф р (оС)			
influent: Start Date	Start time	N/H End Date	End Time	Temp (oC)			
Workorder# Date	I information* Collection : Time (24 hr): E	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested		
3061146-07 C 04/23 23	1040	Plastic 500mL pH<2	DUPLICATE	g/c	CODTOC		
3061146-07 D 06/23/23		w/H2SO4 eservation Check: pH : _ lastic 1L pH<2 w/HNO3		g/c	Radium 226 (sub)		
		Rad 226 (Sub)		3	, , , , , , , , , , , , , , , , , , ,		
3061146-07 E 06/23/23		eservation Check: pH:_ lastic 1L pH<2 w/HNO3 Rad 228 (Sub)		g/c	Radium 228 (sub)		
3061146-07 F 06/23/2	1040 P	eservation Check: pH : _ lastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1 DUPLICATE	g/c	Radium 228 (sub)		
3061146-07 G <u>06/23 (2</u>	ე /ბუ ა P	eservation Check: pH : _ lastic 1L pH<2 w/HNO3 (Sub)	1 DUPLICATE	g/c	Radium Total (sub)		
3061146-07 Н <u>оь/27/23</u>	1040	eservation Check: pH:_ AG 250mL pH<2 w/H2SO4 eservation Check: pH:_	1 DUPLICATE	g/c	TOC		
Preservation Check Perform	ned by: \C&D	•					
Field data collected by: <u>(3.01</u>	6 D.CK 91-	Date (mm/dd/vv)	04/23/23 Time (24 hr)	1040			
	•		Tot Cl (mg/L)		ee CI (mg/L)		
Temp (oC)					! }		
Flow (MGD) or							
Relinquished by: (Signature)		Received by: (Signat	ture)	Date (mm/	/dd/yy) Time (24 hr)		

Chain of Custody

·	Scheduled 1	or: <u>06/05/2023</u>	D #-30f-\$1 # # # # # # # # # #		
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Station	Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station	
Project: Green Landfill Semiannual Groundw	Grea Dick	419	Greg Dick PO Box 24 Henderson,	KY 42419	
	Phone: (270) 844-	<u>5736</u>	PO#:		
Please Print Legibly	PWS ID#: State: K		Quote#		
Collected by (Signature):	نند red information		Compli	ance Monitoring? Yes No 🗠	
*For composite samples please indicate begin tir	me, end time and temp(oC) at	end time below:	Sample	es Chlorinated? Yes No	
Influent: Start Date Start time	End Date/	End Time 3	Temp (oC)		
Effluent: Start Date Start time	End Date	End Time	「emp (oC)		
LAB USE ONLY	Bottle and Preservative CO	Sample Description	Composite		
Sample ID# 3061146-08 A 0 6 24 23 1300	Plastic 500mL pH<2 1	FIELD BLANK	g/c	Sample Analysis Requested Beryllium Tot 6020 Cadmium Tot	
, , , , , , , , , , , , , , , , , , , 	w/HNO3	TIED DENIK	gro	6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B	
3061146-08 B 06/24/23 1300	reservation Check: pH :	 FIELD BLANK	g/c	pH (Lab) Conductivity (Lab) TDS	
	, 123.13 12		9.0	Sulfate 9056 Chloride 9056 Fluoride 9056	
3061146-08 C 06 24 23 1300	Plastic 500mL pH<2 1 w/H2SO4	FIELD BLANK	g/c	COD TOC	
. •	reservation Check: pH:_~				
	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub) reservation Check: pH :	FIELD BLANK	g/c	Radium 226 (sub)	
3061146-08 E <u>06/24/23 1300</u> 1	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	FIELD BLANK	g/c	Radium 228 (sub)	
P	reservation Check: pH :	<u>.</u>			
Preservation Check Performed by: LCET)				
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)			
pH Cond (umho)	Res CI (mg/L)	Tot CI (mg/L)	Fre	e CI (mg/L)	
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	TI	urb. (NTU)	
Flow (MGD) or (CFS)	or (g/min)				
Relinquished by: (Signature)	Received by: (Signature	e) .	Date (mm/	dd/yy) Tirne (24 hr)	
سندل کرال	Lub		06/26/	23 /222	
PACE- Check here if trip charge applie	ed to associated COC	Printed: 5		205AM Page 36 of 73	

Printed: 5/25/2023 8:29:05AM

Chain of Custody

Scheduled for: <u>06/05/2023</u>

		<u> </u>			I			
Client: Big Rivers Electric Co Reid/Green Station	Station Gree Dick	ectric Co	rporation Reid/Green	Invoice To: Big Rivers E Greg Dick	lectric Corpo	ration Reid/Green Station		
Project: Green Landfill Semi	annual Ground	PO Box 24			PO Box 24			
		Henderson, K			Henderson,	KY 42419		
		Phone: <u>(270) (</u> PWS ID#:	<u>844-573</u>	<u>16</u>	PO#:		_	
Please Print Legibly	_	State:			Quote#	—	_	
Collected by (Signature):	hy Oin	C uired information			•		ing? Yes No	
*For composite samples please	indicate begin	time, end time and temp(oC	c) at end	time below:	Sample	es Chlorinated	1? Yes No	
Influent: Start Date	Start time	End Pate	E	nd Time	Temp (oC)			
Effluent: Start Date			E	nd Time	Temp (oC)	············		
Workorder# Date	Information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite			
Sample ID#			<u>S</u>	,	Composite		Analysis Requested	
3061146-08 F 06/24/23	1300	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1	FIELD BLANK	g/c	Radium 228	(sub)	
. *		Preservation Check: pH:						
3061146-08 G 66/4/2>	1905	Plastic 1L pH<2 w/HNO3 (Sub)	1	FIELD BLANK	g/c	Radium Tota	al (sub)	
1 1		Preservation Check: pH:						
3061146-08 H 06/27/23	1300	AG 250mL pH<2 w/H2SO4	1	FIELD BLANK	g/c	тос		
		Preservation Check: pH:						
		•						
Preservation Check Performs	ed by:	<u> </u>						
Field data collected by:		Date (mm/dd/yy))	Time (24 hr)		×		
	nd (umho)	Res CI (mg/L))	Tot Cl (mg/L) _	Fre	ee Cl (ma/L)		
Temp (oC) or		Static Water Level						
Flow (MGD) or	(CFS)							
Relinquished by: (Signature)	······································	Received by: (Sign	ature)		Date (mm	/dd/yy)		
M. O.		10	7		ما ام	las		
onthe			الي		06/2	6/23	1222	
								
					_		 	

PACE- Check here if trip charge applied to associated COC

,				Scne	autea	TOT:	<u>UD/UD/2</u>	2023	BIM BROWN REMAINS MINE AND MINE AND MINE		
Client: Big Rive Reid/Green Stati		orporation		Station	ers Electr	ric Corp	poration Rei	d/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Greet Dick		
Project: Green i	Landfill Semi	annual Groun	dwater	Greg Dick PO Box 24			Greg Dick PO Box 24				
				Henderson, KY 42419			Henderson, KY 42419				
				Phone: (270) 844-5736 PWS ID#:			PO#:	PO#:			
Please Print Le	gibly	•		State:	<u> </u>	Y	-		Quote#	ests	-
Collected by (Signature):) juired info	rmation*					Compli	ance Monitor	ing? Yes No 👱
*For composite sa		_							•		t? Yes No <u>.</u> ✓
Influent: Start Da	te	Start time	A 9 . (L.	End Date	NIS	End	d Time	7	remp (oC)		
Influent: Start Da	ate	Start time		End Date		<u>En</u>	d Time		Temp (oC)		_
LAB USE ONLY Workorder # 3061146	Date	information* Collection Time (24 hr):	Bottle a	nd Preserv	ative	Containers	Sample De	scription	Composite		
Sample ID#		<u> </u>				3	•	•	-		Analysis Requested
3061146-01 A	00/12/13	1000	,	; 500mL pH w/HNO3		,	MW	l	g/c	6020 Calciu 6020 Chron 6020 Arsen 60108 Cop Tot 6020 Le 6020 Mercu	ot 6020 Cadmium Tot m Tot 6010B Barium Tot sium Tot 6020 Cobalt Tot ic Tot 6020 Boron Tot per Tot 6020 Antimony ad Tot 6020 Lithium Tot ry Tot 6020 Molybdenum idium Tot 6010B
			,*	tion Checl	k: pH :						
3061146-01 B (06/22/23	1000	F	Plastic 1L	1		MW*	1	g/c		onductivity (Lab) TDS 8 Chloride 9056 Fluoride
3061146-01 C (06/21/23	1000		: 500mL pt v/H2SO4	H<2 1		MW	1	g/c	COD TOC	
			Preserva	tion Checl	k: pH :	<u>/_</u>					
3061146-01 D	06/27/23	(000	Rad	L pH<2 w/f 1 226 (Sub) tion Checl)		MW		g/c rmometer :		i (sub) mber
•			rieseiva	non onec	v. hu;	<u>-</u>				390287 460057 5 0°c	
, ,		10									
Preservation Ch	eck Performe	ed by:(<u>C</u>	ربع								
Field data collect	ed by: 9]	ngOi c	zing Dis	<date (mm<="" td=""><td>n/dd/yy) <u>(</u></td><td>26/22/</td><td>23_ Time (</td><td>(24 hr)</td><td>000</td><td></td><td></td></date>	n/dd/yy) <u>(</u>	26/22/	23_ Time ((24 hr)	000		
рн <u>7</u>	.15 co	nd (umho)	180	Res Ci	(mg/L) _		Tot Cl	(mg/L)	Fre	ee Ci (mg/L)	
Temp (oC)	5.50 or	(oF)	S	tatic Water	Level		DO (i	mg/L)	т	urb. (NTU)	
Flow (MGD)	or	(CFS)						•		_	
Relinquished by:	(Signature)			leceived by	r. (Signati	ие)		·····	Date (mm/	/dd/vv\	Time (24 hr)
- Sheet	Ole			C	کئے۔۔	J.	2-	···	06/24		1220
	1			 .		· · · · · · · · · · · · · · · · · · ·			_		
****				······································				•••	<u></u>		<u></u> .

Chain of Custody

Scheduled for: <u>06/05/2023</u>

Page 39 of 73

Printed: 5/25/2023 8:29:05AM

Rad 228 (Sub) Preservation Check: pH :												
Phone (270) 844-5736 PO#	Reid/Green Station			Big Rivers Station Greg Dick dwater PO Box 24			Big Rivers E Greg Dick PO Box 24	Electric Corpoi	ation Reid/Green Station			
Piesas Print Legibly								K1 42419				
Collected by (Signature):				***************************************		×			_			
For composite samples please indicate begin time, end time and temp(cC) at end time below: For composite samples please indicate begin time, end time and temp(cC) at end time below:	Please Print Lo	egibly	<u> </u>	State:				Quote#				
For composite samples please indicate begin time, and time and temploc) at error time below. Find time	Collected by (Sig	nature):	They Und) juired information*								
Transport Tran	*For composite s	samples please	e indicate begin	time, end time and temp((oC) at en	d time below:	Sampl	es Chlorinated	1? Yes No <u>~</u>			
Transport Tran	Influent: Start D	ate	Start time	End/Date	E	nd Time	Тетр (оС)					
Workcoder if Manddyy): Date (mm/ddyy): Collection (mm/ddyy): Bottle and Preservative of (mm/ddyy): Sample Description Composite Sample Analysis Requested 3061146-01 E 4 11 23 1000 Plastic 1L pH-2 w/HNO3 nad 228 (Sub) 1 MW1 g / c Radium 228 (sub) 3061146-01 F 0 11 12 13 1000 Plastic 1L pH-2 w/HNO3 nad 228 (Sub) 1 MW1 g / c Radium 228 (sub) Preservation Check: pH :	Effluent: Start D	ate	Start time	End Date		End Time	Temp (oC)					
Plastic 1L pH-2 w/HNO3 MW1 g / c Radium 228 (sub) Rad 228 (Sub) Preservation Check: pH :	Workorder # 3061146	Date	Collection	Bottle and Preservative	ontainers	Sample Description	Composite	Sample	Analysis Requested			
Preservation Check: pH:		06 12 23	000			MW1	g/c					
Rad 228 (Sub) Preservation Check: pH:					H:_ <u> </u>							
Plastic 1L pH<2 w/HNO3 1 MW1 g / c Radium Total (sub)	3061146-01 F	06/22/23	1000		3 1	MW1	g/c	Radium 228	(sub)			
Sub Preservation Check: pH : AG 250mL pH<2				Preservation Check: pl	H:_ <u>√</u>							
AG 250mL pH-2	3061146-01 G	06/22/23	[000	(Sub)		MW1	g/c	Radium Tota	al (sub)			
w/H2SO4 Preservation Check Performed by: LCED Field data collected by:		1 1										
Preservation Check Performed by:	3061146-01 H	06/22/23	(000	w/H2SO4		MW1	g/c	TOC				
Date (mm/dd/yy)				·								
pH Cond (umho) Res CI (mg/L) Tot CI (mg/L) Free CI (mg/L) or (oF) Static Water Level DO (mg/L) Turb. (NTU) flow (MGD) or (CFS) or (g/min) Received by: (Signature) Date (mm/dd/yy) Time (24 hr)	Preservation Cl	heck Performe	ed by: KE	<u> </u>			•					
Temp (oC) or (oF) Static Water Level DO (mg/L) Turb. (NTU) Flow (MGD) or (CFS) or (g/min) Relinquished by: (Signature) Date (mm/dd/yy) Time (24 hr)	Field data collec	ted by:		Date (mm/dd/	/yy)	Time (24 hr) _						
Flow (MGD) or (CFS) or (g/min) Relinquished by: (Signature)	рH <u> </u>	Co	end (umho)	Res CI (mg	3/L)	Tot CI (mg/L)	Fr	ee CI (mg/L) _				
Relinquished by: (Signature)	Temp (oC)	ог	(oF)	Static Water Lev	el	DO (mg/L)	1	furb. (NTU)				
	Flow (MGD)	or	(CFS)	or (g/m	in)							
Thy Ocal 106/26/23 1220	Relinquished by:	: (Signature)		Received by: (S	ignature)		Date (mm	/dd/yy)	Time (24 hr)			
	- Ihy	Ourle		\	D-		06/26	123	1220			

Chain of Custody Scheduled for: 06/05/2023

	actiedated	101. 00/03/2020					
Client: Big Rivers Electric Corporation Reid/Green Station	•	tric Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station			
Project: Green Landfill Semiannual Groundwater	Station Greg Dick PO Box 24 Henderson, KY	42419	Greg Dick PO Box 24 Henderson,	·			
	Phone: <u>(270) 84</u> PWS ID#:	<u>44-5736</u>	PO#:				
Please Print Legibly	State:	<u></u>	Quote#				
Collected by (Signature):	formation*		Compli	ance Monitoring? Yes No			
*For composité samples please indicate begin time, er	d time and temp(oC)	at end time below:	Sample	es Chlorinated? Yes No 📈			
Influent: Start DateStart time	End Date	End Time	1 (oC)				
Influent: Start Date Start time Effluent: Start Date Start time	End Date	End Time	Temp (oC)				
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Bottle	and Preservative	Sample Description	Composite				
Sample ID#		-		Sample Analysis Requested			
	tic 500mL pH<2 w/HNO3	1 MW2	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B			
,	vation Check: pH : _		- 4.				
3061146-02 B 06/14/23 0750	- 	1 MW2	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056			
- 	w/H2SO4	1 MW2	g/c	COD TOC			
·	vation Check: pH:_						
F	: 1L pH<2 w/HNO3 lad 226 (Sub) vation Check: pH : _		g/c	Radium 226 (sub)			
3061146-02 E <u>06/24/23 0750</u> Plastic	1L pH<2 w/HNO3		g/c	Radium 228 (sub)			
, , ,	lad 228 (Sub) vation Check: pH : _	<u>/</u>					
Preservation Check Performed by:							
Field data collected by: The Gray Die	K Date (mm/dd/vv)	06/24/23 Time (24 hr)	0750				
				ee Cl (mg/L)			
pH <u>6.33</u> Cond (umho) 19 19 Temp (oC) 16.34 or (oF)	13 Static Water Level	DO (mg/L)	Т	urb. (NTU)			
Flow (MGD) or (CFS)			·				
Relinquished by: /ðignature)	Received by: (Signal	thre)	Date (mm/	/dd/yy) Time (24 hr)			
The Wind	10	12	06/26/	/23 1220			
Ü	t						
PACE- Check here if trip charge applied to	associated COC	Printed:	5/25/2023 8:29:	205AM Page 40 of 73			

Printed: 5/25/2023 8:29:05AM

Chain of Custody

Scheduled for: 06/05/2023

	L				•	
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric C Station	orporation Reid/Green	Invoice To: Big Rivers E	lectric Corpo	ation Reid/Green Station	
Project: Green Landfill Semiannual Groundw	Greg Dick	19	Greg Dick PO Box 24 Henderson,	KY 42419		
	Phone: <u>(270)</u> 844-57 PWS ID#:	<u>'36</u>	PO#:		_	
Please Print Legibly	State: KY		Quote#			
Collected by (Signature):	© red information*		Compli	ance Monitor	ng? Yes No	
*For composite samples please indicate begin til	me, end time and temp(oC) at en	d time below:	Sample	es Chlorinated	1? Yes No 🗹	
Influent: Start Date Start time	⊊nd Date	End Time	emp (oC)			
Influent: Start Date Start time Effluent: Start Date Start time	End Date	End TimeT	emp (oC)	<u> </u>		
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr):	Bottle and Preservative CO	Sample Description	Composite	Samala	Applying Dogwood of	
Sample ID# 3061146-02 F 06/14/23 0750	Plastic 1L pH<2 w/HNO3 1	MW2	g/c	Radium 228	Analysis Requested (sub)	
	Rad 228 (Sub)					
1 1	Preservation Check: pH:			Maradia and Mark	at (m. 4a)	
3061146-02 G <u>06/24/23 0750</u>	Plastic 1L pH<2 w/HNO3 1 (Sub)	MW2	g/c	Radium Tota	at (SUD)	
F	Preservation Check: pH :					
3061146-02 H 06/14/23 0750	AG 250mL pH<2 1 w/H2SO4	MW2	g/c	TOC		
, F	Preservation Check: pH :					
3061146-03 A 66/23/23 10/0	Plastic 500mL pH<2 1 w/HNO3	мwзa	g/c	6020 Calciu 6020 Chrom 6020 Arseni 6010B Copp Tot 6020 Le 6020 Mercu	ot 6020 Cadmium Tot m Tot 6010B Barium Tot sium Tot 6020 Cobalt Tot c Tot 6020 Boron Tot per Tot 6020 Antimony ad Tot 6020 Lithium Tot ry Tot 6020 Molybdenum dium Tot 6010B	
F	Preservation Check: pH :					
3061146-03 B 06/23/23 1010	Plastic 1L 1	MW3A	g/c		inductivity (Lab) TDS 6 Chloride 9056 Fluoride	
Preservation Check Performed by: KED						
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)	····			
pH Cond (umho)	Res CI (mg/L)	Tot Cl (mg/L)	Fre	ee Cl (mg/L) _		
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	т	urb. (NTU)		
Flow (MGD) or (CFS)	or (g/min)					
Relinquished by: (Signature)	Received by: (Signature)		Date (mm/	/dd/yy)	Time (24 hr)	
They Oul	_ ICIT	<u>) </u>	06/26	123	1220	
V	<u></u>			<u></u>		

	Scheduled for	. 00/03/2023				
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater	Report To: Big Rivers Electric Co Station Greg Dick PO Box 24 Henderson, KY 4241	orporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Greg Dick PO Box 24 Henderson, KY 42419			
	Phone: (270) 844-573	<u>36</u>	PO#:	_		
Please Print Legibly	PWS ID#: State: <u>KY</u>	_	Quote#			
Collected by (Signature):) ormation*		Compli	ance Monitoring? Yes No		
*For composite samples please indicate begin time, end		time below:	Sample	es Chlorinated? Yes No		
Influent: Start Date Start time	End Date, E	ind TimeTe	emp (oC)	·····		
Effluent: Start Cate Start time	End Date E	nd TimeT	emp (oC)			
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Bottle Sample ID#	and Preservative to	Sample Description	Composite	Sample Analysis Requested		
3061146-03 C 06/13/23 1010 Plast	tic 500mL pH<2 1 w/H2SO4	АЄММ	g/c	COD TOC		
3061146-03 D 06/23/23 1010 Plastic	1L pH<2 w/HNO3 1 ad 226 (Sub)	MW3A	g/c	Radium 226 (sub)		
Preserv 3061146-03 E 06/23/23 1000 Plastic Rd	ration Check: pH : 1L pH<2 w/HNO3 1 ad 228 (Sub)	мwза	g/c	Radium 228 (sub)		
3061146-03 F 26 23 23 1010 Plastic	1L pH<2 w/HNO3 1 ad 228 (Sub)	MW3A	g/c	Radium 228 (sub)		
1 [-	ration Check: pH: 1L pH<2 w/HNO3 1 (Sub)	MW3A	g/c	Radium Total (sub)		
1 1	250mL pH<2 1 w/H2SO4	MW3A	g/c	тос		
Preserv Preservation Check Performed by: LED	ration Check: pH :					
Field data collected by: Greg Pick Thy Quil	Date (mm/dd/yy) 06/23	/23 Time (24 hr) /	010			
pH <u>6.94</u> Cond (umho) <u>7400</u>	,	•		e Cl (mg/L)		
Temp (oC) or (oF) :	Static Water Level	DO (mg/L)	Т	urb. (NTU)		
Flow (MGD) or (CFS)	or (g/min)					
Refinquished by: (Signature)	Received by: (Signature)		Date (mm/			
PACE- Check here if trip charge applied to a	associated COC	Printed: 5	/25/2023 8:29	205AM Page 42 of 73		

Printed: 5/25/2023 8:29:05AM

Scheduled for: 06/05/2023

			L		i	
Client: Big Ri Reid/Green St Project: Gree	ation	Corporation - niannual Groun	Station Gree Dick	tric Corporation Reid/Gree	Greg Dick PO Box 24	lectric Corporation Reid/Green Station
			Henderson, KY	42419	Henderson,	KY 42419
			Phone: <u>(270) 8</u> PWS ID#:	<u>44-5736</u>	PO#:	
Please Print	Legibly		State:	<u> </u>	Quote#	
Collected by (S	Signature):	They (dired information		Compli	ance Monitoring? Yes No 👱
*For composite	samples plea	Ü	time, end time and temp(oC)	at end time below:	Sample	es Chlorinated? Yes No
		Start time			Temp (oC)	
-		Start time	N/A	End Time	Temp (oC)	
LAB USE ONL Workorder # 3061146 Sample ID#	Date	information* Collection : Time (24 hr):	Bottle and Preservative	Sample Description	on Composite	Sample Analysis Requested
3061146-04 A	06/22/8	_1630	Plastic 500mL pH<2 w/HNO3	0 1 MW4	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B
			Preservation Check: pH : _	/		101 0020 300fGH 101 0010B
3061146-04 B	06/22/23		- "	1 MW4	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride
3061146-04 C	06/22/23		Plastic 500mL pH<2 w/H2SO4	1 MW4	g/c	9056 COD TOC
			Preservation Check: pH:_	<u> </u>		
3061146-04 D	06/2423	1630	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)		g/c	Radium 226 (sub)
3061146-04 E	06/24/23	1630	Preservation Check: pH:_ Plastic 1L pH<2 w/HNO3		g/c	Radium 228 (sub)
	, ,		Rad 228 (Sub) Preservation Check: pH:	/		
Preservation (Check Perform	ned by:	<u> </u>			
Ciald data salla	أمم بيديد	D: Ga	g Dick Date (mm/dd/yy)	V/20 /23 Time (24 hr)	16.20	
		•	•	' '		en CL/mo/L)
			Ples CI (mg/L)			i
remp (oc) _ Flow (MGD) _	•		Static Water Level or (g/min) _		'	urb. (N1O)
Relinquished b	v: (Signature)		Received by: (Signa	ture)	Date (mm/	dd/yy) Time (24 hr)
Hu	g Ont		Ku-S	6	06/26	23 1220
	······································					
			,			Poge 40 of 70
PACE	 Check here i 	r trip charge ap	plied to associated COC	Printe	d: 5/25/2023 B:29:	:05AM Page 43 of 73

Chain of Custody

Scheduled for: 06/05/2023

Page 44 of 73

Printed: 5/25/2023 8:29:05AM

		OUTOGGIO	w 101	. 00,00,2020	j		
Client: Big Rivers Electric Corporation Reid/Green Station			ctric C	orporation Reid/Green	Invoice To: Big Rivers E	lectric Corp	oration Reid/Green Station
Project: Green Landfill Semiannual Grou	ndwater	Station Greg Dick PO Box 24 Henderson, K	Y 4241	9	Greg Dick PO Box 24 Henderson,	KY 42419	
		Phone: <u>(270) 8</u> PWS ID#:	344-57	<u>36</u>	PO#:	_	_
Please Print Legibly		State:	ky_		Quote#		_
Collected by (Signature): 24	Q quired info	rmation*			Compli	ance Monito	ring? Yes No 🗹
*For composite samples please indicate beg	in time, end	time and temp(oC)) at en	d time below:	Sample	s Chlorinate	ed? Yes No
Influent: Start DateStart time	N/p	End Date	Ę	End Time	Temp (oC)		
Effluent: Start Date Start time		End Date	F	End Time	Temp (oC)		
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr) Sample ID#	: Bottle a	nd Preservative	Containers	Sample Description	n Composite	Samo	e Analysis Requested
3061146-04 F 06/22/23 [630		L pH<2 w/HNO3	1	MW4	g/c	Radium 22	-
. ,		d 228 (Sub) tion Check: pH:					
3061146-04 G <u>06/22/23</u> /670	_ Plastic 1	L pH<2 w/HNO3 (Sub)	1	MW4	g/c	Radium To	tal (sub)
41.1.		tion Check: pH:					
3061146-04 H DOLLE	v	250mL pH<2 v/H2SO4	1	₩4	g/c	TOC	
3061146-05 A 06/22/23 /240	_ Plastic	tion Check: pH : c 500mL pH<2 w/HNO3	1	MW5	g/c	6020 Calci 6020 Chroi 6020 Arser 6010B Cop Tot 6020 Li 6020 Merci	Tot 6020 Cadmium Tot um Tot 6010B Barium Tot mium Tot 6020 Cobalt Tot nic Tot 6020 Boron Tot oper Tot 6020 Antimony ead Tot 6020 Lithium Tot ury Tot 6020 Molybdenum odium Tot 6010B
	Preserva	tion Check: pH :	<u>/</u>				
3061146-05 B <u>plo/22/23</u> 1240	_ F	Plastic 1L	1	MW5	g/c		onductivity (Lab) TDS 56 Chloride 9056 Fluoride
Preservation Check Performed by:	eo						,
Field data collected by: Greg Dick	ha Oi	Date (mm/dd/yy)	06/2	2/23 Time (24 hr)	1240		
pH <u>6.47</u> Cond (umho)	•			•		e CI (mg/L)	
Temp (oC) 15.33 or (oF)	s	tatic Water Level		DO (mg/L) _		urb. (NTU)	
Flow (MGD) or (CFS)	0	r (g/min)					
Relinquished by: (Signature)	F	Received by: (Signa	ature)		Date (mm)	dd/yy)	Time (24 hr)
My Oi	····	ì—	5		06/26	123	124

Chain of Custody

Scheduled for: 06/05/2023

Client: Big Rivers Electric Corporation Reid/Green Station	-	ic Corporation Reid/Green	Invoice To: Big Rivers E		on Reid/Green Station		
D. C. C. C. Kill Continued Control	Station Greg Dick		Greg Dick				
Project: Green Landfill Semiannual Groun	PO Box 24		PO Box 24				
	Henderson, KY	42419	Henderson, KY 42419				
	Phone: (270) 84	<u>4-5736</u>	PO#:	PO#: -			
Please Print Legibly	PWS ID#: State:		Quote#	Quote#			
Collected by (Signature):	Li.		Compli	iance Monitoring	? Yes No <u>~</u>		
1.76	quired information*	·····			Yes No		
*For composite samples please indicate begin	time, end time and temp(oC) a	at end time below:	Gamph	ss omornates:	100		
Influent: Start Date Start time	End Date	End Time1	emp (oC)				
Effluent: Start Date Start time _	End Date	End Time	[emp (oC)				
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr):	Bottle and Preservative	Sample Description	Composite				
Sample ID#		Sample Description	Composite	Sample Ar	nalysis Requested		
3061146-05 C de/22/23 1240	Plastic 500mL pH<2 1 w/H2SO4	MW5	g/c	COD TOC			
	Preservation Check: pH:	<u>~</u>					
3061146-05D <u>66/22/23 /240</u>	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	MW5	g/c	Radium 226 (s	ub)		
	Preservation Check: pH :	<u></u>					
3061146-05 E 06/22/23 1240	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW5	g/c	Radium 228 (sa	ub)		
	Preservation Check: pH :	<u>/</u>					
3061146-05 F <u>06/2423 1240</u>	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW5	g/c	Radium 228 (s	ub)		
	Preservation Check: pH:						
3061146-05 G 06/22/23 1240	Plastic 1L pH<2 w/HNO3 1 (Sub)	,	g/c	Radium Total (sub)		
	Preservation Check: pH:	<u></u>					
3061146-05 H 06/22/23 1240	AG 250mL pH<2 1 w/H2SO4	MW5	g/c	TOC			
	Preservation Check: pH:	/					
Preservation Check Performed by:	·						
Field data collected by:	Date (mm/dd/yy) _	Time (24 hr)					
pH Cond (umho)		•		ee CI (ma/L)			
-	Static Water Level				 		
			<u> </u>	GID. (1410)			
Flow (MGD) or (CFS)	or (g/min)				Constitution of the Consti		
Relinquished by: (Signature)	Received by: (Signate	ure)	Date (mm.	/dd/yy) T	ime (24 hr)		
Mr. Onis	Γ , Γ)	0/10	dse	1221		
			_ Vb/2 1	<i>>/∠></i> _	,,		
· · · · · · · · · · · · · · · · · · ·			<u></u>		······································		
					·····		

Scheduled for: 06/05/2023

				Scriedule	<u>u 10</u>	1. 00/03/2023	1	11 8 116 51 11	**************************************	
Client: Big Riv Reid/Green Sta	ttion		duster.	Station Greg Dick	etric C	Corporation Reid/Green	Invoice To: Big Rivers E Greg Dick		eration Reid/Green Station	
Project: Green	i Landiili Semi	amidar Groun	uwatei	PO Box 24 Henderson, K	Y 4241	19	PO Box 24 Henderson, KY 42419			
				Phone: <u>(270)</u> PWS ID#:			PO#:	· ,	_	
Please Print L	egibly			State: <u>KY</u>			Quote#			
Collected by (Signature): They required info			•						ring? Yes No	
				time and temp(oC			·			
Influent: Start E)ate	_ Start time		End Date		End Time	S ap (oC)			
Effluent: Start 0	Sate	Start time _		End Date		End Time	Temp (oC)			
LAB USE ONLY Workorder # 3061146 Sample ID#	Date	Information* Collection Time (24 hr):	Bottle ar	nd Preservative	Containers	Sample Description	Composite	Sampl	e Analysis Requested	
3061146-06 A	06/21/23	-1145		500mL pH<2 w/HNO3	1	MW6	g/c	Beryllium T 6020 Calcii 6020 Chror 6020 Arser 6010B Cop Tot 6020 Le 6020 Merce	ot 6020 Cadmium Tot um Tot 6010B Barium Tot nium Tot 6020 Cobalt Tot lic Tot 6020 Boron Tot per Tot 6020 Antimony and Tot 6020 Lithium Tot ury Tot 6020 Molybdenum odium Tot 6010B	
			Preservat	tion Check: pH :		-				
3061146-06 B	. ,	1145	P	lastic 1L	1	MW6	g/c		onductivity (Lab) TDS 6 Chloride 9056 Fluoride	
3061146-06 C	06/22/23	1175	W	500mL pH<2 I/H2SO4	1	MW6	g/c	COD TOC		
3061146-06 D	06/22/23	1145	Plastic 1I	tion Check: pH : L pH<2 w/HNO3 I 226 (Sub)		MW6	g/c	Radium 22	6 (sub)	
			Preservat	tion Check: pH :		•				
3061146-06 E	06/22/23	1/45	Rad	L pH<2 w/HNO3 I 228 (Sub) tion Check: pH :	,	MW6	g/c	Radium 22	8 (sub)	
Preservation C	heck Performe	ed by:	<u>ED</u>			•				
		Dec . 01	0-	Data (manifold)	<u> </u>	22/27 Time (24 hr)	1145			
E .	6.60 co							Ol (/l)		
•						Tot CI (mg/L) _				
Temp (oC) Flow (MGD)	•					DO (mg/L) _	1	um, (N1O) _		
Relinquished by	r: (Signature)		R	eceived by: (Sign	ature)		Date (mm/	/dd/vv)		
Yhy	بينني _			(()		06/26/		/22)	

Chain of Custody Scheduled for: 06/05/2023

	- Concas.	CO TOTE DO/CO/LULU				
Client: Big Rivers Electric Corporation Reid/Green Station		lectric Corporation Reid/Green	Invoice To: Big Rivers E		poration Reid/Green Station	
Project: Green Landfill Semiannual Grou	Station Greg Dick ndwater PO Box 24 Henderson,	KY 42419	Greg Dick PO Box 24 Henderson,	KY 42419		
	Phone: (270)) 844-5736	PO#:		- - -	
Please Print Legibly	PWS ID#: State: _	<u>k'</u>	Quote#			
Collected by (Signature):	Differention*		Compli	ance Monit	oring? Yes No	
*For composite samples please indicate beg	in time, end time and temp(c	oC) at end time below:	Sample	es Chlorina	ted? Yes No	
Influent: Start Date Start time	End Date	End Time	Temp (oC)			
Influent: Start Date Start time Effluent: Start Date Start time	End Date	End Time	Temp (oC)			
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr Sample ID#	Bottle and Preservative	Sample Description	Composite	Sami	ole Analysis Requested	
3061146-06 F 06/22/23 1/45		_ <u> </u>	g/c	Radium 2		
, ,	Rad 228 (Sub) Preservation Check: pH	: <u> </u>				
3061146-06 G 06/22/23 /145	Plastic 1L pH<2 w/HNO3 (Sub)	3 1 MW6	g/c	Radium T	otal (sub)	
, t	Preservation Check: pH	: <u> </u>				
3061146-06 H <u>06/12/23</u> <u>1/45</u>	AG 250mL pH<2 w/H2SO4	1 MW6	g/c	TOC		
	Preservation Check: pH	: 1				
3061146-07 A <u>Ob/23/23 </u>	Plastic 500mL pH<2 w/HNO3	1 DUPLICATE	g/c	6020 Cald 6020 Chr 6020 Arsi 6010B Co Tot 6020 6020 Mer	Tot 6020 Cadmium Tot cium Tot 6010B Barium Tot cium Tot 6020 Cobalt Tot enic Tot 6020 Boron Tot opper Tot 6020 Antimony Lead Tot 6020 Lithium Tot cury Tot 6020 Molybdenum Sodium Tot 6010B	
	Preservation Check: pH	: <u> </u>				
3061146-07 В <u>06/23/23</u> <u>[040</u>	Plastic 1L	1 DUPLICATE	g/c		Conductivity (Lab) TDS 056 Chloride 9056 Fluoride	
Preservation Check Performed by: LC	<u> </u>					
Field data collected by:	Date (mm/dd/y	y) Time (24 hr) _				
pH Cond (umho)	Res Cl (mg/	'L) Tot CI (mg/L) _	Fre	ee CI (mg/L)	
Temp (oC) or (oF)	Static Water Leve	DO (mg/L) _	т	urb. (NTU)		
Flow (MGD) or (CFS)	or (g/mir	n)				
Relinquished by: (Signature)	Received by: (Sig	gnature)	Date (mm/	/dd/yy)	Time (24 hr)	
My Out	- K-E		06/26	123	1222	

Scheduled for: 06/05/2023

		OCHEGGIE	4 101.	00/03/2020		E3 00 00 0 1 11 0 10 10 10 10 10 10 10 10	(84 8) 8 (1) 8×1
Client: Big Rivers Electric Corporat Reid/Green Station	ion	Report To: Big Rivers Election	etric Cor	poration Reid/Green	Invoice To: Big Rivers E	lectric Corporatio	on Reid/Green Station
Project: Green Landfill Semiannual	Groundwater	Greg Dick PO Box 24 Henderson, KY	′ 4241 9		Greg Dick PO Box 24 Henderson,	KY 42419	
		Phone: (270) 8	44-5736	<u> </u>	PO#:		
Please Print Legibly	\bigcirc		Y	_	Quote#		
Collected by (Signature):	لنان required into	rmation*	<u>-</u>	-	Compli	ance Monitoring?	Yes No
*For composite samples please indical	te begin time, end	time and temp(oC)	at end	time below:	Sample	es Chlorinated?	Yes No
Influent: Start DateStart	time	End Date	En	d Time	Temp (oC)		
Influent: Start DateStart Effluent: Start DateStart	time	End Date	Er	nd Time	Temp (oC)		
3061146 (mm/dd/yy): Time (ection	nd Preservative	Containers	Sample Description	Composite		
Sample ID# 3061146-07 C 01/23 23 10	10 Plastic	500mL pH<2	<u>ပို</u> 1	DUPLICATE	g/c	Sample And	alysis Requested
	·	v/H2SO4 tion Check: pH:	J		3 · ·		
3061146-07 D 06/23/23 101	10 Plastic 1	L pH<2 w/HNO3 d 226 (Sub)		DUPLICATE	g/c	Radium 226 (su	(b)
	Preserva	tion Check: pH : _	<u> </u>				
3061146-07 E 06/23/23 104	, ,0,0,,0	L pH<2 w/HNO3 d 228 (Sub)	1	DUPLICATE	g/c	Radium 228 (su	ib)
	Preserva	tion Check: pH:_	<u>,~</u>				
3061146-07 F 06/23/23 104	Rad	L pH<2 w/HNO3 d 228 (Sub)	,	DUPLICATE	g/c	Radium 228 (su	b)
3061146-07G <u>db/23/U</u> <u>/01</u>		tion Check: pH : _ L pH<2 w/HNO3 (Sub)		DUPLICATE	g/c	Radium Total (s	սե)
		tion Check: pH:_					
3061146-07 H 06/27/23 10	V	v/H2SO4	1	DUPLICATE	g/c	TOC	
	Preserva	tion Check: pH : _	_				
Preservation Check Performed by: _	1CED .						
Field data collected by: (sccg D.U	S 9L-Our	Date (mm/dd/vv)	04/23	/23 Time (24 br)	Iny 0		
pH	-					e CI (ma/L)	
Temp (oC) <u>/5.27</u> or (o							11
Flow (MGD) or (CFS							
Relinquished by: (Signature)	F	Received by: (Signa	ture)		Date (mm/	dd/yy) Tir	me (24 hr)
In Oi	<i>\</i>				06/26	<u> 23 </u>	(222
, <u>, .</u>	<u></u>		· · · · ·			<u> </u>	
		····					· · · · · · · · · · · · · · · · · · ·

PACE- Check here if trip charge applied to associated COC

Chain of Custody Scheduled for: 06/05/2023

	ochedale	4 101. <u>00/03/2023</u>	J	41 # 444 41 114 #55############
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Ele Station	ctric Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station
Project: Green Landfill Semiannual Groundw	Grea Dick	r 42419	Greg Dick PO Box 24 Henderson,	KY 42419
	Phone: (270) 8 PWS ID#:	<u>344-5736</u>	PO#:	
Please Print Legibly		<u>KY</u>	Quote#	** -
Collected by (Signature):	كن red information*		,	ance Monitoring? Yes No 🚣
*For composite samples please indicate begin tir	ne, end time and temp(oC)	at end time below:	Sample	es Chlorinated? Yes No
Influent: Start DateStart time	End Date	End Time	Temp (oC)	
Effluent: Start Date Start time	End Date	End Time	Temp (oC)	:
	Bottle and Preservative	s Sample Description	Composite	
Sample ID# 3061146-08 A 0 6/24/23 (300	Plastic 500mL pH<2	S FIELD BLANK	g/c	Sample Analysis Requested Beryllium Tot 6020 Cadmium Tot
	w/HNO3 reservation Check: pH :		y, c	6020 Calcium Tot 6020 Cadmidin Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B
3061146-08 B 06/24/23 1300	Plastic 1L	1 FIELD BLANK	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride
3061146-08 C 06/24/23 1300	Plastic 500mL pH<2 w/H2SO4	1 FIELD BLANK	g/c	9056 COD TOC
,	reservation Check: pH:	<u>~</u>		
	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub) reservation Check: pH:		g/c	Radium 226 (sub)
3061146-08 E <u>06/24/23</u> 1300	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) reservation Check: pH:	1 FIELD BLANK	g/c	Radium 228 (sub)
Preservation Check Performed by:	<u> </u>			
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)		
pH Cond (umho)	Res CI (mg/L)	Tot CI (mg/L) _	Fre	ee CI (mg/L)
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	Т	urb. (NTU)
Flow (MGD) or (CFS)	or (g/min)	·		
Relinquished by: (Signature)	Received by: (Signa	ature)	Date (mm.	/dd/yy) Time (24 hr)
_ My Dri	_ L	}	06/26	123 1222
PACE- Check here if trip charge applie	ed to associated COC	Printed:	5/25/2023 8:29	:05AM Page 49 of 73

Printed: 5/25/2023 8:29:05AM

Chain of Custody

Scheduled for: 06/05/2023

|--|

Client: Big Rivers Electric Corpo Reid/Green Station Project: Green Landfill Semiann		Report To: Big Rivers Electric Station Greg Dick PO Box 24 Henderson, KY 424	Corporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,		ition Reid/Green Station
Please Print Legibly		Phone: (270) 844-5 PWS ID#: State:	<u>5736</u>	PO#:		
Collected by (Signature):	() in			***************************************	ance Monitorin	g? Yes No <u>~</u>
Conected by (oignature).	required in	formation*	····			Yes No
*For composite samples please inc	dicate begin time, er					165
Influent: Start DateS		<u> </u>	End Time Te			
Effluent: Start DateS	Start time	End Date	_ End Time To	emp (oC)		
LAB USE ONLY *required info Workorder # Date C 3061146 (mm/dd/yy): Tir Sample ID#	Collection	and Preservative	Sample Description	Composite	Sample	Analysis Requested
3061146-08 F 06/29/23	1300 Plastic	1L pH<2 w/HNO3 1	FIELD BLANK	g/c	Radium 228 (
		Rad 228 (Sub)				
3061146-08 G 86/24/2>	/908 Plastic	vation Check: pH: c 1L pH<2 w/HNO3 1 (Sub)	FIELD BLANK	g/c	Radium Total	(sub)
3061146-08 H 06/27/23 1	7300 A	vation Check: pH: G 250mL pH<2	FIELD BLANK	g/c	тос	
	,					
Preservation Check Performed b	»: <u>(Cep</u>		`			
Field data collected by:		Date (mm/dd/yy)	Time (24 hr)			
pH Cond (Tot Cl (mg/L)	Fre	e CI (mg/L)	
Temp (oC) or			DO (mg/L) '		urb. (NTU)	
Flow (MGD) or ((CFS)					
Refinquished by: (Signature)		Received by: (Signature)	Date (mm/	dd/yy)	Time (24 hr)

Scheduled for: 06/05/2023

			<u>L.</u>					
Client: Big Riv Reid/Green Sta		orporation	Report To: Big Rivers El Station	lectric (Corporation Reid/Green	Invoice To: Big Rivers E	Electric Corpo	ration Reid/Green Station
Project: Green	Landfill Semi	iannual Ground	water Greg Dick PO Box 24 Henderson, I	KY 424	19	Greg Dick PO Box 24 Henderson,	KY 42419	
			Phone: (270)			PO#:	<u>-</u>	
Please Print Le	eaibly		PWS ID#: State:	ΚY		Quote#		_
Collected by (Sig		9ho Clarg				Compli	iance Monitor	ing? Yes No _
			ired information	C) at a	art time below	Sample	es Chlorinated	d? Yes No <u>.</u> ✓
,			time, end time and temp(of			Temp (oC)		
shillent: Start D	ate	Start time	End Date	4	End Time	Temp (oC)	- >	
Emilien: Start u	rate	Start time	End Date		Lito mile	1emp (00)		
LAB USE ONLY Workorder # 3061146	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite		
Sample ID#		,		<u>8</u>	,	•		Analysis Requested
3061146-01 A	<u>06 22 23</u>	1000	Plastic 500mL pH<2 w/HNO3	1	MW1	g/c	6020 Calciu 6020 Chron 6020 Arsen 6010B Copp Tot 6020 Le 6020 Mercu	ot 6020 Cadmium Tot on Tot 6010B Barium Tot 6010B Barium Tot 6020 Cobalt Tot ic Tot 6020 Boron Tot oper Tot 6020 Antimony ad Tot 6020 Lithium Tot ry Tot 6020 Molybdenum ddium Tot 6010B
	ودادراه	1000	Preservation Check: pH			- 1 -		
3061146-01 8	06/22/23	4000	Plastic 1L	1	MW1	g/c		onductivity (Lab) TDS 6 Chloride 9056 Fluoride
3061146-01 C	06/21/23	1000	Plastic 500mL pH<2 w/H2SO4	1	MW1	g/c	COD TOC	÷
	oblinate a		Preservation Check: pH				Dadina 000	N facilità
3061146-01 D	06/2/23	(000)	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)	1	MW1 The	g/c ermometer		
:			Preservation Check: pH	: <u>-V</u>	-	181	390287 460057 <u>57</u> °c	
Preservation C	heck Perform	ed by: <u>C</u>						
Field data collec	ted by:	hyQi G	ria D:∠KDate (mm/dd/y	vi 06/	22/23 Time (24 hr)	1000		
		U	80 Res CI (mg/l	,			ee Cl (ma/L)	
Temp (oC)	A		Static Water Leve					
Flow (MGD)	or or	(CFS)					_	
Relinquished by	(Signature)		Received by: (Sig	nature))	Date (mm	/dd/yy)	Time (24 hr)
- This	OLF			ناكر		06/29	123	1220
				,	<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>	
PACE-	Check here if	trip charge app	lied to associated COC		Printed:	5/25/2023 8:29	:05AM	Page 51 of 73

Printed: 5/25/2023 8:29:05AM

Chain of Custody

Scheduled for: <u>06/05/2023</u>

Page 52 of 73

Printed: 5/25/2023 8:29:05AM

Client: Big Rive Reid/Green Stati Project: Green I	ion	·	Station Gree Dick		orporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,	Electric Corporation Reid/Green Station
			Phone: <u>(270)</u> PWS ID#:	844-57	<u>36</u>	PO#:	<u>-</u>
Please Print Le	gibly	. ^		KY		Quote#	
Collected by (Sig	nature):	They Oil	uired information*			Compl	iance Monitoring? Yes No
*For composite s	amoles please	•	time, end time and temp(o	C) at end	d time below:	Sample	es Chlorinated? Yes No 👱
•		=				Гетр (oC)	
Effluent: Start Da	ate	Start time	End/Date End Date	E	End Time	Temp (oC)	
LAB USE ONLY Workorder # 3061146 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample Analysis Requested
	06 22 23	000	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)		MW1	g/c	Radium 228 (sub)
			Preservation Check: pH	: <u> </u>			
3061146-01 F	06/22/23	1000	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	,	MW 1	g/c	Radium 228 (sub)
			Preservation Check: pH				
3061146-01 G	06/22/23	[000	Plastic 1L pH<2 w/HNO3 (Sub)		MW1	g/c	Radium Total (sub)
3061146-01 H	06/22/23	[000	Preservation Check: pH AG 250mL pH<2 w/H2SO4 Preservation Check: pH	1	MW1	g/c	тос
Preservation Ch	neck Perform	ed by: <u>K</u> E	<u>D</u>			•	
Field data collect	led by:		Date (mm/dd/y	y)	Time (24 hr)	***************************************	
рН	Co	ond (umho)	Res CI (mg/l	L)	Tot CI (mg/L)	Fr	ee Cl (mg/L)
Temp (oC)	or	(oF)	Static Water Level	l	DO (mg/L)	T	'urb. (NTU)
Flow (MGD)	or	(CFS)	or (g/min)			
Relinquished by:	(Signature)		Received by: (Sig	nature)		Date (mm 06/26)	1
						<u> </u>	

Chain of Custody Scheduled for: 06/05/2023

			Concadio		1. 00/03/2020]	31 2 2 3 5 5 1 11	1 B) B B B B B 1 1 B F F
Client: Big Riv Reid/Green Sta		orporation	Report To: Big Rivers Ele Station	ectric C	Corporation Reid/Green	Invoice To: Big Rivers E		ration Reid/Green Station
Project: Green	Landfill Semi	annual Groun	Greg Dick	Y 424	19	Greg Dick PO Box 24 Henderson,	KY 42419	
			Phone: (270)	844-57	736	PO#:	-	_
Please Print L	egibly	_	PWS ID#: State:	κ		Quote#		***
Collected by (Sig	gnature):ك	ر در م	uired information			Compli	ance Monitor	ing? Yes No
*For composite	samples please		time, end time and temp(oC	c) at er	nd time below:	Sample	s Chlorinate	d? Yes No 👱
Influent: Start D	ate	_ Start time	End Date		End Time	Temp (oC)		•
Effluent: Start C	Date	Start time	End Date End Date		End Time	Temp (oC)	·····	
LAB USE ONLY Workorder # 3061146 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	n Composite	Samole	e Analysis Requested
3061146-02 A	06/24/23	0750	Plastic 500mL pH<2 w/HNO3	1	MW2	g/c	Beryllium To 6020 Calciu 6020 Chron 6020 Arsen 6010B Cop Tot 6020 Le 6020 Mercu	ot 6020 Cadmium Tot im Tot 6010B Barium Tot nium Tot 6020 Cobalt Tot ic Tot 6020 Boron Tot per Tot 6020 Antimony ad Tot 6020 Lithium Tot iry Tot 6020 Molybdenum odium Tot 6010B
			Preservation Check: pH:		-		,	
3061146-02 B	06/14/23	<u>035° </u>	Plastic 1L	1	MW2	g/c		onductivity (Lab) TDS 6 Chloride 9056 Fluoride
3061146-02 C	06/24/23	0750	Plastic 500mL pH<2 w/H2SO4	1	MW2	g/c	COD TOC	
3061146-02 D	06/24/23	0750	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)		- MW2	g/c	Radium 226	3 (sub)
			Preservation Check: pH:		-			
3061146-02 E	D6/54/53	0750	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:		MW2	g/c	Radium 228	3 (sub)
Preservation C	heck Performe	ed by:	<u> </u>					
Field data collec	eted by: 9	hyQio (ang DieK Date (mm/dd/yy) p6/2	14/23 Time (24 hr)	0750		
							ee Cl (mg/L)	
Temp (oC)	16.34 or	(of)	1910 Res CI (mg/L		DO (mg/L)	т	urb. (NTU)	
			or (g/min)					
Relinquished by	: / S ignature)	•	Received by: (Sign	atura)		Date (mm.	/dd/yy)	Time (24 hr)
- Shy	(Und		10	-_	<u> </u>	06/26	/23	1220

PACE- Check here if trip charge applied to associated COC

Scheduled for: <u>06/05/2023</u>

Page 54 of 73

Printed: 5/25/2023 8:29:05AM

	Concadict	2 101. <u>00/00/2020</u>]	********	·#IMBE#IM(10 BIR ·
Client: Big Rivers Electric Corporation Reid/Green Station		etric Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corpor	ation Reid/Green Station
Project: Green Landfill Semiannual Groundwa	Station Greg Dick ater PO Box 24 Henderson, KY	['] 42419	Greg Dick PO Box 24 Henderson,	KY 42419	
	Phone: (270) 8	<u>44-5736</u>	PO#:	_	
Please Print Legibly	PWS ID#: State:	<u> </u>	Quote#	<u>-</u>	
Collected by (Signature):	ed information*		Compli	ance Monitori	ng? Yes No 👱
For composite samples please indicate begin time		at end time below:	Sample	es Chlorinated	? Yes No <u>~</u>
			Temp (oC)		
Influent: Start Date Start time Effluent: Start Date Start time	End Date	End Time	Temp (oC)		
LAB USE ONLY *required information* Workorder # Date Collection 3061146 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative	Sample Description	n Composite	Sample	Analysis Requested
	Plastic 1L pH<2 w/HNO3	1 MW2	g/c	Radium 228	
Pr	Rad 228 (Sub) reservation Check: pH:_				
$A \cdot A$.	Plastic 1L pH<2 w/HNO3 (Sub)	•	g/c	Radium Tota	al (sub)
Pt	eservation Check: pH:_	<u></u>			
3061146-02 H 06/14/23 0750	AG 250mL pH<2 w/H2SO4	1 MW2	g/c	TOC	
. 1	reservation Check: pH:_				
3061146-03 A 06/23/23 10/0	Plastic 500mL pH<2 w/HNO3	1 MW3A	g/c	6020 Calciu 6020 Chrom 6020 Arseni 6010B Copp Tot 6020 Le 6020 Mercu	t 6020 Cadmium Tot m Tot 6010B Barium Tot ium Tot 6020 Cobalt Tot c Tot 6020 Boron Tot per Tot 6020 Antimony ad Tot 6020 Lithium Tot ry Tot 6020 Molybdenum dium Tot 6010B
Pi	reservation Check: pH : _				
3061146-03 B <u>06/23/23 </u>	Plastic 1L	1 MW3A	g/c		nductivity (Lab) TDS 5 Chloride 9056 Fluoride
Preservation Check Performed by: KED		<u></u>			
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)			
pH Cond (umho)	Res CI (mg/L)	Tot CI (mg/L)	Fro	se Cl (mg/L) _	
Temp (oC) or(oF)	Static Water Level _	DO (mg/L) _		urb. (NTU) _	
Flow (MGD) or (CFS)	or (g/min) _	<u>,</u>			
Relinquished by: (Signature)	Received by: (Signa	iture)	Date (mm	/dd/yy)	Time (24 hr)
Muy Onl	10	D	06/26	/23	1220

(724)850-5600

October 11, 2023

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville. KY 42431

RE: Project: 3061146-Revised Report

Pace Project No.: 30600923

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on June 30, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the August 1, 2023 report. This project was revised on October 11, 2023 to include QC sheets.

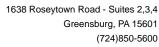
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

samantha.bayura@pacelabs.com

Samuelle Bayrue


(724)850-5622

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3061146-Revised Report

Pace Project No.: 30600923

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391

Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

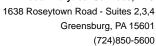
Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification


Tennessee Certification #: TN02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 3061146-Revised Report

Pace Project No.: 30600923

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30600923001	3061146-01	Water	06/22/23 10:00	06/30/23 09:30
30600923002	3061146-02	Water	06/24/23 07:50	06/30/23 09:30
30600923003	3061146-03	Water	06/23/23 10:10	06/30/23 09:30
30600923004	3061146-04	Water	06/22/23 16:30	06/30/23 09:30
30600923005	3061146-05	Water	06/22/23 12:40	06/30/23 09:30
30600923006	3061146-06	Water	06/22/23 10:40	06/30/23 09:30
30600923007	3061146-07	Water	06/23/23 10:40	06/30/23 09:30
30600923008	3061146-08	Water	06/24/23 13:00	06/30/23 09:30
30600923009	3061146-08 (MS)	Water	06/24/23 13:00	06/30/23 09:30
30600923010	3061146-08 (MSD)	Water	06/24/23 13:00	06/30/23 09:30

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 3061146-Revised Report

Pace Project No.: 30600923

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30600923001	3061146-01	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923002	3061146-02	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923003	3061146-03	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923004	3061146-04	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923005	3061146-05	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923006	3061146-06	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923007	3061146-07	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923008	3061146-08	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30600923009	3061146-08 (MS)	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
30600923010	3061146-08 (MSD)	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

(724)850-5600

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3061146-Revised Report

Pace Project No.: 30600923

Parameters	Sample: 3061146-01 PWS:	Lab ID: 30600 Site ID:	O923001 Collected: 06/22/23 10:00 Sample Type:	Received:	06/30/23 09:30	Matrix: Water	
Radium-226	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
C:NA T:79% Pace Analytical Services - Greensburg		Pace Analytical S	Services - Greensburg				
EPA 904.0 0.597 ± 0.412 (0.796) pCi/L 07/13/23 15:33 15262-20-1 c.84% T:79% Pace Analytical Services - Greensburg	Radium-226	EPA 903.1		pCi/L	07/31/23 11:59	13982-63-3	
C:84% T:79% Pace Analytical Services - Greensburg Pace Analytical Services - Gre		Pace Analytical S	Services - Greensburg				
Total Radium Calculation	Radium-228	EPA 904.0		pCi/L	07/13/23 15:33	3 15262-20-1	
Calculation Calcu		Pace Analytical S	Services - Greensburg				
PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No.	Total Radium		0.805 ± 0.821 (1.52)	pCi/L	08/01/23 12:22	2 7440-14-4	
Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.546 ± 0.432 (0.630) C:NA T:78% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 0.950 ± 0.462 (0.802) C:86% T:78% Pace Analytical Services - Greensburg Total Radium Total Radium Total Radium Total Radium Calculation Calculation Calculation Total Radium Calculation Calculation Calculation Calculation Deci/L Carr Trac Carr	•			Received:	06/30/23 09:30	Matrix: Water	
Radium-226	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
C:NA T:78% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 D:950 ± 0.462 (0.802) C:86% T:78% Pace Analytical Services - Greensburg Total Radium T		Pace Analytical S	Services - Greensburg				
EPA 904.0 0.950 ± 0.462 (0.802) pCi/L 07/13/23 15:33 15262-20-1 C:86% T:78% Pace Analytical Services - Greensburg Total Radium Total Radium Calculation Lab ID: 30600923003 Collected: 06/23/23 10:10 Received: 06/30/23 09:30 Matrix: Water Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.379 ± 0.362 (0.552) pCi/L 07/31/23 11:59 13982-63-3 C:NA T:83% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) pCi/L 07/13/23 15:33 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg Total Radium Total Radium Total Radium Total Radium Total Radium Total Radium Total Radium 1.43 ± 0.823 (1.32) pCi/L 08/01/23 12:22 7440-14-4	Radium-226	EPA 903.1		pCi/L	07/31/23 11:59	13982-63-3	
C:86% T:78% Pace Analytical Services - Greensburg Total Radium Total Radium Calculation Lab ID: 30600923003		Pace Analytical S	Services - Greensburg				
Total Radium Calculation 1.50 ± 0.894 (1.43) pCi/L 08/01/23 12:22 7440-14-4 Calculation	Radium-228	EPA 904.0	` ,	pCi/L	07/13/23 15:33	3 15262-20-1	
Calculation Calculation C		Pace Analytical S	Services - Greensburg				
PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.379 ± 0.362 (0.552) pCi/L 07/31/23 11:59 13982-63-3 C:NA T:83% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) pCi/L 07/13/23 15:33 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg Total Radium 1.43 ± 0.823 (1.32) pCi/L 08/01/23 12:22 7440-14-4	Total Radium		1.50 ± 0.894 (1.43)	pCi/L	08/01/23 12:22	2 7440-14-4	
Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.379 ± 0.362 (0.552)	-			Received:	06/30/23 09:30	Matrix: Water	
Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.379 ± 0.362 (0.552) C:NA T:83% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) C:85% T:83% Pace Analytical Services - Greensburg Total Radium Total Radium 1.43 ± 0.823 (1.32) PCi/L 07/31/23 11:59 13982-63-3 pCi/L 07/13/23 15:33 15262-20-1 07/13/23 15:33 15262-20-1 07/13/23 15:33 15262-20-1 08/01/23 12:22 7440-14-4	PWS:	Site ID:	Sample Type:				
Radium-226 EPA 903.1 0.379 ± 0.362 (0.552) pCi/L 07/31/23 11:59 13982-63-3 C:NA T:83% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) pCi/L 07/13/23 15:33 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg Total Radium 1.43 ± 0.823 (1.32) pCi/L 08/01/23 12:22 7440-14-4	Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qua
C:NA T:83% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) C:85% T:83% Pace Analytical Services - Greensburg Total Radium Total Radium 1.43 ± 0.823 (1.32) PCi/L 08/01/23 12:22 7440-14-4		Pace Analytical S	Services - Greensburg				
Radium-228 EPA 904.0 1.05 ± 0.461 (0.766) pCi/L 07/13/23 15:33 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg Total Radium 1.43 ± 0.823 (1.32) pCi/L 08/01/23 12:22 7440-14-4	Radium-226	EPA 903.1	` ,	pCi/L	07/31/23 11:59	13982-63-3	
C:85% T:83% Pace Analytical Services - Greensburg Total Radium Total Radium 1.43 ± 0.823 (1.32) PCi/L 08/01/23 12:22 7440-14-4		Pace Analytical S	Services - Greensburg				
Total Radium Total Radium 1.43 ± 0.823 (1.32) pCi/L 08/01/23 12:22 7440-14-4	Radium-228	EPA 904.0		pCi/L	07/13/23 15:33	3 15262-20-1	
11.0 1 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Pace Analytical S	Services - Greensburg				
Calculation	Total Radium	Total Radium Calculation	1.43 ± 0.823 (1.32)	pCi/L	08/01/23 12:22	2 7440-14-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(724)850-5600

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3061146-Revised Report

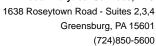
Pace Project No.: 30600923

Lab ID: 30600923004 Sample: 3061146-04 Collected: 06/22/23 16:30 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.161 \pm 0.315 \quad (0.566)$ Radium-226 pCi/L 07/31/23 11:59 13982-63-3 C:NA T:82% Pace Analytical Services - Greensburg EPA 904.0 Radium-228 $1.93 \pm 0.630 \quad (0.863)$ 07/13/23 15:33 15262-20-1 pCi/L C:78% T:82% Pace Analytical Services - Greensburg Total Radium 2.09 ± 0.945 (1.43) Total Radium pCi/L 08/01/23 12:22 7440-14-4 Calculation Sample: 3061146-05 Lab ID: 30600923005 Collected: 06/22/23 12:40 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 -0.261 ± 0.271 (0.689) Radium-226 pCi/L 07/31/23 12:15 13982-63-3 C:NA T:82% Pace Analytical Services - Greensburg EPA 904.0 1.69 ± 0.560 (0.773) Radium-228 pCi/L 07/13/23 15:33 15262-20-1 C:86% T:82% Pace Analytical Services - Greensburg Total Radium Total Radium 1.69 ± 0.831 (1.46) pCi/L 08/01/23 12:22 7440-14-4 Calculation Sample: 3061146-06 Lab ID: 30600923006 Collected: 06/22/23 10:40 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: Comments: • Sample collection time on sample containers is 1145 **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.0473 \pm 0.359 \quad (0.710)$ Radium-226 pCi/L 07/31/23 12:15 13982-63-3 C:NA T:74% Pace Analytical Services - Greensburg EPA 904.0 1.35 ± 0.517 (0.778) Radium-228 pCi/L 07/13/23 15:34 15262-20-1 C:85% T:74% Pace Analytical Services - Greensburg Total Radium Total Radium 1.40 ± 0.876 (1.49) pCi/L 08/01/23 12:22 7440-14-4 Calculation

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY


Project: 3061146-Revised Report

Pace Project No.: 30600923

Lab ID: 30600923007 Sample: 3061146-07 Collected: 06/23/23 10:40 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.278 \pm 0.408 \quad (0.696)$ Radium-226 pCi/L 07/31/23 12:15 13982-63-3 C:NA T:87% Pace Analytical Services - Greensburg EPA 904.0 Radium-228 $1.37 \pm 0.518 \quad (0.802)$ 07/13/23 15:34 15262-20-1 pCi/L C:83% T:87% Pace Analytical Services - Greensburg Total Radium 1.65 ± 0.926 (1.50) Total Radium pCi/L 08/01/23 12:22 7440-14-4 Calculation Sample: 3061146-08 Lab ID: 30600923008 Collected: 06/24/23 13:00 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 0.118 ± 0.538 (1.09) Radium-226 pCi/L 07/31/23 12:15 13982-63-3 C:NA T:92% Pace Analytical Services - Greensburg 3.48 ± 1.44 (2.28) EPA 904.0 Radium-228 pCi/L 07/13/23 15:34 15262-20-1 C:84% T:83% Pace Analytical Services - Greensburg Total Radium Total Radium $3.60 \pm 1.98 \quad (3.37)$ pCi/L 08/01/23 12:22 7440-14-4 Calculation Sample: 3061146-08 (MS) Lab ID: 30600923009 Collected: 06/24/23 13:00 Received: 06/30/23 09:30 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Qual Analyzed Pace Analytical Services - Greensburg 84.20 %REC ± NA (NA) EPA 903.1 Radium-226 pCi/L 07/31/23 13:30 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 77.17 %REC ± NA (NA) Radium-228 EPA 904.0 pCi/L 07/13/23 15:34 15262-20-1 C:NA T:NA Sample: 3061146-08 (MSD) Lab ID: 30600923010 Collected: 06/24/23 13:00 Received: 06/30/23 09:30 PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 61.73 %REC 30.80RPD ± Radium-226 pCi/L 07/31/23 12:15 13982-63-3 NA (NA) C:NA T:NA

REPORT OF LABORATORY ANALYSIS

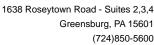
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3061146-Revised Report

Pace Project No.: 30600923

Sample: 3061146-08 (MSD) Lab ID: 30600923010 Collected: 06/24/23 13:00 Received: 06/30/23 09:30 Matrix: Water


PWS: Site ID: Sample Type:

Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual

Pace Analytical Services - Greensburg

Radium-228 EPA 904.0 **85.21 %REC 9.91RPD ± NA** pCi/L 07/13/23 15:35 15262-20-1

(NA) C:NA T:NA

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3061146-Revised Report

Pace Project No.: 30600923

QC Batch: 599323 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30600923001, 30600923002, 30600923003, 30600923004, 30600923005, 30600923006, 30600923007,

30600923008, 30600923009, 30600923010

METHOD BLANK: 2912766 Matrix: Water

Associated Lab Samples: 30600923001, 30600923002, 30600923003, 30600923004, 30600923005, 30600923006, 30600923007,

30600923008, 30600923009, 30600923010

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.145 ± 0.175 (0.267) C:NA T:96%
 pCi/L
 07/31/23 11:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3061146-Revised Report

Pace Project No.: 30600923

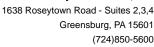
Associated Lab Samples:

QC Batch: 599328 Analysis Method: EPA 904.0 QC Batch Method: EPA 904.0

Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg 30600923001, 30600923002, 30600923003, 30600923004, 30600923005, 30600923006, 30600923007,

30600923008, 30600923009, 30600923010


METHOD BLANK: 2912783 Matrix: Water

30600923001, 30600923002, 30600923003, 30600923004, 30600923005, 30600923006, 30600923007, Associated Lab Samples:

30600923008, 30600923009, 30600923010

Parameter Act ± Unc (MDC) Carr Trac Units Analyzed Qualifiers Radium-228 0.282 ± 0.287 (0.594) C:89% T:96% pCi/L 07/13/23 15:28

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 3061146-Revised Report

Pace Project No.: 30600923

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 10/11/2023 04:10 PM

1c MSD recovery is low and outside of default acceptance criteria for MS recovery. Results reported based on acceptable RPD for the RQS set.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3061146-Revised Report

Pace Project No.: 30600923

Date: 10/11/2023 04:10 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30600923001	3061146-01	EPA 903.1	599323		
30600923002	3061146-02	EPA 903.1	599323		
30600923003	3061146-03	EPA 903.1	599323		
30600923004	3061146-04	EPA 903.1	599323		
30600923005	3061146-05	EPA 903.1	599323		
30600923006	3061146-06	EPA 903.1	599323		
30600923007	3061146-07	EPA 903.1	599323		
30600923008	3061146-08	EPA 903.1	599323		
30600923009	3061146-08 (MS)	EPA 903.1	599323		
30600923010	3061146-08 (MSD)	EPA 903.1	599323		
30600923001	3061146-01	EPA 904.0	599328		
30600923002	3061146-02	EPA 904.0	599328		
30600923003	3061146-03	EPA 904.0	599328		
30600923004	3061146-04	EPA 904.0	599328		
30600923005	3061146-05	EPA 904.0	599328		
30600923006	3061146-06	EPA 904.0	599328		
30600923007	3061146-07	EPA 904.0	599328		
30600923008	3061146-08	EPA 904.0	599328		
30600923009	3061146-08 (MS)	EPA 904.0	599328		
30600923010	3061146-08 (MSD)	EPA 904.0	599328		
30600923001	3061146-01	Total Radium Calculation	605501		
30600923002	3061146-02	Total Radium Calculation	605501		
30600923003	3061146-03	Total Radium Calculation	605501		
30600923004	3061146-04	Total Radium Calculation	605501		
30600923005	3061146-05	Total Radium Calculation	605501		
30600923006	3061146-06	Total Radium Calculation	605501		
30600923007	3061146-07	Total Radium Calculation	605501		
30600923008	3061146-08	Total Radium Calculation	605501		

Results Requested By: Standard Pace Analytical * Workorder Name: Green Landfill Semiannual Owner Received Date: 6/26/2023

Wo	Workorder: 3061146	Wo	Workorder Name: Green	_	andfill Semiannual		Owner Received Date:		6/26/2023	Results Red	Results Requested By: Standard	tandard
Report To:	To:		Subcontract To:	ract To:	•:				.	Requested Analysis	ysis	
Pace Ana	Pace Analytical Services, LLC		Pace An	Pace Analytical Servic	rvices LLC Greensburg P4	nsburg P.	₹.i					
825 Inde	825 Industrial Road		1638 Ro	1638 Rosey Town Rd !	Rd Suite 2,3,4							
Madisor	Madisonville, KY 42409		Greensk	Greensburg, PA 15601	1							
270-821-7375	-7375		(724) 850-5615	0-5615				•				
rob.whit	rob.whittington@pacelabs.com						Preserved Containers		226 226			
-		Sample Collect	Collect						w			
Item Sample ID	mple ID	Type	Date/Time	Lab ID		Matrix			nip			
I								- 0	εЯ			LAB USE ONLY
2 30(3061146-01		06/22/23 10:00	0 IR44-McCoy		Water		×	×			8
3 30	3061146-02		06/24/23 07:50	o IR44-McCoy		Water		×	×			203
4 30	3061146-03		06/23/23 10:10	0 R44-McCoy		Water		×	×			83
5 30	3061146-04		06/22/23 16:30	0 IR44-McCoy		Water		×	×			8
9 30	3061146-05		06/22/23 12:40	0 IR44-McCoy		Water		×	×			ŝ
7 30	3061146-06		06/22/23 10:40	0 IR44-McCoy		Water		×	×			ટું
8 30	3061146-07	٠	06/23/23 10:40	0 IR44-McCoy		Water		×	×			B
9 30	3061146-08		06/24/23 13:00	o iR44-McCoy		Water		×	×			S S
10												
Transfers	rs Released By		Ö	Date/Time	Received By	>		Date/Time	ime		Comments	
H	Kayla Zachary	achary		6/29/2023								
2						1						
m					- Wholesa	an	(,	6/02/9	6/30/93 9/30			

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice X or N Custody Seal Y or (N ပူ Cooler Temperature on Receipt

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Fiday, June 17, 2016 11:01:34 AM WO#: 30600923

Page 67 of 73

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

Sample Intact Y pr N

Pittsburgh Effective Date: 02/03/2023 Pit: SMB Due Date: 07/24/22		DC#_Title: ENV-FRM-G	BUR	-008	8 v04	_Sample (Conditio	₁ Upon Receipt-
Courier: Fed Ex 2/05 USPS USPS Client Commercial Pace Other Tracking Number: 7-0674/5/70 YOS Y O323 Custady Seal on Cooler/Box Present: Yes No Na Thermometer Used: 6 Type of Ice: Web Blue None Cooler Temperature: Observed Temp 7 C1 C Correction Factor: Oserved Temp 7 C1 C Comments: Yes No NA Chain of Custody Present Yes No NA Chain of Custody Reliquished Out: 2 Were client corrections present on COC A. Sample Name & Signature on COC: A. Sample Name & Signature on COC: A. Sample Name & Signature on COC: A. Samples Arrived within Hold Time: G. Short Hold Time Requested: Short Hold Tim	_	Pittsburgh					an a ile	00000022
Client Name: Pace Pace Pace CLIENT: Pace CLIENT: Pace Pa	Dana						ДU#	
Client Name:	Tale	Effective Date: 02/03/2023	3				PM: SMB	Due Date: 07/24/23
Tracking Number: 120674570 14054 0323 Custody Seal on Cooler/Box Present: 14 yes PNo Seals Intract: 14 yes PNo Examined By 15 Thermometer Used: 16 Type of Ice: Web Blue None Cooler Temperature: Observed Temp 7 16 c Correction Factor: 0 c Final Temp: 2.9 c Correct Final Temp: 2.9 c Final Temp: 2.9 c Correct Final Temp: 2.9 c Final Temp		Pace-KY						
Tracking Number: 120674570 14054 0323 Custody Seal on Cooler/Box Present: 14 yes PNo Seals Intract: 14 yes PNo Examined By 15 Thermometer Used: 16 Type of Ice: Web Blue None Cooler Temperature: Observed Temp 7 16 c Correction Factor: 0 c Final Temp: 2.9 c Correct Final Temp: 2.9 c Final Temp: 2.9 c Correct Final Temp: 2.9 c Final Temp	- · M	5. Dune Duese Dellant I] Com	marcia	I 🖺 Þa	ce (1 Other		
Custody Seal on Cooler/Box Present:		ニー・ニュー ツリカンゴ	010	7 /\ L	U	0377		Examined By P5
Cooler Temperature: Observed Temp 7 C C Correction Factor: O c Final Temped By 75 C 3013 Cooler Temperature: Observed Temp 7 C C Correction Factor: O c Final Temped By 75 C 3013 Comments:								
Cooler Temperature: Observed Temp 7 10 c Correction Factor: O c Final Temp: Zig c C Temp should be above freezing to 6+C Comments: Yes No NA							Tes Cino	Tamped By 25 / 3 / 3
Temps should be above freezing to 6°C Comments: Yes No NA Chain of Custody Present Chain of Custody Filled Out:			e of ice <i>C</i> ⊿	s: (et) Bii	de None	α	
Comments: Chain of Custody Present Chain of Custody Filled Out:Were client corrections present on COC Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Chain of Custody Relinquished Coc. Sampler Name & Signature on COC: A. Sampler Name & Signature on			4 1 '	·C	Corre	ction Factor:		oc Final Temp: CT
Comments: Yes No NA	Temp should be abo	ove freezing to 6°C						D.D.D. Posidual Chloring Lot #
1.			Vos	No	NIA	pri paper L	2171	D.F.D. Residual Chlorine Lavi
Chain of Custody Filled Out: -Were client corrections present on COC			res	NO	IVA		1101	
-Were client corrections present on COC Chain of Custody Relinquished Sampler Name & Signature on COC: Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for deshlorination Filtered volume received for dissolved tests: All containers meet method preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: 8260C/D: Headspace in VOA Vials (> 6mm) Trip Blank Present: Rad Samples Screened <0.5 mrem/hr. Samples Arived within Hold Time: 3. 3. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 6. 6. 7. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 7. 6. 6. 7. 6. 7. 6. 7. 6. 6. 7. 6. 7. 6. 7. 6. 7. 6. 6. 6. 7. 6. 7. 6. 7. 6. 6. 6. 7. 6. 7. 6. 7. 6. 6. 6. 7. 6. 7. 6. 7. 6. 6. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.								
Chain of Custody Relinquished 3. Sampler Name & Signature on COC: 4. 5.						۷.		
Sampler Name & Signature on COC: Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for deshorination Filtered volume received for dissolved tests: All containers thecked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: 8260C/D: Headspace in VOA Vials (> 6mm) Trip Blank Present: Rad Samples Screened <0.5 mrem/hr. 4. 4. 5. 5. 6. 5. 6. 6. 6. 7. 7. 8. 8. 9. 10. 9. 11. 10. 12. 14: 13. 14: 15: 14: 15: 16. 16. 17: 16. 17: 18. 18. 18. 18. 18. 19. 19. 19.				,,,,,		3	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Sample Labels match COC: -Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Contain					<u> </u>			
-Includes date/time/ID Matrix: Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Container					 	5		
Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers WoA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when OS Date/Time of completed Date/Time of Date/Time	•		Ĺ		<u></u>	Samole	mb hm	e on bottles = 11=45 (all)
Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used: -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Is: Hex Cr Aqueous samples field filtered: Is: Hex Cr Aqueous samples field filtered: Is: All containers checked for dechlorination exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when completed Preservation Initial when Completed	ace/ ame/ to	1	, TT		2	υ _ω ~ (11.		
Short Hold Time Analysis (<72hr remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: 8260C/D: Headspace in VOA Vials (> 6mm) Trip Blank Present: Rad Samples Screened <0.5 mrem/hr. 7. 7. 7. 7. 7. 7. 7. 7. 7.		dulthin Hald Time:		<u> </u>	T	6.		
remaining): Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Date/Time of Preservation Completed Date/Time of Preservation Completed Date/Time of Preservative						ļ	····	
Rush Turn Around Time Requested: Sufficient Volume: Correct Containers Used: -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: It: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Barbara Samples field filtered: It: Initial when completed preservation Completed preservation Initial when completed preservation Preservative Barbara Samples Screened <0.5 mrem/hr. Barbara Samples Screened <0.5 mrem/hr. Barbara Samples Screened <0.5 mrem/hr.		e moryon (
Sufficient Volume: Correct Containers Used: -Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Date/Time of Preservation Completed Preservation Completed Preservation Preservation Completed Preservation Completed Preservation Preservation Completed		and Time Requested:				8.		
-Pace Containers Used Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers Checked for preservation: exceptions: VOA, collform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when						9.		
Containers Intact: Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Date/Time of Preservation	Correct Contain	iers Used:				10.		
Orthophosphate field filtered: Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Date/Time of Preservation Completed Preservation Preservation Preservative	-Pace Cont	ainers Used						
Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when completed Preservation Completed Preservation Filtered volume received for dissolved tests: Initial when completed Preservation Filtered volume received for dechlorination Initial when completed Preservation Filtered volume received for dechlorination Initial when completed Preservation Filtered volume received for dechlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Initial when completed Preservation Filtered volume received for deshlorination Filtered volume received f	Containers Inta	ct:	سسن			11.		
Organic Samples checked for dechlorination Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when Date/Time of Preservation			ļ		<u></u>	Ļ		
Filtered volume received for dissolved tests: All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when			ļ		-			
All containers checked for preservation: exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Initial when Date/Time of Preservation Lot# of added Preservative	Organic Sample	s checked for dechlorination	<u> </u>	ļ	-	+		
exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix All containers meet method preservation requirements: Second Sec				<u> </u>	1			
All containers meet method preservation requirements: Substitute Completed Complete				<u></u>	<u> </u>	·		
All containers meet method preservation requirements: Initial when completed						DH	27	
All containers meet method preservation requirements: Completed Sompleted Preservation Completed Preservation Completed Preservative Preservation Preservative Preservative Preservative Preservation Preser	Phenolics,	Radon, non-aqueous matrix		_,,,,,,		•		
Colff of added Preservative Pres	All containers	neet method preservation					PS	1
8260C/D: Headspace in VOA Vials (> 6mm) / 17. 624.1: Headspace in VOA Vials (0mm) / 18. Trip Blank Present: / Trip blank custody seal present? YES or NO Rad Samples Screened <0.5 mrem/hr. / Initial when (5 Date: 30/23 Survey Meter completed (5 N) SN: 15 (5)	requireme	nts:	<u> </u>	<u> </u>	.l	Lot# of adde	ad	1
624.1: Headspace in VOA Vials (0mm) Trip Blank Present: Rad Samples Screened <0.5 mrem/hr. Tip Blank Present: Initial when C5 Date: 30/23 Survey Meter completed C5 6/30/23 SN: 1563				{			3	
Trip Blank Present: Trip blank custody seal present? YES or NO	8260C/D: Head	space in VOA Vials (> 6mm)			ļ	17.		
Rad Samples Screened <0.5 mrem/hr. / Initial when PS Date: 6/36/23 Survey Meter completed PS SN: 1563	624.1: Headsp	ace in VOA Vials (0mm)			/	18.		
Rad Samples Screened <0.5 mrem/hr	Trip Blank Pres	ent:	<u> </u>		/	Trip bl	ank custody	seal present? YES or NO
						Initial when	P5 Da	te: 30/23 Survey Meter 15/13
F			1	<u> </u>	1	completed	, <u> </u>	
			<u></u>					· · · · · · · · · · · · · · · · · · ·

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

SUBCONTRACT ORDER

WO#: 30600923

Pace Analytical Services, LLC Kentucky 3061146

PM: SMB CLIENT: PACE_44_MVKY

Due Date: 07/24/23

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID	Comments
Sample ID: 3061146-01	Water	Sampled:06/22/2023 10:00	Specific Method	
Radium 228 (sub)		12/19/2023 10:00	EPA 904.0 Radium Sum	C
Radium Total (sub)		12/19/2023 10:00	EPA 904.0 Radium Sum	•
Radium 226 (sub)		12/19/2023 10:00	EPA 903,1	
Sample ID: 3061146-02	Water	Sampled:06/24/2023 07:50	Specific Method	
Radium 226 (sub)		12/21/2023 07:50	EPA 903.1	
Radium 228 (sub)		12/21/2023 07:50	EPA 904.0 Radium Sum	C
Radium Total (sub)		12/21/2023 07:50	EPA 904.0 Radium Sum	C
Sample ID: 3061146-03	Water	Sampled:06/23/2023 10:10	Specific Method	
Radium 226 (sub)	***************************************	12/20/2023 10:10	EPA 903.1	
Radium 228 (sub)		12/20/2023 10:10	EPA 904.0 Radium Sum	(
Radium Total (sub)		12/20/2023 10:10	EPA 904.0 Radium Sum	•
Sample ID: 3061146-04	Water	Sampled:06/22/2023 16:30	Specific Method	
Radium Total (sub)		12/19/2023 16:30	EPA 904.0 Radium Sum	C
Radium 226 (sub)		12/19/2023 16:30	EPA 903.1	
Radium 228 (sub)		12/19/2023 16:30	EPA 904.0 Radium Sum	(
Sample ID: 3061146-05	Water	Sampled:06/22/2023 12:40	Specific Method	
Radium 228 (sub)		12/19/2023 12:40	EPA 904.0 Radium Sum	(
Radium Total (sub)		12/19/2023 12:40	EPA 904.0 Radium Sum	
Radium 226 (sub)		12/19/2023 12:40	EPA 903.1	
Released By		Date	Received By	Date
Released By	·	Date	Received By	Date

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3061146

Analysis		Expires	Laboratory ID	Comments	
Sample ID: 3061146-06	Water	Sampled:06/22/2023 10:40	Specific Method		
Radium 226 (sub)		12/19/2023 10:40	EPA 903.1		
Radium 228 (sub)		12/19/2023 10:40	EPA 904,0 Radium Su	ım (
Radium Total (sub)		12/19/2023 10:40	EPA 904,0 Radium Sc	em (
Sample ID: 3061146-07	Water	Sampled:06/23/2023 10:40	Specific Method		
Radium 226 (sub)		12/20/2023 10:40	EPA 903.1		
Radium 228 (sub)		12/20/2023 10:40	EPA 904.0 Radium St	em (
Radium Total (sub)		12/20/2023 10:40	EPA 904.0 Radium St	am (
Sample ID: 3061146-08	Water	Sampled:06/24/2023 13:00	Specific Method		
Radium Total (sub)		12/21/2023 13:00	EPA 904.0 Radium St	ım (
Radium 226 (sub)		12/21/2023 13:00	EPA 903.1		
Radium 228 (sub)		12/21/2023 13:00	EPA 904.0 Radium St	an C	

WO#: 30600923

PM: SMB

Due Date: 07/24/23

CLIENT: PACE_44_HVKY

Released By	Date	Received By	Date
Released By	Date	Received By	Date

Released By

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

Bean CM 11851 Other ISCM NCE ecne 27dZ Profile Number MCKN MGFU Notes MAOV U69V Vials 169V H69A DG82 บยฯล ਨੂੰ 8698 B_b3N Page Plastic **B**b3C US98 SZ48 NIda alula C TGĐV Amber Glass กรอง UEĐA 20119 Bould **SE9∀** HLOY Confainer Codes 3 Matrix 28 18 Sample 8 88 Client 3 Line Item 8 Site

SC.	_	-				-	,	r	·	_
Plastic/Misc.	1 gallon cubitainer	1/2 gallon cubitainer	120mL coliform Na Thiosulfate	1L plastic HNO3	11 plastic unpreserved	250mL plastic H2SO4	250mL plastic HNO3	250mL plastic unpreserved	250mL plastic NAOH	500ml plactic H2SO4
	GCUB	12GN	SP5T	BP1N	BP1U	BP3S	BP3N	BP3U	BP3C	2002
		<u> </u>		Γ						Γ
	40mL amber VOA vial H2SO4	40mL clear VOA viał	40mL clear VOA vial Na Thiosulfate	40ml, clear VOA vial HCI	4oz amber wide jar	4oz wide jar unpreserved	500ml. clear glass unpreserved	500ml. amber glass unpreserved		
Slass	DG8S	VG9U	VG9T	VG9H	JGFU	WGFU	BG2U	AG2U		
)		100mL amber glass unpreserved	100ml, amber glass Na Thiosulfate				1L amber glass NA Thiosulfate		77 (

AGSU

S

AGST

AG1H AG1S

AG1T

<u>ਲ</u> ਹ

VOAK Kit Volatile Solid

5g Encore

Wipe/Swab

ZPLC Siploc Bag

Water Solid

WT

岛

Page 1 of 1

Non-Aq Liquid

Wipe

WP

500mL plastic unpreserved

e® Analytical Services, LLC

Due Date: 07/24/23

CLIENT: PACE_44_MVKY

Qualtrax ID: 55678

PA STB

Page 71 of 73

250mL amber glass un

Pace Analytical

Test

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Ra-226 MAR1 7/6/2023 74125 DW 2912766 0.145 0.174 0.267 1.63 N/A Pass MB concentration: M/B Counting Uncertainty: MB MDC: Analyst: Date: Batch ID: Matrix: MB Sample ID MB Status vs Numerical Indicator, MB Status vs. MOC: MB Numerical Performance Indicator: Method Blank Assessmen

4,	Sample Matrix Spike Control Assessment	MS/MSD 1	MS/MSD 2
	Sample Collection Date:	6/24/2023	
	Sample 1.0.	30600923008	
	Campie wo 1.C.	30000373003	
	Sample MSD LD.	30600923319	
	Spike 1.D.:	21-031	
	MS/MSD Decay Corrected Spike Concentration (pCi/mt.):	39.873	
	Spike Volume Used in MS (mil.):	0.20	
	Spike Volume Used in MSID (mt.);	07.70	
	MS Aliquot (L. g. F):	0.253	
	MS Target Conc.(pCl/l., g, F):	31.565	
	MSD Aliquet (1, g, F);	0.252	
	MSD Target Conc. (pC//l., g, f);	31.699	
	MS Spike Uncertainty (calculated):	1,484	
	MSD Spike Uncertainty (calculated):	1.490	
	Sample Result	0.118	
	Sample Result Counting Uncertainty (pCi/L, g, F):	0.517	
	Sample Matrix Spike Result:	26.696	
	Matrix Spike Result Counting Uncertainty (pCl/l., g. F):	3,472	
	Sample Matrix Spike Duplicate Result:	19.685	
	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L. g. F);	2.916	
	MS Numerical Performance Indicator:	-2.565	
	MSD Numerical Performance Indicator:	-7.172	
	MS Percent Recovery:	84.20%	
	MSD Percent Recovery.	61,73%	
	MS Status vs Numerical Indicator:	X,X	
	MSD Status vs Numerical Indicator:	Α̈́Ν	
_	MS Status vs Recovery:	Pass	
	MSD Status vs Recovery.	MSD Low	
	MS/MSD Upper % Recovery Limits:	_	
	MS/MSD Lower % Recovery Limits:	7:%	

Laboratory Control Sample Assessment	LCSD (Y or N)?	z
	LCS74125	LCSD74125
Count Date:	7/31/2023	
Spike 1.D.:	21-031	
Spike Concentration (pC//mL):	39.871	
Volume Used (mL):	0,10	
Aliquot Votume (L. g. F):	0.802	
Target Conc. (pCi/L., g, F);	4.975	
Uncertainty (Catculated):	0.234	
Result (pCl/L, g, F):	5.435	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.026	
Numerical Performance Indicator:	0.86	
Percent Recovery:	109.26%	
Status vs Numerical Indicator:	Ν̈́Α	
Status vs Recovery:	Pass	
Upper % Recovery Limits:	133%	
Lower % Recovery Limits:	73%	

	30600923008	30606833068	30600923010	26.696	3,472	19.685	2.916	3.031	30.80%	Z/Z	Pass	32%
Matrix SpikelMatrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS : D.	Sample MSO I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCML, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pC/A., g. F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD;	% RPD Limit
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.							

Sample I.D.
Sample Sample I.D.
Sample Result Country Uncertainty (pCII., g, F):
Sample Duplicate Result (pCII., g, F):
Sample Duplicate Result (pCII., g, F):
Are sample and/or oblicate results below RL?

Duplicate Sample Assessment

See Below #

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:
Duplicate Status vs RPD:
% RPD Limit.

Duplicate Numerical Performance Indicator.

Comments:

MSO how nau ated-results reported based on acceptable

present this analytical batch. Reprep the samp

R 10 1 M R 2 SC 4 THE AS DEPAY OF CRITERIA DASS. The hatch is reportable. The matrix spike result indicates a possible bias for this sample only and may not be

U Ra-226_74125_26_WC_RP.xis Ra-226 (ENV-FRM-GBUR-0294 02).xis

Ra-226 NELAC OC Printed: 8/1/2023 09:17

Page 72 of 73

Ra-228 74126_25 WC.,RP Ra-228 (ENV-FRM-GBUR-0295 02).xls

Quality Control Sample Performance Assessment

Face Analytical

Test

7/10/2023 74126 WT Analyst: Date: Worklist: Matrix:

2912783 0.282 0.287 0.594 1.92 Pass Pass

MB Numerical Performance Indicator: MB Status vs Numerical Indicator:

MB Status vs. MDC

MB Sample ID MB concentration: N/B 2 Sigma OSU: MB MBC:

Method Blank Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	MS/MSD 1 W	MS/MSD 2
	Sample Collection Date:	6/24/2023	••••
	Sample I.D.	30600923008	
	Sample MS LD.	30600923009	•
	Sample MSD I.D.	30600923010	
	Spike i.D.:	22-040	
	MS/MSD Decay Corrected Spike Concentration (pCifmt.):	32.145	
	Spike Volume Used in MS (mil.):	0.20	
	Spike Volume Used in MSD (mt.):		
	MS Aliquot (L. g. F):	0.253	
	MS Target Conc.(pCi/L, g, F);	25.448	
	MSD Aliquot (L. g. F.);	0.252	
	MSD Target Conc. (pCi/L, g, F):	25.556	
	MS Spike Uncertainty (calculated):	[1.247	
г	MSD Spike Uncertainty (calculated):	1.252	
Т	Sample Result:	3.477	
1	Sample Result 2 Sigma CSU (pCi/L, g, F).	1,440	
	Sample Matrix Spike Result.	23.114	
	Matrix Spike Result 2 Sigma CSU (pCirt., g, f');	4.781	
	Sampie Matrix Spike Duplicate Result:	25,253	
	Matrix Spike Duplicate Result 2 Sigma CSU (pCiff., g, F).		
	MS Numerical Performance indicator:	-2.213	
	MSD Numerical Performance Indicator:	-1.350	
	MS Percent Recovery:	77.17%	
	MSD Percent Recovery:	85.21%	
•	MS Status vs Numerical Indicator:	Waming	
	MSD Status vs Numerical Indicator:	Pass	
	MS Status vs Recovery:		
	MSD Status vs Recovery:	Pass	

MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result 2 Sigma CSU (pCiff., g. F);	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma OSU (pCitt., g, f'):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCift., g, F):	MS Numerical Performance indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
z	LCSD74126															
LCSD (Y or N)?	LCS74126	7/13/2023	22-040	31,943	0.10	0.802	3.985	0.195	4.859	1.080	1.56	121.91%	N/A	Pass	135%	%09
Laboratory Control Sample Assessment		Count Date:	Spike LD.:	Decay Corrected Spike Concentration (pCl/mt.):	Volume Used (mL);	Aliguot Volume (i., q, F);	Target Conc. (pCil., g. F).	(Incertainty (Calculated))	Result (pCs/L, g, F):	LCS/LCSD 2 Sigma CSU (pCVL, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:

	30600923008	30600923009	30600923010	23.114	4.781	25.253	5.146	-0.597	9.91%	Pass	Pass	36%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pClif., g. F):	Sample Matrix Spike Duplicate Result.	Matrix Spike Duplicate Result 2 Sigma CSU (pCift, g. f'):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD LIMIT
	Enter Dublicate	sample IDs if	other than	LCSALCSD in	the space below.							

Sample 1D.
Sample Result (Coll., g, F);
Sample Result 2 Signa CSU (Folk., g, F);
Sample Duplicate Result (Coll., g, F);
Sample Duplicate Result (Coll., g, F);
Are sample and/or duplicate results below RL?
Duplicate Numerical Performance Indicator:

Duplicate Sample Assessment

See Selow 非

t35% 60%

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs Numerical Indicator:
Duplicate Status vs RPD:
% RPD Limit:

Comments:

Certificate of Analysis 3061147

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 10/12/2023 15:33

Project Name: Green La

Green Landfill Semiannual Well MW104

Workorder:

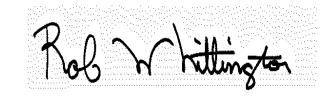
3061147

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 06/23/2023 12:18.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3061147-01	MW-104/		Groundwater	06/23/2023 08:50	06/23/2023 12:18	Greg Dick
<u>LabNumber</u>	<u>Measurement</u>	Value				
3061147-01	Field Conductance	8390				
	Field pH	6.54				
	Field Temp (C)	16.34				

Work Order Comments:

Corrected Report:

This report has been issued as a revision of the previous report dated 8/1/2023@1634. Additional QC Data has been added to report.

ANALYTICAL RESULTS

 Lab Sample ID: 3061147-01
 Sample Collection Date Time: 06/23/2023 08:50

 Description: MW-104
 Sample Received Date Time: 06/23/2023 12:18

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Arsenic	0.0011		mg/L	0.0010	0.0004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Barium	0.016		mg/L	0.004	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Boron	0.26		mg/L	0.10	0.10	SW846 6010 B	06/27/2023 10:46	06/27/2023 19:03	MRWD
Cadmium	0.0003	J	mg/L	0.0010	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Calcium	477	D1	mg/L	40.0	13.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 19:10	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Cobalt	0.004		mg/L	0.004	0.004	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Iron	0.380		mg/L	0.100	0.050	SW846 6010 B	06/27/2023 10:46	06/27/2023 19:03	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Lithium	0.04		mg/L	0.02	0.005	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB
Sodium	754	D1	mg/L	26.0	10.0	SW846 6010 B	06/27/2023 10:46	06/27/2023 19:10	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	06/27/2023 10:46	06/29/2023 18:38	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	67		mg/L	13	8	HACH 8000	06/28/2023 17:10	06/28/2023 17:10	DJK
pH (Lab)	7.77	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	06/26/2023 15:57	06/27/2023 16:23	AED
Total Dissolved Solids	7990		mg/L	25	25	2540 C-2015	06/30/2023 16:45	07/03/2023 16:45	HAG
Total Organic Carbon	0.9		mg/L	0.5	0.4	5310 C-2014	06/28/2023 09:14	06/29/2023 00:24	DJK

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.264	_Sub	pCi/L			EPA 903.1	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	0.533	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
Radium	0.797	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW
See Attached Subcontract Report	0.797	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	08/01/2023 16:15	08/01/2023 16:16	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	3000	D	mg/L	25.0	18.0	SW846 9056	07/02/2023 21:06	07/02/2023 21:06	CSC
Fluoride	ND	U	mg/L	0.2	0.2	SW846 9056	07/02/2023 20:39	07/02/2023 20:39	CSC
Sulfate	4010	D	mg/L	50	25	SW846 9056	07/02/2023 21:06	07/02/2023 21:06	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3061147

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub	See subcontractors report.
D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
Н3	Sample received and analyzed past holding time.
J	Estimated value.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
M7	Matrix spike recovery was low.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected

LCS Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate
DUP Sample Duplicate
% Rec Percent Recovery

RPD Relative Percent Difference

> Greater than < Less than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2432 - EPA 200.2										
Blank (BCF2432-BLK1)										
Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:	:10									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
Iron	ND	0.100	mg/L							U
Sodium	ND	0.26	mg/L							U
Blank (BCF2432-BLK2)										
Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:	:03									
Molybdenum	ND	0.01	mg/L							U
Mercury	ND	0.0005	mg/L							U
Antimony	ND	0.005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Copper	ND	0.003	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
LCS (BCF2432-BS1)										
Prepared: 6/27/2023 10:46, Analyzed: 6/27/2023 17:										
Boron	0.12	0.10	mg/L	0.125		97.4	85-115			
Calcium	6.09	0.40	mg/L	6.25		97.4	85-115			
Iron	6.15	0.100	mg/L	6.25		98.4	85-115			
Sodium	5.68	0.26	mg/L	6.25		90.8	85-115			
LCS (BCF2432-BS2)										
Prepared: 6/27/2023 10:46, Analyzed: 6/29/2023 18:	:06									
Mercury	0.0026	0.0005	mg/L	0.00250		103	85-115			
Molybdenum	0.07	0.01	mg/L	0.0625		104	85-115			
Antimony	0.065	0.005	mg/L	0.0625		104	85-115			
Arsenic	0.0604	0.0010	mg/L	0.0625		96.7	85-115			
Barium	0.062	0.004	mg/L	0.0625		98.6	85-115			
Beryllium	0.0599	0.0020	mg/L	0.0625		95.8	85-115			
Cadmium	0.0597	0.0010	mg/L	0.0625		95.5	85-115			
Chromium	0.0616	0.0020	mg/L	0.0625		98.6	85-115			
Cobalt	0.061	0.004	mg/L	0.0625		98.2	85-115			
Copper	0.062	0.003	mg/L	0.0625		98.8	85-115			
Lead	0.062	0.002	mg/L	0.0625		99.8	85-115			
Lithium	0.06	0.02	mg/L	0.0625		94.9	85-115			
Selenium	0.058	0.003	mg/L	0.0625		92.2	85-115			
Thallium	0.0619	0.0020	mg/L	0.0625		99.0	85-115			

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Poporting.		Cnilco	Course		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Resuit	LIIIII	Units	Level	Nesult	MINEU	LIIIIII	וורט	Liillit	NOTES
Batch BCF2432 - EPA 200.2										
Matrix Spike (BCF2432-MS1)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/2	7/2023 19:22									
Boron	1.84	1.00	mg/L	0.125	1.92	NR	80-120			D2, M2
Calcium	34.2	4.00	mg/L	6.25	28.6	89.4	80-120			D2
Iron	6.35	1.00	mg/L	6.25	ND	102	80-120			D2
Sodium	190	2.60	mg/L	6.25	199	NR	80-120			D2, M3
Matrix Spike (BCF2432-MS2)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/2	9/2023 18:40									
Antimony	0.065	0.005	mg/L	0.0625	ND	105	80-120			
Mercury	0.0024	0.0005	mg/L	0.00250	ND	94.3	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120			
Arsenic	0.0632	0.0010	mg/L	0.0625	0.0005	100	80-120			
Barium	0.137	0.004	mg/L	0.0625	0.071	105	80-120			
Beryllium	0.0607	0.0020	mg/L	0.0625	ND	97.1	80-120			
Cadmium	0.0601	0.0010	mg/L	0.0625	ND	96.2	80-120			
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120			
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.6	80-120			
Copper	0.060	0.003	mg/L	0.0625	ND	96.7	80-120			
Lead	0.060	0.002	mg/L	0.0625	ND	96.0	80-120			
Lithium	0.08	0.02	mg/L	0.0625	0.03	91.7	80-120			
Selenium	0.058	0.003	mg/L	0.0625	ND	92.7	80-120			
Thallium	0.0601	0.0020	mg/L	0.0625	ND	96.1	80-120			
Matrix Spike Dup (BCF2432-MSD1)	Source: 3061146-01									
Prepared: 6/27/2023 10:46, Analyzed: 6/2										
Boron	1.91	1.00	mg/L	0.125	1.92	NR	80-120	3.55	20	D2, M2
Calcium	33.4	4.00	mg/L	6.25	28.6	76.3	80-120	2.42	20	D2, M2
Iron	6.09	1.00	mg/L	6.25	ND	97.4	80-120	4.28	20	D2, M2
Sodium	187	2.60	mg/L	6.25	199	NR	80-120	1.94	20	D2, M3
Matrix Spike Dup (BCF2432-MSD2)	Source: 3061146-01			-			-			
Prepared: 6/27/2023 10:46, Analyzed: 6/2										
Antimony	0.062	0.005	mg/L	0.0625	ND	99.3	80-120	5.36	20	
Molybdenum	0.062	0.005	mg/L	0.0625	ND	103	80-120	5.36 4.48	20	
Mercury	0.0023	0.005	mg/L	0.0025	ND ND	92.7	80-120	4.40 1.71	20	
Arsenic	0.0606	0.0005	mg/L	0.0625	0.0005	92.7 96.1	80-120	4.23	20	
Barium	0.0606	0.0010		0.0625	0.0005	99.5	80-120	4.23 2.77	20	
Beryllium	0.0554	0.004	mg/L	0.0625	ND	99.5 88.6	80-120	9.18		
	0.0569		mg/L						20 20	
Chromium		0.0010	mg/L	0.0625	ND	91.0	80-120	5.50	20	
Chromium	0.0593	0.0020	mg/L	0.0625	ND	95.0	80-120	4.50	20	
Copper	0.058	0.004	mg/L	0.0625	ND	93.0	80-120	4.80	20	
Copper	0.057	0.003	mg/L	0.0625	ND	91.9	80-120	5.05	20	
Lead	0.057	0.002	mg/L	0.0625	ND	91.1	80-120	5.22	20	
Lithium	0.08	0.02	mg/L	0.0625	0.03	84.8	80-120	5.26	20	
Selenium	0.056	0.003	mg/L	0.0625	ND	89.6	80-120	3.44	20	
Thallium	0.0564	0.0020	mg/L	0.0625	ND	90.3	80-120	6.25	20	

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Damantin ::		Cmiles	Cauma		0/ DEC		DDD	
		Reporting		Spike	Source	0/ DEC	%REC	555	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2432 - EPA 200.2										
Post Spike (BCF2432-PS1)	Source: 3061146-0	1								
Prepared: 6/27/2023 10:46, Analyzed	: 6/27/2023 19:29									
Boron	2.08	1.00	mg/L	0.125	1.92	131	75-125			D2, M1
Calcium	37.2	4.00	mg/L	6.25	28.6	137	75-125			D2, M1
Iron	6.80	1.00	mg/L	6.25	ND	109	75-125			D2
Sodium	208	2.60	mg/L	6.25	199	137	75-125			D2, M3
Post Spike (BCF2432-PS2)	Source: 3061146-0	1								
Prepared: 6/27/2023 10:46, Analyzed	: 6/29/2023 18:45									
Antimony	0.064	0.005	mg/L	0.0625	ND	102	75-125			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	75-125			
Mercury	0.0025	0.0005	mg/L	0.00250	ND	98.4	75-125			
Arsenic	0.0620	0.0010	mg/L	0.0625	0.0005	98.4	75-125			
Barium	0.135	0.004	mg/L	0.0625	0.071	102	75-125			
Beryllium	0.0572	0.0020	mg/L	0.0625	ND	91.6	75-125			
Cadmium	0.0593	0.0010	mg/L	0.0625	ND	94.9	75-125			
Chromium	0.0605	0.0020	mg/L	0.0625	ND	96.8	75-125			
Cobalt	0.059	0.004	mg/L	0.0625	ND	95.0	75-125			
Copper	0.059	0.003	mg/L	0.0625	ND	94.0	75-125			
Lead	0.058	0.002	mg/L	0.0625	ND	92.1	75-115			
Lithium	0.08	0.02	mg/L	0.0625	0.03	85.7	75-125			
Selenium	0.057	0.003	mg/L	0.0625	ND	91.3	75-125			
Thallium	0.0573	0.0020	mg/L	0.0625	ND	91.6	75-125			

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2393 - Default Prep Micro										
LCS (BCF2393-BS1)										
Prepared: 6/26/2023 15:57, Analyzed: 6/27/202	23 16:23									
pH (Lab)	5.07		Std. Units	5.00		101	98.8-101.2			
Duplicate (BCF2393-DUP1)	Source: 3061147-01									
Prepared: 6/26/2023 15:57, Analyzed: 6/27/202	23 16:23									
pH (Lab)	7.78	0.10	Std. Units		7.77			0.129	10	H3
Batch BCF2499 - Default Prep Wet Chem										
Blank (BCF2499-BLK1)										
Prepared: 6/28/2023 17:10, Analyzed: 6/28/202	23 17:10									
Chemical Oxygen Demand	ND	13	mg/L							U
LCS (BCF2499-BS1)										
Prepared: 6/28/2023 17:10, Analyzed: 6/28/202	23 17:10									
Chemical Oxygen Demand	123	13	mg/L	125		98.4	90-110			
Duplicate (BCF2499-DUP1)	Source: 3061147-01									
Prepared: 6/28/2023 17:10, Analyzed: 6/28/202	23 17:10									
Chemical Oxygen Demand	69	13	mg/L		67			2.94	25	
Matrix Spike (BCF2499-MS1)	Source: 3061147-01									
Prepared: 6/28/2023 17:10, Analyzed: 6/28/202	23 17:10									
Chemical Oxygen Demand	312	13	mg/L	250	67	98.0	90-110			
Matrix Spike Dup (BCF2499-MSD1)	Source: 3061147-01									
Prepared: 6/28/2023 17:10, Analyzed: 6/28/202	23 17:10									
Chemical Oxygen Demand	314	13	mg/L	250	67	98.8	90-110	0.639	10	
Batch BCF2535 - Default Prep Wet Chem										
Blank (BCF2535-BLK1)										
, Prepared: 6/28/2023 9:14, Analyzed: 6/28/202	23 20:28									
Total Organic Carbon	ND	0.5	mg/L							U

Conventional Chemistry Analyses Madisonville - Quality Control

		-				-				
	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2535 - Default Prep Wet Che	m									
LCS (BCF2535-BS1)										
Prepared: 6/28/2023 9:14, Analyzed: 6/	28/2023 20:49									
Total Organic Carbon	4.8	0.5	mg/L	5.00		96.2	80-120			
Duplicate (BCF2535-DUP1)	Source: 3061146-05									
Prepared: 6/28/2023 9:14, Analyzed: 7/	75/2023 16:31									
Total Organic Carbon	0.7	0.5	mg/L		0.7			4.03	25	
Duplicate (BCF2535-DUP2)	Source: 3063918-02									
Prepared: 6/28/2023 9:14, Analyzed: 7/	5/2023 20:57									
Total Organic Carbon	1.4	0.5	mg/L		1.6			11.3	25	
Matrix Spike (BCF2535-MS1)	Source: 3061146-05									
Prepared: 6/28/2023 9:14, Analyzed: 7/	5/2023 16:53									
Total Organic Carbon	2.5	0.5	mg/L	2.50	0.7	72.8	80-120			M7
Matrix Spike (BCF2535-MS2)	Source: 3063918-02									
Prepared: 6/28/2023 9:14, Analyzed: 7/	5/2023 21:19									
Total Organic Carbon	6.0	0.5	mg/L	5.00	1.6	87.9	80-120			
Batch BCF2540 - Default Prep Wet Che	m									
Blank (BCF2540-BLK1)										
Prepared: 6/28/2023 13:05, Analyzed: 6	/28/2023 13:05									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2540-BS1)										
Prepared: 6/28/2023 13:05, Analyzed: 6	/28/2023 13:05									
Total Dissolved Solids	1500	25	mg/L	1500		99.9	80-120			
Duplicate (BCF2540-DUP1)	Source: 3061146-01									
Prepared: 6/28/2023 13:05, Analyzed: 6	/28/2023 13:05									
Total Dissolved Solids	508	100	mg/L		520			2.33	10	
Duplicate (BCF2540-DUP2)	Source: 3064088-01									
Prepared: 6/28/2023 13:05, Analyzed: 6	/28/2023 13:05									
Total Dissolved Solids	304	50	mg/L		298			1.99	10	
				·						

Conventional Chemistry Analyses Madisonville - Quality Control

	F	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2838 - Default Prep Wet Chem										
Blank (BCF2838-BLK1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2	023 16:45									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2838-BS1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2	023 16:45									
Total Dissolved Solids	1490	25	mg/L	1500		99.4	80-120			
Duplicate (BCF2838-DUP1)	Source: 3032610-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2	023 16:45									
Total Dissolved Solids	1040	100	mg/L		1070			3.03	10	
Duplicate (BCF2838-DUP2)	Source: 3063392-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023 16:45										
Total Dissolved Solids	7800	100	mg/L		7780			0.205	10	

SM 4500-H+ B-2011 in Water

SW846 6010 B in Water

pH (Lab)

Calcium

Ion Chromatography Madisonville - Quality Control

	ion chro	matography	, iviauis0i	iville - Q	uanty COI	11101				
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0012 - Default Prep IC										
Blank (BCG0012-BLK1)										
Prepared: 7/2/2023 17:28, Analyzed	1: 7/2/2023 17:28									
Fluoride	ND	0.2	mg/L							U
Chloride	ND	0.5	mg/L							U
Sulfate	ND	1	mg/L							U
_CS (BCG0012-BS1)										
Prepared: 7/2/2023 17:00, Analyzed	1: 7/2/2023 17:00									
Fluoride	5.3		mg/L	5.00		105	90-110			
Chloride	12.3		mg/L	12.5		98.1	90-110			
Sulfate	24		mg/L	25.0		97.7	90-110			
Matrix Spike (BCG0012-MS1)	Source: 3063664-	-02								
Prepared: 7/3/2023 2:08, Analyzed:	7/3/2023 2:08									
Fluoride	59.1		mg/L	50.0	1.0	116	75-125			D2
Chloride	134		mg/L	125	2.6	105	75-125			D2
Sulfate	550		mg/L	250	291	103	75-125			D2
Matrix Spike Dup (BCG0012-MSD1)	Source: 3063664-	-02								
Prepared: 7/3/2023 2:35, Analyzed:	7/3/2023 2:35									
Fluoride	66.8		mg/L	50.0	1.0	132	75-125	12.2	15	D2, M
Chloride	149		mg/L	125	2.6	117	75-125	10.5	15	D2
Sulfate	572		mg/L	250	291	112	75-125	4.01	15	D2
Certified Analyses included in this	Report									
Analyte	Certifications									
2540 C-2015 in Water										
Total Dissolved Solids	KY Drinking Water M (02819) WV Wastew MADV	` ,		,		•	,	•		
5310 C-2014 in Water										
Total Organic Carbon	KY Drinking Water M (02819) ADEM Drink Madisonville, KY 424	ing Water Mdv	(41880) W\	√ Wastewat					ter	
HACH 8000 in Water										
Chemical Oxygen Demand	KY Wastewater Mdv Madisonville KY 424	` ,	LAC MDV ((460210) W	V Wastewate	er Madison	ville (241), 8	25 Industri	al Rd	

Madisonville, KY 42431

VA NELAC MDV (460210)

KY Drinking Water Mdv (00030) TN Drinking Water (02819)

	Sample Acceptance Checklist for Work Order 3061147
Shipped By: Client	Temperature: 5.10° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	
Check if bottles are intact	
Check if bottles are correct	
Check if bottles have sufficient volume	
Check if samples received on ice	☑
Check if VOA headspace is acceptable	
Check if samples received in holding time.	₫
Check if samples are preserved properly	

Chain of Custody

Scheduled for: 06/05/2023

		Ochicadie	4 101. <u>90/00/2020</u>		
Client: Big Rivers Elect Reid/Green Station	tric Corporation	_ 	ctric Corporation Reid/Gree	Invoice To: Big Rivers E	Electric Corporation Reid/Green Station
Project: Green Landfill	Semiannual Well M	Station Greg Dick W104 PO Box 24 Henderson, K	Y 42419	Greg Dick PO Box 24 Henderson,	KY 42419
		Phone: <u>(270)</u>) PWS ID#:	844-5736	PO#:	*
Please Print Legibly			KT	Quote#	
Collected by (Signature):	Thy Qu	U juired information*	•	Compli	iance Monitoring? Yes No
*For composite samples		time, end time and temp(oC) at end time below:	Sample	es Chlorinated? Yes No
Influent: Start Date	Start time	End Date /	End Time	Temp (oC)	
Effluent: Start Date	Start time	End Date / A End Date	End Time	Temp (oC)	
Workorder# Da	uired information* te Collection d/yy): Time (24 hr):	Bottle and Preservative	Sample Descriptio	n Composite	
Sample ID#	·				Sample Analysis Requested
3061147-01 A <u>olf23</u>	<u> 13 </u>	Plastic 500mL pH<2 w/HNO3	1 MW-104	g/c	Thallium Tot 6020 Antimony Tot 6020 Beryllium Tot 6020 Berium Tot 6020 Berium Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Copper Tot 6020 Iron Tot 6010B Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020
-/ l-n	ls	Preservation Check: pH:			
3061147-01 В <u>(06/23</u>	1	Plastic 1L	1 MW-104	g/c	Chloride 9056 Fluoride 9056 pH (Lab) Sulfate 9056 TDS
3061147-01 C 06/23	123 0850	Plastic 500mL pH<2 w/H2SO4	1 MW-104	g/c	COD TOC
. 1		Preservation Check: pH:	<u></u>		
3061147-01 D <u>06/23/</u>	23 0856	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)		g/c	Radium 226 (sub)
3061147-01 E 06/23		Preservation Check: pH: Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	1 MW-104 Th e	1 813	60057
ſ		· · · · · · · · · · · · · · · · · · ·			
Field data collected by:	Greg Dick Sty	Date (mm/dd/yy)	06/23/23 Time (24 hr)	0850	,
рН <u>6.54</u>	_ Cond (umho) <u></u>	. <u>390</u> Res Cl (mg/L)	Tot Cl (mg/L)	Fr	ee Cl (mg/L)
Temp (oC) 16.54	or (oF)	Static Water Level	DO (mg/L)	Т	urb. (NTU)
Flow (MGD)	or (CFS)	or (g/min)			
Relinquished by: (Signate	ıre)	Received by: (Sign	alure)	Date (mm	/dd/yy) Time (24 hr)
They Out		V_ ES.	<u> </u>	06/26	1
<u>, y</u>					
PACE- Check he	ere if trip charge ap	plied to associated COC	Printed	: 5/25/2023 8:28	:41AM Page 13 of 31

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 06/05/2023

Client: Big Rivers Electric Corporation Reid/Green Station		Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green St	tation
Project: Green Landfill Semiannual Well M	Station Greg Dick W104 PO Box 24 Henderson, KY 4241	19	Greg Dick PO Box 24 Henderson,	KY 42419	
	Phone: (270) 844-57		PO#:	•	
Please Print Legibly	PWS #D#: State: パ ゾ		Quote#		
Collected by (Signature):)			iance Monitoring? Yes No	<u></u>
For composite samples please indicate begin	uired information	nd time below	Sample	es Chlorinated? Yes No _	_
			Temo (oC)		
Influent: Start DateStart timeStart time	• • •	End Time			
LAB USE ONLY *required information* Workorder # Date Collection 3061147 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative CO	Sample Description	Composite	Sample Analysis Requested	d
3061147-01 F 06/23/23 6850	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW-104	g/c '	Radium 228 (sub)	
3061147-01 G 06/23/23 0850	Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1 (Sub)	MW-104	g/c	Radium Total (sub)	
3061147-01 H 86/23/23 0850	AG 250mL pH<2 1 w/H2SO4 Preservation Check: pH:	MW-104	g/c	тос	
Preservation Check Performed by:	EO				
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)			
pH Cond (umho)	Res Cl (mg/L)	Tot Cl (mg/L) _	Fre	ee Cl (mg/L)	
Temp (oC) or (oF)	Static Water Level	DO (mg/L) _	T	urb. (NTU)	
Flow (MGD) or (CFS)	or (g/min)				
Relinquished by: (Signature) Thy Out	Received by: (Signature)		Date (mm/	/dd/yy) Time (24 hr) 23 /218	<u></u>
					

Printed: 5/25/2023 8:28:41AM

Chain of Custody

Scheduled for: 06/05/2023

Page 15 of 31

Printed: 5/25/2023 8:28:41AM

		Scheduled	101. 00/03/2023	J	alm ten ne stammenten ma mit
Client: Big Rivers Electric Co Reid/Green Station	orporation	•	tric Corporation Reid/Greer	Invoice To: Big Rivers E	Electric Corporation Reid/Green Station
Project: Green Landfill Semi	annuai Weli MW104	Station Greg Dick PO Box 24 Henderson, KY	42419	Greg Dick PO Box 24 Henderson,	KY 42419
		Phone: (270) 84 PWS ID#:	<u>4-5736</u>	PO#:	
Please Print Legibly		State: <u>K</u>	<u></u>	Quote#	**-
Collected by (Signature):	Thy Cull required	nformation*		Compl	iance Monitoring? Yes No
*For composite samples please					es Chlorinated? Yes No
Influent: Start Date	Start time	End Date /A	End Time	Temp (oC)	
Effluent: Start Date	Start time	End Date	End Time	Temp (oC)	
Workorder# Date	information* Collection Time (24 hr): Rott	le and Preservative	s in Sample Description		
Sample ID#	O06	le and Freservanive	Sample Description	n Composite	Sample Analysis Requested
3061147-01 A OL 23 23		astic 500mL pH<2 w/HNO3	MW-104	g/c	Thallium Tot 6020 Antimony Tot 6020 Beryllium Tot 6020 Barium Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Copper Tot 6020 Iron Tot 6010B Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020
	Prese	rvation Check: pH:	<u></u>		
3061147-01 B (06/23/23	0850	Plastic 1L	MW-104	g/c	Chloride 9056 Fluoride 9056 pH (Lab) Sulfate 9056 TDS
3061147-01 C <u>06/23/23</u>		w/H2SO4	MW-104	g/c	COD TOC
.1.1		ervation Check: pH :			
3061147-01 D 06/23/23	<u>-</u>	ic 1L pH<2 w/HNO3 Rad 226 (Sub)		g/c	Radium 226 (sub)
		ervation Check: pH : _			· · · · · · · · · · · · · · · · · · ·
3061147-01 E 06/23/23		tic 1L pH<2 w/HNO3 Rad 228 (Sub)		rmorneter S 1813	Senial (N 1228 (281) 190287
	Prese	ervation Check: pH :			60057
Preservation Check Performe	ed by: KED			Temp 5	7.1.℃
Field data collected by:	Dick 9hQ.	Date (mm/dd/yy) ¿	06/23/23 Time (24 hr)	0850	•
II *	•		Tot CI (mg/L)		ee CI (mg/L)
Temp (oC) 16.54 or	•		DO (mg/L)		
Flow (MGD) or					
Relinquished by: (Signature)		Received by: (Signat	ure)	Date (mm	ı/dd/yy) Time (24 hr)
They Out		V EC)	06/26	
				_	
	<u></u>				

PACE- Check here if trip charge applied to associated COC

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>06/05/2023</u>

Page 16 of 31

Printed: 5/25/2023 8:28:41AM

Client: Big Rivers Electric Corpo Reid/Green Station Project: Green Landfill Semiann		Station Greg Dick	Corporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,	Electric Corporation Reid/Green Station
•		Phone: (270) 844-57 PWS ID#:	<u> 36</u>	PO#:	-
Please Print Legibly		State: KY		Quote#	
Collected by (Signature):	required	information*			iance Monitoring? Yes No
*For composite samples please ind	icate begin time,	end time and temp(oC) at en	d time below:	Sample	es Chlorinated? Yes No
Influent: Start DateBt	art lime	End Date	End Time Te	mo loCl	
Effluent: Start DateS				emp (oC)	
LAB USE ONLY required information of the Common of the Com	ollection	ttle and Preservative oc	Sample Description	Composite	Sample Analysis Requested
	o&So Plas	stic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW-104	g/c ·	Radium 228 (sub)
	Pres	ervation Check: pH :			
3061147-01 G 06/23/23 0	Plas	stic 1L pH<2 w/HNO3 1 (Sub)	MW-104	g/c	Radium Total (sub)
	Pres	ervation Check: pH :			
3061147-01 H 86/23/23 E	850	AG 250mL pH<2 1 w/H2SO4	MW-104	g/c	тос
	Pres	ervation Check: pH : 🗸			
Preservation Check Performed b	, <u>VE</u>)			
Field data collected by:		Date (mm/dd/yy)	Time (24 hr)		
pH Cond (· umho)	Res CI (mg/L)	Tot CI (mg/L)	Fre	ee CI (mg/L)
Temp (oC) ar	(oF)	Static Water Level	DO (mg/L)	Т	`urb. (NTU)
Flow (MGD) or (CFS)	_ or (g/min)			
Retinquished by: (Signature) My Out		Received by: (Signature)		Date (mm.	/dd/yy) Time (24 hr) 23 /218
				<u></u>	

PACE- Check here if trip charge applied to associated COC

(724)850-5600

October 11, 2023

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville, KY 42431

RE: Project: 3061147-Revised Report

Pace Project No.: 30600869

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on June 30, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the August 1, 2023 report. This project was revised on October 11, 2023 to include QC sheets.

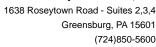
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

samantha.bayura@pacelabs.com

Samuelle Bayrue


(724)850-5622

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3061147-Revised Report

Pace Project No.: 30600869

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

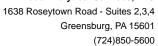
Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

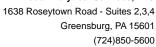

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

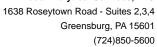


SAMPLE SUMMARY

Project: 3061147-Revised Report

Pace Project No.: 30600869

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30600869001	3061147-01	Water	06/23/23 08:50	06/30/23 09:30

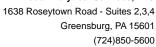

SAMPLE ANALYTE COUNT

Project: 3061147-Revised Report

Pace Project No.: 30600869

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30600869001	3061147-01	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3061147-Revised Report

Pace Project No.: 30600869

Sample: 3061147-01 PWS:	Lab ID: 3060 Site ID:	0869001 Collected: 06/23/23 08:50 Sample Type:	Received:	06/30/23 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.264 ± 0.367 (0.620) C:NA T:81%	pCi/L	07/31/23 11:59	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.533 ± 0.423 (0.846) C:85% T:81%	pCi/L	07/13/23 15:32	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.797 ± 0.790 (1.47)	pCi/L	08/01/23 12:22	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3061147-Revised Report

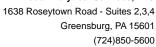
Pace Project No.: 30600869

QC Batch: 599323 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30600869001


METHOD BLANK: 2912766 Matrix: Water

Associated Lab Samples: 30600869001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.145 ± 0.175 (0.267) C:NA T:96%
 pCi/L
 07/31/23 11:59

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3061147-Revised Report

Pace Project No.: 30600869

QC Batch: 599328 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30600869001

METHOD BLANK: 2912783 Matrix: Water

Associated Lab Samples: 30600869001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.282 ± 0.287 (0.594) C:89% T:96%
 pCi/L
 07/13/23 15:28

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 3061147-Revised Report

Pace Project No.: 30600869

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

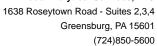
Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/11/2023 04:12 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.


(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3061147-Revised Report

Pace Project No.: 30600869

Date: 10/11/2023 04:12 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30600869001	3061147-01	EPA 903.1	599323	-	
30600869001	3061147-01	EPA 904.0	599328		
30600869001	3061147-01	Total Radium Calculation	605501		

Pace Analytical

LAB USE ONLY Results Requested By: Standard 0 Sample Intact (Y) or N Comments Requested Analysis 9130 Workorder Name: Green Landfill Semiannual Owner Received Date: 6/23/2023 Radium Total Radium 228 Date/Time 8adium 226 38633 Preserved Containers Pace Analytical Services LLC Greensburg Pt Matrix Water Received By 1638 Rosey Town Rd Suite 2,3,4 IR44-McCoy Greensburg, PA 15601 6/29/2023 Lab ID Date/Time Subcontract To: (724) 850-5615 06/23/23 08:50 Date/Time Sample Collect Type Kayla Zachary rob.whittington@pacelabs.com Pace Analytical Services, LLC Workprder: 3061147 Madisonville, KY 42409 Refeased By 825 Industrial Road 3061147-01 Item Sample ID 270-821-7375 Report To: Transfers 00 ۵

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice(y) or N This chain of custody is considered complete as is since this information is available in the owner laboratory. Custody Seal Y or (N) ပ္ Cooler Temperature on Receipt

griday, June 17, 2016 11:01:34 AM **MO#: 30600869**

Page 26 of 31

FMT-ALL-C-002rev,00 24March2009

page 1 of 1

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3061147

SENDING LABORATORY;

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Released By

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID	Comments	
Sample ID: 3061147-01	Water	Sampled:06/23/2023 08:50	Specific Method		
Radium Total (sub)		12/20/2023 08:50	EPA 904.0 Radium S	Sum (
Radium 228 (sub)		12/20/2023 08:50	EPA 904.0 Radium S	Sum C	
Radium 226 (sub)		12/20/2023 08:50	EPA 903.1		·

WO#: 30600869

PM: SMB

Date

Due Date: 07/24/23

CLIENT: PACE_44_MVKY

Released By	Date	Received By	Date
-		·	

Received By

Page 11rof 15 Page 27 of 31

Date

	DC#_Title: ENV-FRM-G Pittsburgh	BUR	8-008	8 v04	Sample! الل	Conditio 0#:3	n Upon Receipt- 0600869
Pace	Effective Date: 02/03/2023	}			PM:	SMB	Due Date: 07/24/05
Client Name:	Pace Madisor	<u>/vi)</u>	Ne			FINE PAC	E_44_MVKY
	EX DUPS DUSPS Client Der: 12 067457					r	Examined By T
-						TVas ANA	Labeled By M
	Cooler/Box Present:	s MN				⊒ Yes Mano	Temped By TM
Thermometer U					ue None	~	
	iture: Observed Temp	<u> </u>	°C	Corre	ction Factor	:_ <u>`</u>	∘C Final Temp: 1 °C
Temp should be abo	ove freezing to 6°C				pH paper	544	D.P.D. Residual Chlorine Lot#
		Vec	No	NA	1002)		D.P.D. Residual Chiornie Lot #
Comments:		Yes	140	11/4	7	- 1	
Chain of Custod	<u></u>	2	ļ	<u> </u>	2.		
Chain of Custod		3	1		2.		
<u></u>	t corrections present on COC	1	-3-		3.	*****************	
Chain of Custod	& Signature on COC: ,	-	7		4.	.,.,	
Sample Labels n		1			5.		
-Includes da		L	L				
Matrix:	sumperior of the	W	7	••			
	l within Hold Time:	17	ř—	1	6.		
	Analysis (<72hr	-	1	1	7.		
remaining):	: Altalysis (~) Elli		1				
	nd Time Requested:		1		8,		
Sufficient Volun		1		†	9.	A	
Correct Contain		7	-		10.	•	
-Pace Conta	iners Used	1					
Containers Intae	t:	7		<u> </u>	11.		
Orthophosphate				7	12.	***************************************	
	samples field filtered:			1	13.		
	s checked for dechlorination			1	14:	,	
	received for dissolved tests:	\ \		7	15:		
1	hecked for preservation:	7	1		16.		
	VOA, coliform, TOC, O&G, Radon, non-aqueous matrix				PH	رنات	
All containers n	neet method preservation	1			Initial when	TH	Date/Time of Preservation
requiremer			L	1	completed Lot# of add		FIESELAGROLI
		·	<u>,</u>		Preservativ		
8260C/D; Heads	space in VOA Vials (> 6mm)			j	17.		
624.1: Headspa	ice in VOA Vials (0mm)			7	18.		
Trip Blank Prese	ent:			7	1		seal present? YES or NO
Rad Samples Sc	reened <0.5 mrem/hr.	7			Initial when completed	TH Da	te: 6130/n3 Survey Meter SN: 1563
Comments:	<u></u>						
							<u> </u>
	72777.		****				
Ι.							

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

ยองก ВN Other ISON NCO BUDD **SPLC** Profile Number MCKN MGEN Notes **NAOV** U69V Vials T65V **Н6**ЭЛ S690 บยฯล ď **SE48** BP3N Page Plastic DEAB Bbsn BP2S บเศย NIGS ¥G5T Amber Glass USDA U£Đ∀ 306.1147 ¥C32 **HIDY** Container Codes 1 Gallon XiTISM Sample Line Item Cilent Site N O

	EZI 5g Encore	VOAK Kit Volatile Soli	I Wipe/Swab	ZPLC Siploc Bag		WT Water	SL Solid	OL Non-Aq Liquid	WP Wipe			
Plastic/Misc.	1 gallon cubitainer	1/2 gallon cubitainer	120mL coliform Na Thiosulfate	11. plastic HNO3	1L plastic unpreserved	250ml. plastic H2SO4	250mL plastic HNO3	250mt. plastic unpreserved	350mL plastic NAOH	00mL plastic H2SO4	00mL plastic unpreserved	
	GCUB	12GN	SP5T	BP1N	BP1U	BP3S	BP3N	BP3U		2	his Date: 07/24/23	
											Trio Dat	
	40mL amber VOA vial H2SO4	40mf, clear VOA vial	40ml, clear VOA vial Na Thiosulfate	40mL clear VOA vial HCl	4oz amber wide jar	4oz wide jar unpreserved	500ml, clear glass unpreserved	500mL amber glass unpreserved	8oz wide jar unnresene	General AUF SUDULOS		
Glass		VGBU	VG9T	VG9H	JGFU	WGFU	BGZU	AG2U	WGKU	. NO		
)	1 Gallon Jug with HNO3	100ml, amber glass unpreserved	100mL amber glass Na Thiosulfate	1 Gallon Jug	1L amber glass H2SO4	11. amber glass HCI	11. amber glass NA Thiosulfate	11, clear glass unpreserved	250mL amber glass H2SO4	250mL amber glass unpreserved		

AG18 AG1H

Sur

AG1T

AG5U AG5T Page 1 of 1

CLIENT PRCE_44_MVKY

Qualtrax ID: 55678

Page 29 of 31

Pace Analytical

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow.

MS/MSD 2

MS/MSt)

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date:

39.873

21-031 0.20

Spike I.D.

Spike Volume Used in MS (mil.) Spike Volume Used in MSID (mt.) MS Aliquot (1., g, F) MSD Aliquet (1, g, F) MSD Target Conc. (pCl/l., g, F) MSD Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated)

0.25 0.253 31.565 0.252 1,484

MS Target Conc.(pCl/l., g, F)

0.145 0.174 0.267 1.63 N/A Pass

M/B Counting Uncertainty: N/B MDC;

MB Numerical Performance Indicator:

MB concentration:

Method Blank Assessmen

MS/MSD Decay Corrected Spike Concentration (pCi/mt.) Sample Matrix Spike Control Assessment 7/6/2023 74125 DW Ra-226 MAR 2912766 Test Batch ID: Matrix: MB Sample ID Date: Analyst

MSD Aliquet (1, g, F):	MSD Target Conc. (pCl/l., g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (carculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L. g. F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCl/l., g. F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCt/l., g. F);	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
			z	LCSD74125															
N'A	Pass		LCSD (Y or N)?	LCS74125	7/31/2023	21-031	39.871	0.10	0.802	4.975	0.234	5.435	1.026	0.86	109.26%	N/A	Pass	133%	73%
MB Status vs Numerical Indicator.	MB Status vs. MDC:		Laboratory Control Sample Assessment		Count Date:	Spike 1.0.:	Spike Concentration (pCl/mL):	Volume Used (mL):	Aliquot Votume (L. g. F):	Target Conc. (pCl/L, g, F):	Uncertainty (Catculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCl/L, g, F):	Numerical Performance Indicator:	Percent Recovery:	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:

	30600923008	30600923009	30600923010	26.696	3.472	19.685	2.916	3.031	30.80%	N/A	Pass	32%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.B.	Sample MS I.D.	Sample MSD 1.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result.	Matrix Spike Duplicate Result Counting Uncertainty (pG/t., g, F);	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD;	% RPD Limit:
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.							

Sample Result (publ., g. F).
Sample Result (publ., g. F).
Sample Duplicate Result (publ., g. F).
Sample Duplicate Result (publ., g. F).
Are sample and/or duplicate results below RL?

Sample 1.D.: Duplicate Sample 1.D.

Duplicate Sample Assessment

See Below ##

Duplicate RPD:

Duplicate Numerical Performance Indicator:

Duplicate Status vs Numerical Indicator: Ouplicate Status vs RPD:

Pass MSD Low-136% 71%

0.118 0.517 26.696 3.472 19.685 2.916 2.565 4.172 84.20% 61.73%

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

MSO how nanoted-results reported base of on acceptable THE BEST OF CREETE DASS. The batch is reportable. The matrix spike result indicates a possible bias for this sample only and may not be

O Ra-226_74125_26_WC_RP.xis Ra-226 (ENV-FRM-GBUR-0294 02).xis Res on this analytical batch. Reprep the samp

ROYA ROS SCH

Ra-226 NELAC OC Printed; 8/1/2023 09:17

Page 30 of 31

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Pace Analytical

Quality Control Sample Performance Assessment

7/10/2023 74126 WT Test Analyst: Date: Worklist: Matrix:

Method Blank Assessmen

2912783 0.282 0.287 0.594 1.92 Pass M/B 2 Sigma CSU: MB MDC: MB Sample 1D MB concentration: MB Numerical Performance Indicator: MB Status vs Numerical Indicator MB Status vs. MDC

MS/MSD 2 30600923008 30600923009 30600923010 Waming 6/24/2023 22-040 32.145 0.20 1.252 3.477 1.440 23.114 4.781 25.253 5.146 -2.213 -1.350 77.17% 86.21% MS/MSD 0.20 0.253 25.448 0.252 25.556 1.247 Sample J.D. Sample MS I.D. MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits: MSD Target Conc. (pCirl., g. F): MS Spike Uncertainty (calculated): x Spike Duplicate Result 2 Sigma CSU (pCill., g. F): MS Numerical Performance Indicator: MS Status vs Numerical Indicator: MSD Status vs Numerical Indicator: Sample Collection Date: Sample MSD I.D. Spike i.D. MS/MSD Decay Corrected Spike Concentration (pCifmt.): Spike Voiume Used in MS (mt.) MS Aliquot (L, g, F): MS Target Conc.(pCifl., g, F); MSD Spike Uncertainty (calculated): Sample Result Sample Result 2 Sigma CSU (pCi/L. g. F) Sample Matrix Spixe Result: Matrix Spike Result 2 Sigma CSU (pCirl., g, f) Sampie Matrix Spike Duplicate Result MSD Numerical Performance Indicator. MS Percent Recovery MSD Percent Recovery MS Status vs Recovery MSD Status vs Recovery Spike Volume Used in MSD (mt.) Sample Matrix Spike Control Assessment

ol Sample Assessment	LCSD (Y or N)?	z	
	LCS74126	LCSD74126	
Court Date:	7/13/2023		
Spike LD.:	22-040		
Decay Corrected Spike Concentration (pCl/mL):	31,943		
Volume Used (mL.):	0.10		
Aliquot Volume (i. g. F);	0.802		Matrix
Target Conc. (pCi/L, g, F):	3.985		
(Incertainty (Calculated)):	0.195		
Result (pCi/L, g, F);	4.859		
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	1.080		
Numerical Performance Indicator:	1.56		
Percent Recovery:	121.91%		
Status vs Numerical Indicator.	N/A		
Status vs Recovery:	Pass		
Upper % Recovery Limits:	135%		
Lower % Recovery Limits:	%09		

aboratory Control Sample Assessment

		•										
	30600923008	30600923009	30600923010	23.114	4.781	25.253	5,146	-0.897	9.91%	Pass	Pass	36%
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample L.D.	Sample MS LD.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result 2 Sigma CSU (pCill., g, F).	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, f');	Duplicate Numerical Performance Indicator.	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit:

other than LCSACSD in Enter Duplicate

Duplicate Sample Result (pCift., g, F): Sample Result (pCift., g, F): Sample Result 2 Sigma CSU (pCift., g, F): Sample Duplicate Result (pCift., g, F):

sample IDs if

Sample 1.D.:

Duplicate Sample Assessment

the space below

See Selow 非

Duplicate RPD:

Duplicate Status vs RPD: % RPD Limit:

Sample Duplicate Result 2 Sigma CSU (pCirl., g. F):

Are sample and/or duplicate results below RL?

Duplicate Numerical Performance Indicator: Duplicate Status vs Numerical Indicator: ## Evaluation of duplicate precision is not applicable if either the sampie or duplicate results are below the MDC.

Comments:

Ra-228 NELAC DW2 Printed: 7/14/2023 2:32 PM

Ra-228_74126_25_WC_RP Ra-228 (ENV-FRM-GBUR-0295 02).xls

September 18, 2023

Mr. Chris Hoglund Burn & McDonnell 9450 Ward Parkway Kansas City, MO 64114

RE: Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Dear Mr. Hoglund:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses were subcontracted outside of the Pace Network. The test report from the external subcontractor is attached to this report in its entirety.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

Revised Report: Issued to replace the report dated 7/14/23. Issued to report 6010 total Arsenic results for samples -003, -005, -007 & -009 per client request. kh091523

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kenneth Hunt kenneth.hunt@pacelabs.com (317)228-3100

Project Manager

Enclosures

CERTIFICATIONS

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Pace Analytical Services Indianapolis

7726 Moller Road, Indianapolis, IN 46268

Illinois Accreditation #: 200074

Indiana Drinking Water Laboratory #: C-49-06

Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226 Kentucky WW Laboratory ID #: 98019

Michigan Drinking Water Laboratory #9050

Ohio VAP Certified Laboratory #: CL0065

Oklahoma Laboratory #: 9204 Texas Certification #: T104704355

Wisconsin Laboratory #: 999788130

USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50348165001	MW-2	Water	06/24/23 07:50	06/27/23 10:05
50348165002	MW-2 (0.20 um)	Water	06/24/23 07:50	06/27/23 10:05
50348165003	MW-105	Water	06/24/23 12:20	06/27/23 10:05
50348165004	MW-105 (0.20 um)	Water	06/24/23 12:20	06/27/23 10:05
50348165005	MW-106S	Water	06/24/23 11:30	06/27/23 10:05
50348165006	MW-106S (0.2 um)	Water	06/24/23 11:30	06/27/23 10:05
50348165007	MW-106D	Water	06/24/23 10:00	06/27/23 10:05
50348165008	MW-106D (0.2 um)	Water	06/24/23 10:00	06/27/23 10:05
50348165009	DUP	Water	06/24/23 10:30	06/27/23 10:05
50348165010	DUP (0.20 um)	Water	06/24/23 10:30	06/27/23 10:05

SAMPLE ANALYTE COUNT

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50348165001	MW-2	EPA 6010	JPK	1	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 3500-Fe D#4	MMS	1	PASI-I
50348165002	MW-2 (0.20 um)	EPA 6020	MGM	1	PASI-I
50348165003	MW-105	EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 3500-Fe D#4	MMS	1	PASI-I
50348165004	MW-105 (0.20 um)	EPA 6020	MGM	1	PASI-I
50348165005	MW-106S	EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
50348165006	MW-106S (0.2 um)	EPA 6020	MGM	1	PASI-I
50348165007	MW-106D	EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 3500-Fe D#4	MMS	1	PASI-I
50348165008	MW-106D (0.2 um)	EPA 6020	MGM	1	PASI-I
50348165009	DUP	EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 3500-Fe D#4	MMS	1	PASI-I
50348165010	DUP (0.20 um)	EPA 6020	MGM	1	PASI-I

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0348165001	MW-2					
EPA 6010	Iron	2580	ug/L	100	07/06/23 01:55	
EPA 6020	Arsenic, Dissolved	6.5	ug/L	1.0	07/05/23 17:51	
SM 3500-Fe D#4	Iron, Ferric	1.2	mg/L	0.20	07/12/23 15:03	N2
0348165002	MW-2 (0.20 um)					
EPA 6020	Arsenic, Dissolved	5.8	ug/L	1.0	07/05/23 18:18	
0348165003	MW-105					
PA 6010	Arsenic	15.3	ug/L	10.0	07/06/23 02:01	
EPA 6010	Iron	38200	ug/L	100	07/06/23 02:01	
EPA 6020	Arsenic, Dissolved	14.0	ug/L	1.0	07/05/23 18:22	
SM 3500-Fe D#4	Iron, Ferric	34.9	mg/L	0.20	07/12/23 15:03	N2
0348165004	MW-105 (0.20 um)					
EPA 6020	Arsenic, Dissolved	13.8	ug/L	1.0	07/05/23 18:26	
0348165005	MW-106S					
EPA 6010	Arsenic	60.7	ug/L	10.0	07/06/23 02:03	
EPA 6010	Iron	9180	ug/L	100	07/06/23 02:03	
PA 6020	Arsenic, Dissolved	55.6	ug/L	1.0	07/05/23 18:38	
0348165006	MW-106S (0.2 um)					
PA 6020	Arsenic, Dissolved	59.2	ug/L	1.0	07/05/23 18:42	
0348165007	MW-106D					
EPA 6010	Iron	444	ug/L	100	07/06/23 02:05	
EPA 6020	Arsenic, Dissolved	1.1	ug/L	1.0	07/05/23 18:46	
0348165008	MW-106D (0.2 um)					
EPA 6020	Arsenic, Dissolved	1.1	ug/L	1.0	07/05/23 18:58	
0348165009	DUP					
EPA 6010	Iron	446	ug/L	100	07/06/23 02:07	
EPA 6020	Arsenic, Dissolved	1.2	ug/L	1.0	07/05/23 19:02	
0348165010	DUP (0.20 um)					
PA 6020	Arsenic, Dissolved	1.3	ug/L	1.0	07/05/23 19:06	

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Date: 09/18/2023 09:48 AM

Sample: MW-2	Lab ID: 5034	8165001	Collected: 06/24/2	23 07:50	Received: 06	5/27/23 10:05 N	latrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytical	Services -	Indianapolis					
Iron	2580	ug/L	100	1	06/29/23 09:03	07/06/23 01:55	7439-89-6	
6020 MET ICPMS, Dissolved	Analytical Meth Pace Analytical		20 Preparation Met	hod: EP	A 200.2			
Arsenic, Dissolved	6.5	ug/L	1.0	1	07/03/23 18:15	07/05/23 17:51	7440-38-2	
Iron, Ferric (Calculation)	Analytical Meth Pace Analytical							
Iron, Ferric	1.2	mg/L	0.20	1		07/12/23 15:03	20074-52-6	N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Date: 09/18/2023 09:48 AM

Sample: MW-2 (0.20 um)	Lab ID: 503	48165002	Collected: 06/24/2	23 07:50	Received: 06	6/27/23 10:05	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS, Dissolved	Analytical Met	hod: EPA 602	20 Preparation Meth	nod: FPA	200.2				
0020 WILT TOT WIS, DISSOIVED	7 y oa		-o opa.aoo	.00 , ,	200.2				
0020 MET ICI MO, DISSOIVEU	Pace Analytica		•	100. 217	200.2				

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: MW-105	Lab ID: 5034	8165003	Collected: 06/24/2	23 12:20	Received: 06	6/27/23 10:05 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metho	od: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytical	Services -	Indianapolis					
Arsenic	15.3	ug/L	10.0	1	06/29/23 09:03	07/06/23 02:01	7440-38-2	
Iron	38200	ug/L	100	1	06/29/23 09:03	07/06/23 02:01	7439-89-6	
6020 MET ICPMS, Dissolved	Analytical Metho	od: EPA 60	20 Preparation Met	hod: EP	A 200.2			
	Pace Analytical	Services -	Indianapolis					
Arsenic, Dissolved	14.0	ug/L	1.0	1	07/03/23 18:15	07/05/23 18:22	7440-38-2	
Iron, Ferric (Calculation)	Analytical Methor							
Iron, Ferric	34.9	mg/L	0.20	1		07/12/23 15:03	20074-52-6	N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: MW-105 (0.20 um)	05 (0.20 um) Lab ID: 50348165004			3 12:20	Received: 06	5/27/23 10:05 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS, Dissolved	•		20 Preparation Meth	nod: EPA	200.2			
	Pace Analytica	al Services -	Indiananolis					
	. 4007	ai 001 11000	maianapono					

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: MW-106S	Lab ID: 5034	48165005	Collected: 06/24/2	23 11:3	0 Received: 06	/27/23 10:05 N	latrix: Water	
Comments: • The Ferric Iron cond	entratin could not be	calculated as	the ferrous Iron fie	eld read	ding couldn't be su	pplied. kh07112	3	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3010			
	Pace Analytica	l Services - Ir	ndianapolis					
Arsenic	60.7	ug/L	10.0	1	06/29/23 09:03	07/06/23 02:03	7440-38-2	
Iron	9180	ug/L	100	1	06/29/23 09:03	07/06/23 02:03	7439-89-6	
6020 MET ICPMS, Dissolved	Analytical Meth	nod: EPA 602	0 Preparation Meth	nod: EF	PA 200.2			
	Pace Analytica	l Services - Ir	ndianapolis					
Arsenic, Dissolved	55.6	ug/L	1.0	1	07/03/23 18:15	07/05/23 18:38	7440-38-2	

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Date: 09/18/2023 09:48 AM

Sample: MW-106S (0.2 um) Lab ID: 50348165006 Collected: 06/24/23 11:30 Received: 06/27/23 10:05 Matrix: Water DF CAS No. **Parameters** Results Units Report Limit Prepared Analyzed Qual Analytical Method: EPA 6020 Preparation Method: EPA 200.2 6020 MET ICPMS, Dissolved Pace Analytical Services - Indianapolis Arsenic, Dissolved 59.2 07/03/23 18:15 07/05/23 18:42 7440-38-2 ug/L 1.0

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: MW-106D	Lab ID: 5034	8165007	Collected: 06/24/2	23 10:00	Received: 06	6/27/23 10:05 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
	Pace Analytical	Services -	Indianapolis					
Arsenic	ND	ug/L	10.0	1	06/29/23 09:03	07/06/23 02:05	7440-38-2	
Iron	444	ug/L	100	1	06/29/23 09:03	07/06/23 02:05	7439-89-6	
6020 MET ICPMS, Dissolved	Analytical Meth	od: EPA 60	20 Preparation Met	hod: EP	A 200.2			
	Pace Analytical	Services -	Indianapolis					
Arsenic, Dissolved	1.1	ug/L	1.0	1	07/03/23 18:15	07/05/23 18:46	7440-38-2	
Iron, Ferric (Calculation)	Analytical Meth							
	Pace Analytical	Services -	Indianapolis					
Iron, Ferric	ND	mg/L	0.20	1		07/12/23 15:03	20074-52-6	N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: MW-106D (0.2 um)	Lab ID: 503	Collected: 06/24/2	23 10:00	Received: 06	6/27/23 10:05 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS, Dissolved	•		20 Preparation Meth	nod: EPA	A 200.2			
	Pace Analytica	al Services -	Indianapolis					

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: DUP	Lab ID: 5034	8165009	Collected: 06/24/2	23 10:30	Received: 06	6/27/23 10:05 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Met	hod: EP	A 3010			
	Pace Analytical	Services -	Indianapolis					
Arsenic	ND	ug/L	10.0	1	06/29/23 09:03	07/06/23 02:07	7440-38-2	
Iron	446	ug/L	100	1	06/29/23 09:03	07/06/23 02:07	7439-89-6	
6020 MET ICPMS, Dissolved	Analytical Meth	od: EPA 60	20 Preparation Met	hod: EP	A 200.2			
	Pace Analytical	Services -	Indianapolis					
Arsenic, Dissolved	1.2	ug/L	1.0	1	07/03/23 18:15	07/05/23 19:02	7440-38-2	
Iron, Ferric (Calculation)	Analytical Meth Pace Analytical							
Iron, Ferric	ND	mg/L	0.20	1		07/12/23 15:03	20074-52-6	N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Sample: DUP (0.20 um)	Lab ID: 503	Collected: 06/24/2	23 10:30	Received: 06	6/27/23 10:05 N	fatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS, Dissolved	,		20 Preparation Meth	nod: EPA	A 200.2			
	Pace Analytic	al Services -	Indianapolis					

Arsenic

Date: 09/18/2023 09:48 AM

Iron

QUALITY CONTROL DATA

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

QC Batch: 741447 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50348165001, 50348165003, 50348165005, 50348165007, 50348165009

METHOD BLANK: 3400522 Matrix: Water

Associated Lab Samples: 50348165001, 50348165003, 50348165005, 50348165007, 50348165009

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed ND 10.0 07/06/23 01:11 ug/L ND 100 07/06/23 01:11 ug/L

LABORATORY CONTROL SAMPLE: 3400523

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 1000 1010 101 80-120 ug/L Iron 10000 10100 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3400524 3400525 MS MSD 50348126008 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Arsenic ug/L <4.1 1000 1000 1020 1040 102 104 75-125 2 20 Iron 344 10000 10000 10100 10400 98 100 75-125 3 20 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

QC Batch: 742060 Analysis Method: EPA 6020

QC Batch Method: EPA 200.2 Analysis Description: 6020 MET Dissolved

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50348165001, 50348165002, 50348165003, 50348165004, 50348165005, 50348165006, 50348165007,

50348165008, 50348165009, 50348165010

METHOD BLANK: 3403786 Matrix: Water

Associated Lab Samples: 50348165001, 50348165002, 50348165003, 50348165004, 50348165005, 50348165006, 50348165007,

50348165008, 50348165009, 50348165010

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Arsenic, Dissolved ug/L ND 1.0 07/05/23 17:35

LABORATORY CONTROL SAMPLE: 3403787

Date: 09/18/2023 09:48 AM

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Arsenic, Dissolved ug/L 40 39.4 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3403788 3403789

MS MSD

50348165001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 6.5 20 Arsenic, Dissolved 40 40 46.8 46.8 101 101 75-125 0 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

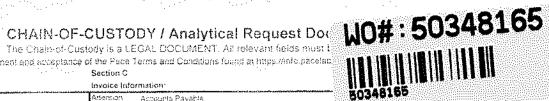
TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/18/2023 09:48 AM

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE


Project: BREC Sebree Station Green CCR

Pace Project No.: 50348165

Date: 09/18/2023 09:48 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50348165001	MW-2	EPA 3010	741447	EPA 6010	742399
50348165003	MW-105	EPA 3010	741447	EPA 6010	742399
50348165005	MW-106S	EPA 3010	741447	EPA 6010	742399
50348165007	MW-106D	EPA 3010	741447	EPA 6010	742399
50348165009	DUP	EPA 3010	741447	EPA 6010	742399
50348165001	MW-2	EPA 200.2	742060	EPA 6020	742319
50348165002	MW-2 (0.20 um)	EPA 200.2	742060	EPA 6020	742319
50348165003	MW-105	EPA 200.2	742060	EPA 6020	742319
50348165004	MW-105 (0.20 um)	EPA 200.2	742060	EPA 6020	742319
50348165005	MW-106S	EPA 200.2	742060	EPA 6020	742319
50348165006	MW-106S (0.2 um)	EPA 200.2	742060	EPA 6020	742319
50348165007	MW-106D	EPA 200.2	742060	EPA 6020	742319
50348165008	MW-106D (0.2 um)	EPA 200.2	742060	EPA 6020	742319
50348165009	DUP	EPA 200.2	742060	EPA 6020	742319
50348165010	DUP (0.20 um)	EPA 200.2	742060	EPA 6020	742319
50348165001	MW-2	SM 3500-Fe D#4	743334		
50348165003	MW-105	SM 3500-Fe D#4	743334		
50348165007	MW-106D	SM 3500-Fe D#4	743334		
50348165009	DUP	SM 3500-Fe D#4	743334		

ection /		Section B				wledgins	ent and s	kcoeptanoe	Şe	ection C			d Cons	litions !	ರಾಣ್ಯದ ಭ	at hit	(g.p.//is	nfe.p	acelab _.					11				
	Chent Information:	Required Pro								voice inf											1348							
omaany			Magic	end Ch	115				—	nersion onipany f			Payat											:::::::::		Signatura di	Allaharra .	
000955 00000 0	9450 Ward Parkway day MO 64114	Сору То								daress	A.T. 1. 2.2	200	15 Q (V)	.00.000		*********					-		Requ	ilato	y Agen	çγ		
	aty MQ 54114 chaglens@pumsined.com	Purchase On	!€! #							ace Quoti	е		0	1942023				~			-				7 1			
usaa.	785-317-1747 {Fax	Project Name		нчес з	Sebjee	Stando (sean CC	R Landia	P	ase Proje	ct Mar	nager		ennevi		692	acela	0.5					Sta	to J L	ocatio			
equeste	od Đượi Date Stangard YAT	Project #							Pέ	ace Profi	ilo#:	91	06 Li	ne 4										К	Υ			
-											-							eque	sted A	naiysis	Filtere	d (Y/N)	,					
			19 641	Cuccinpo		COLLE	Catio	***************************************	.,		F	resei	vative	es	2.		3'	,	Y Y				000000					
#1.	SAMPLE ID 500 500 500 500 500 500 500 500 500 50	28 28	o paek nasti	PKG (G-G) 34	STAI	R5	j: j		SUMPATIONISCEOUR	2000					Analyses Test		Arsenic (8000-10-45)	Assence 9039 (0.2)	Venet Bent Centularien.		Fer	d Data f rous Iro mg/L	n	s Choope Fyn				
TEM:	Sampre lds must be uraque	111,14	WINEX CODE	S lowe	SATE	TRAG	SARE	7.886	SALES SELAS	S S S S S S S S S S	1080 180 180 180 180 180 180 180 180 180	9	E P	Marchine	Ana	10381 AS	D.55 (*)	T Last	Ferrac Br			(Fe ²⁺)		Jegogay.				
1	MVV-2		WI	(+ <u>)</u> ()	14/23	(7 50										<u>,</u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		x x		1.	33				101		
2	MW-2 (0.20 um)		WY	<u> 6 6</u>	1471	<u> 1755</u>		ļ <u>.</u>			 					-	+	X						-		02		
	MW-105	·	WH			1736					-	-	-		3		×	<u> </u>	x x		3	5.4	_	-		03		
4997.7	MW-105 (0.26 um)	·····	MI.			1230					-	_					-i	<u> х</u>						}.	·	<u> </u>	r acif -	~
	MW-106S		WT I		77	1630			- -							À	X		X X		1	++) <u> </u>	1 - 4 6/24	123
*****	MW-106S (0.2 um)		<u>wi</u>			1134						-					×	×	x y			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ĺ	<u>~ w</u>	30=		
	MW-106D MW-106D (0.2 um)		375		24/21 24/23				- 15	-		<u> </u>					<u> </u>	ix.	ř-ř-			······································		-		00 08		
	DUP	\mres	VIII		24/23	(03)	<u> </u> 								7	×	×	1	хх		 ().	. 4 <i>1</i>				09	,	
	DUP (0.20 um)		1].									>:								10		
11																								-			··	
12	o - sirelb shinistafiqishaa yarabada baada baada shinistafiyo oo Ed biiliy diisanda qoo baada baaqaada baada ba'iy ba'inin shaad	ny afan'ny a <u>ng ang ang ang ang ang ang</u>	أبيبا			والمناوة والمالية	Later to the six of the				*****						بيل.			_	*************	-						
	ADDITIONAL COMMENTS					FFILIATE		DATE	្នា	127			A	CCEPTE	SBY	AF PAL	IATIO			1	ATE	TIME			AMPLE	CONU	IONS	
	े 390287 डे1390287	1	pe	80	ام مهدد ه	-/~		6/26/2	_	1230		<u>_</u>	7	Do	<u> </u>			****		6	26	, 1530		-		 	-	
	1460057			~ ()		LEIC 2	X	19-284				M	in	el)	fez	ŲZ	Ju.		Pari	2 G/	27/2	\$1005	0.0	0	¥	}		У
								AND SICH			~~~		ryflywn (ei fe		naga a agus an an an an an an an an an an an an an			,	destrong garden	•				į	. <u></u> 8			<i>f</i>
	ting a single of the first time of the contract of the contrac					SIG	TATURE 2 YO	SAMPL	(() EB:	<u> 1964.</u> 2	<u>) </u>						DAT	is si	gned: 5, <u>7-2</u>	-27			- AMILIA				Pa	ige 20

F-IN-Q-290-rev.23, 26Jun2023

Pace

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	DVH	6/x	CH/23 12:38			
1. Courier: □FED EX MUPS □CLIENT □PACE				[] Bubble	Bags	
2. Custody Seal on Cooler/Box Present: Yes (If yes)Seals Intact: Yes No (leave blank			U None	Other		<u></u>
		vere breser	6. Ice Type: Wet Blue None	_		
3. Thermometer: 12345678 ABCDI	ErGH				r\	
4. Cooler Temperature(s): -0.10/0.00 [(Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECEI	VED (use Com	nments below	7. If temp. is over 6°C or under 0°C, was the PM Cooler temp should be above free			□ No
Alic	tiscrepanci	es will be	written out in the comments section below.	<i>-</i>		
	Yes	No		Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR, CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/base preservation have been pH CHECKED?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCi. Orcice:			
Short Hold Time Analysis (48 hours or less)? Analysis:			HNO3 (×2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any iten-conformance to pH recommendations will be noted on the container count form			
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:			Present	<u>Absent</u>	N/A
			Residual Chlorine Check (SVOC 625 Pest/PCB 608)			سسن
Rush TAT Requested (4 days or less):		√	Residual Chlorine Check (Total/Amenable/Free Cyanide)			
Custody Signatures Present?	V		Headspace Wisconsin Sulfide?			
Containers Intact?			Headspace in VOA Vials (>6mm): See Containter Count form for details	Present	Absent	No VOA VIAIS SANT
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	V		Trip Blank Present?			
Extra labels on Terracore Vials? (soils only)		MA	Trip Blank Custody Seals?			رسن ا
COMMENTS:						
				*		
					····	
				***************************************	····	
				••••		
					-	Page 21 of 32

co	C P/	AGE_		of _									Sam	ple	Con	tain	er C	oun	t			••••				+	ر × : ابران		જ ૧ ≥ ત્ર્	à RED d	lot on cor	itainers
			MeOrk (onty)																					· · ·		7	25 25 26 26 26 27 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	2	hat are	s but of a	Sodium Sydroxide Green	Spoium Hydroxide/ ZivAc
			\$B\$ DI	1 2 2 2 2					•	AME	BER G	LASS						PL	AST.	IC ···					4TQ	1ER	II.		Red	Yefow	Green	Błack
COC Line item	WGFU	WGKU BG1U		DG9H VG9H	VOA VIAL HS >6mm	VG9U	VG9T	AGOU	AG1H	AG1U	AG3U	AG3S	AG3SF	AG3B	BP1U	BP1N	BP2U	вези	BP3N	ВРЗЕ	врзѕ	вьзв	BP3Z	ССЗН	CG3F	Syringe Kit	20	Matrix		H2SO4	1	NaOH//Zr Ac >9
1																			1	1							1	W		{		
2						!																	}									
3																			ł							ļ	1					
4																																<u> </u>
5									}	<u> </u>		ļ		ļ	ļ <u></u>				1							<u> </u>	İ			ļ	ļ	ļ
6						<u> </u>					ļ		ļ	ļ	ļ		<u> </u>	<u> </u>				} 	<u> </u>		<u> </u>	ļ	ļ			 		ļ
7										}	ļ	ļ		<u> </u>					1_						<u> </u>	ļ		<u> </u>				-
8									<u> </u>							ļ				Ц_			ļ		ļ	ļ	<u> </u>				ļ	ļ
9		ļ					<u> </u>	ļ	ļ			ļ	ļ	ļ	ļ					Ш					ļ	ļ		_		ļ	ļ	
10				<u> </u>	1			<u> </u>	<u> </u>				ļ	ļ				<u> </u>	ļ	1]	ļ				ļ	ļ	V	¥	ļ		ļ
11			<u> </u>			<u> </u>	ļ 		ļ		ļ			<u> </u>	ļ	ļ	ļ	ļ	ļ					<u> </u>	<u> </u>		ļ	ļ				<u> </u>
12				<u> </u>	<u> </u>		<u> </u>				1						ļ 		ļ			_		<u> </u>	<u> </u>	<u></u>	<u> </u>			<u>i</u>		
1	· ·											100																				

Ços	ntainer	Codes

	Glass										
DG9H	40mL HC! amber voa vial	BG1T	glass								
DG9P	40mL TSP amber vial	BG1U	1L unpreserved glass -								
DG9S	40mL H2SO4 amber viai	CG3U	250mL Unpres Clear Glass								
DG97	40mL Na Thio amber vial	AG0U	.100mL unpres amber glass								
DG9U	40mL unpreserved amber vial	AG1H	1L HCI amber glass								
VG9H	40mi. HCi çlear vial	AG1S	1L H2SO4 amber glass								
VG9T	40mL Na Thio, clear vial	AG1T	1t, Na Thiosulfate amber glass								
VG9U	40mL unpreserved clear vial	AG1U	Hiter unpres amber glass								
1	40mL w/hexane wipe vial	AG2N	500mt HNO3 amber glass								
WGKU	8oz unpreserved clear jar	AG2S	500mi, H2SO4 amber glass								
WGFU	4oz ciear sori jar	AG2U	500mt, unpres amber glass								
JGFŲ	4oz unpreserved amber wide	AG3S	250mL H2SO4 amber glass								
ССЗН	250mt_ clear glass HCl	AG3SF	250m: H2SiO4 amb glass -field filtered								
CG3F	250mt, clear glass HCl, Field Filter		250mL unpres amber glass								
BG3H	1L HCl ciear glass	AG3B	250ml. NaOH amber glass								
8G1S	1L H2SO4 clear giass										

			\$****						
			Plastic						
81°18	1L NaOH plastic	BP4U	125mL unpreserved plastic						
BPIN	1L HNO3 plastic	894N	125mL HNO3 plastic						
5215	1L H2SO4 plastic	8P4S	125mL H2SO4 plastic						
8P1U	1L unpreserved plastic		Miscellaneous						
BP1Z	1L NaOH, Zn, Ac		MISCEllatieous						
BP2N	500mL HNO3 plastic	Syring	ge Kit LL Cr+6 sampling kit						
вехс	500mŁ NaOH plastic	ZPLC	Ziploc Bag						
BP2S	500mL H2SO4 plastic	R	Terracore Kit						
8PZŲ	500mL unpreserved plastic	SP5T	120mL Coliform Sodium Thiosulfate						
8P2Z	500ml, NaOH, Zn Ac	GN	General Container						
3P38	250mL NaOH plastic	U	Summa Can (air sample)						
вазм	250mL HNO3 plastic	WT	Water						
BP3F	250mL HNO3 plastic-field filtered	SŁ	Solid						
8P3U	250ml, unpreserved plastic	OL:	Oil						
BP3S	250mL H2SO4 plastic	NAL	Non-aqueous liquid						
8P3Z	250mL NaOH, ZnAc plastic	WP	Wipe						
вРз≅	250ml, Unpres FF SO4/OH buffer								

Page 22 of 32

July 14, 2023

Pace Analytical Services – Indianapolis ATTN: Kenneth Hunt 7726 Moller Road Indianapolis, IN 46268 Kenneth.Hunt@pacelabs.com

RE: Project PAC-IN2302 Client Project: 50348165

Dear Kenneth Hunt.

On June 28, 2023, Brooks Applied Labs (BAL) received five (5) water samples. The samples were logged-in for the analyses of arsenic speciation [As(III) and As(V)] according to the chain-of-custody form. All samples were received and stored according to BAL SOPs and EPA methodology.

All samples were field filtered.

Arsenic Speciation Quantitation by IC-ICP-CRC-MS

Arsenic speciation was performed by ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Arsenic species are first chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS). For more information on this determinative technique, please visit the Interference Reduction Technology section on our website.

It should be noted that all Brooks Applied Labs, LLC methods, standard operating procedures, inventions. ideas, processes, improvements, designs, and techniques included or referred to therein, must be considered and treated as Proprietary Information, protected by the Washington State Trade Secret Act, RCW 19.108 et seq., and other laws. All Proprietary Information, written or implied, will not be distributed, copied, or altered in any fashion without prior written consent from Brooks Applied Labs, LLC. All Proprietary Information (including originals, copies, summaries, or other reproductions thereof) shall remain the property of Brooks Applied Labs, LLC at all times and must be returned upon demand. Furthermore, products presented in this document may be protected by Federal Patent laws and infringement will be subject to prosecution in accordance with Title 35 US Code 271.

In instances where the native sample result and/or the associated duplicate (DUP) result were below the MDL the RPD was not calculated (N/C).

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOP(s), and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the Sample Results page for sample-specific MDLs, MRLs, and other details.

www.brooksapplied.com

All data was reported without further qualification and all other associated quality control sample results met the acceptance criteria.

BAL verifies that the reported results of all analyses for which the laboratory is accredited meet the requirements of the accrediting body, unless otherwise noted in the report narrative. For more information regarding accreditations please see the *Report Information* and *Batch Summary* pages. This report must be used in its entirety for interpretation of results.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Amy Goodall

Project Manager Brooks Applied Labs

email@brooksapplied.com

Amy Soodalf

Page 2 of 10 Page 24 of 32

BAL Report 2306474 Client PM: Kenneth Hunt Client Project: 50348165

Report Information

General Disclaimers

Test results are based solely upon the sample submitted to Brooks Applied Labs in the condition it was received . This report shall not be reproduced or copied, except in full, without written approval of the laboratory. Brooks Applied Labs is not responsible for the consequences arising from the use of a partial report.

Laboratory Accreditation

BAL maintains accreditation with various state and national agencies for select test methods. For a current list of BAL accreditations, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/. The reported analyte/matrix/method combination shall be considered outside BAL's scopes of accreditation unless otherwise identified as ISO, TNI, or ISO, TNI in the tables. It is the responsibility of the client to verify whether a specific accreditation is required for the intended data use.

ISO: ISO/IEC 17025:2017 accredited test method. Issued by ANSI National Accreditation Board (ANAB), #ADE-1447.02.

TNI: NELAP accredited test method. Issued by the State of Florida Department of Health, #E87982.

ISO,TNI: Test method is accredited under both the ISO/IEC 17025:2017 and NELAP accreditations referenced above.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

- Ε An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation. Н
- Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- Estimated value. A full explanation is presented in the narrative. **J-1**
- Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation. M
- Ν Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- Rejected, unusable value. A full explanation is presented in the narrative. R
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Χ
- Ζ Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

BAL Report 2306474 Client PM: Kenneth Hunt

Client Project: 50348165

Sample Information

Sample	Alias	Lab ID	Report Matrix	Type	Sampled	Received
MW-2	50348165001	2306474-01	Water	Sample	06/24/2023	06/28/2023
MW-105	50348165003	2306474-02	Water	Sample	06/24/2023	06/28/2023
MW-106S	50348165005	2306474-03	Water	Sample	06/24/2023	06/28/2023
MW-106D	50348165007	2306474-04	Water	Sample	06/24/2023	06/28/2023
DUP	50348165009	2306474-05	Water	Sample	06/24/2023	06/28/2023

Batch Summary

Analyte	Lab Matrix	Method	Accred.	Prepared	Analyzed	Batch	Sequence
As(III)	Water	SOP BAL-4100	ISO,TNI	07/06/23	07/07/23	B231616	S230671
As(V)	Water	SOP BAL-4100	ISO.TNI	07/06/23	07/07/23	B231616	S230671

BAL Report 2306474

Client PM: Kenneth Hunt Client Project: 50348165

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
MW-2, 503481	65001									
2306474-01	As(III)	Water	D	5.16		0.200	1.05	μg/L	B231616	S230671
2306474-01	As(V)	Water	D	1.16		0.500	1.05	μg/L	B231616	S230671
MW-105, 50348	8165003									
2306474-02	As(III)	Water	D	7.30		0.200	1.05	μg/L	B231616	S230671
2306474-02	As(V)	Water	D	6.95		0.500	1.05	μg/L	B231616	S230671
MIN 4060 F02	4046E00E									
MW-106S, 503		\\/-t	_	CO 4		0.000	4.05	/1	D004646	0000074
2306474-03	As(III)	Water	D	60.1		0.200	1.05	μg/L	B231616	S230671
2306474-03	As(V)	Water	D	12.5		0.500	1.05	μg/L	B231616	S230671
MW-106D, 503	48165007									
2306474-04	As(III)	Water	D	1.03	J	0.200	1.05	μg/L	B231616	S230671
2306474-04	As(V)	Water	D	≤ 0.500	U	0.500	1.05	μg/L	B231616	S230671
DUP, 50348165										
2306474-05	As(III)	Water	D	1.04	J	0.200	1.05	μg/L	B231616	S230671
2306474-05	As(V)	Water	D	≤ 0.500	U	0.500	1.05	μg/L	B231616	S230671

BAL Report 2306474 Client PM: Kenneth Hunt Client Project: 50348165

Accuracy & Precision Summary

Batch: B231616 Lab Matrix: Water Method: SOP BAL-4100

Sample B231616-BS1	Analyte Blank Spike, (2306014)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
D231010-D31	As(III)		5.000	5.648	μg/L	113% 75-125	
	As(V)		5.000	4.956	μg/L	99% 75-125	
B231616-DUP1	Duplicate, (2306474-05)						
	As(III)	1.035		0.883	μg/L		16% 25
	As(V)	ND		ND	μg/L		N/C 25
B231616-MS1	Matrix Spike, (2306474-05)					
	As(III)	1.035	52.25	57.37	μg/L	108% 75-125	
	As(V)	ND	48.55	52.10	μg/L	107% 75-125	
B231616-MSD1	Matrix Spike Duplicate, (2	306474-05))				
	As(III)	1.035	52.25	57.04	μg/L	107% 75-125	0.6% 25
	As(V)	ND	48.55	51.43	μg/L	106% 75-125	1% 25

Project ID: PAC-IN2302 PM: Amy Goodall

BAL Report 2306474

Client PM: Kenneth Hunt Client Project: 50348165

Method Blanks & Reporting Limits

Batch: B231616 Matrix: Water

Method: SOP BAL-4100

Analyte: As(III)

Sample	Result	Units
B231616-BLK1	0.00	μg/L
B231616-BLK2	0.00	μg/L
B231616-BLK3	0.00	μg/L
B231616-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.004 Limit: 0.021 MRL: 0.021

Analyte: As(V)

Sample	Result	Units
B231616-BLK1	0.001	μg/L
B231616-BLK2	0.00	μg/L
B231616-BLK3	0.00	μg/L
B231616-BLK4	0.002	μg/L

Average: 0.001 **MDL**: 0.010 Limit: 0.021 MRL: 0.021

Project ID: PAC-IN2302 PM: Amy Goodall

BAL Report 2306474

Client PM: Kenneth Hunt Client Project: 50348165

Sample Containers

Sam	ID: 2306474-01 ple: MW-2		Sample	: Matrix : Water e Type: Sample		Recei	cted: 06/24/2023 ved: 06/28/2023
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
В	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
	ID: 2306474-02		•	: Matrix: Water			cted: 06/24/2023
	ple: MW-105		-	e Type: Sample			ved: 06/28/2023
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Vacutainer	10 mL	23-0029	EDTA (in vial)	na	na	Cooler - 2306474
В	Vacutainer	10 mL	23-0029	EDTA (in vial)	na	na	Cooler - 2306474
	ID: 2306474-03 ple: MW-106S		-	: Matrix: Water e Type: Sample			ted: 06/24/2023
	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.
Α	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
С	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
	ID: 2306474-04 ple: MW-106D		•	: Matrix: Water e Type: Sample			eted: 06/24/2023 ved: 06/28/2023
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
С	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474

Project ID: PAC-IN2302 PM: Amy Goodall

BAL Report 2306474

Client PM: Kenneth Hunt Client Project: 50348165

Sample Containers

	ID: 2306474-05 ple: DUP		•	ort Matrix: Water ple Type: Sample			cted: 06/24/2023
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474
С	Vacutainer	10 mL	23-0005	EDTA (in vial)	na	na	Cooler - 2306474

Shipping Containers

Cooler - 2306474

Received: June 28, 2023 9:53

Tracking No: 6426 8103 9540 via FedEx

Coolant Type: Ice Temperature: 2.7 °C **Description:** Cooler Damaged in transit? No Returned to client? No Comments: R-IR-4

Custody seals present? No Custody seals intact? No COC present? Yes Face Analytical "

Chain of Custody

PASI Indiana Laboratory

Workorder: 50348165

Workorder Name:

BREC Sebree Station Green CCR

Results Requested By: 7/12/2023

Kenneth Hunt Pace Analytics 7726 Moller R Indianapolis, II Phone (317)22 Email: kennett	Kenneth Hunt Pace Analytical Indianapolis 7726 Moller Road Indianapolis, IN 46268 Phone (317)228-3100 Email: kenneth.hunt@pacelabs.com	Brooks Ap 13751 Lak Suite 108 Seattle, W	Brooks Applied Labs 13751 Lake City Way NE Suite 108 Seattle, WA 98125	, O. H.	50348165	b Brooks Applied					
State o	State of Sample Origin: KY					A Loiseio					
Ë	Service 13	Collect Date/Time	CHINE!	Wanth	General	ads ajue				2	A MO BOUR
-	MW-2	6/24/2023 07:50	50348165001	Water	2	×				S	CI CALL
2	MW-105	6/24/2023 12:20	50348165003	Water	2	×					
3	MV4-106S	6/24/2023 11:30	50348165005	Water	2	×					
4	MW-106D	6/24/2023 10:00	50348165007	Water	2	×					
ۍ ت	фі	6/24/2023 10:30	50348165009	Water	7	×			}		
Transfers	Released By	Date/Time	e Received By	ďBy		Date/Time	Panort Coo	intod Amount			
* }	M. Chieroff	6273 650		R R			opado Modes.	ביליכי כרפספם השפונה אם מחום את מחום את	C +3 and +5.		
7 0	- Leaster		7	7) H	\$60 52/87/69	n São				
S. Cool	Coolar Tamparature on Bookint of T. on	_									
	Termperarnie our necelor C	-	custody seal	Y OF IN	Re	Received on Ice	N Jor N		Samples Intact (V)	ō	Z

Page 10 of 10

Page 32 2.15:53 P.M Page 3

Page 1 of 1

May 12, 2023

Mr. Chris Hoglund Burn & McDonnell 9450 Ward Parkway Kansas City, MO 64114

RE: Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Dear Mr. Hoglund:

Enclosed are the analytical results for sample(s) received by the laboratory on May 03, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Indianapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kenneth Hunt kenneth.hunt@pacelabs.com (317)228-3100

Project Manager

Enclosures

cc: Mr. Daniel Jelinek, Burns & McDonnell Engineering

CERTIFICATIONS

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Pace Analytical Services Indianapolis

Kentucky WW Laboratory ID #: 98019 Michigan Drinking Water Laboratory #9050

7726 Moller Road, Indianapolis, IN 46268 Illinois Accreditation #: 200074 Indiana Drinking Water Laboratory #: C-49-06 Kansas/TNI Certification #: E-10177 Kentucky UST Agency Interest #: 80226

Ohio VAP Certified Laboratory #: CL0065 Oklahoma Laboratory #: 9204 Texas Certification #: T104704355 Wisconsin Laboratory #: 999788130 USDA Foreign Soil Permit #: 525-23-13-23119 USDA Compliance Agreement #: IN-SL-22-001

SAMPLE SUMMARY

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50343859001	MW-105-31-32	Solid	04/25/23 17:00	05/03/23 09:30
50343859002	MW-105-28-30	Solid	04/25/23 17:15	05/03/23 09:30
50343859003	MW-105-23-25	Solid	04/25/23 17:20	05/03/23 09:30
50343859004	MW-105-15-17	Solid	04/25/23 17:30	05/03/23 09:30
50343859005	MW-106S-22-24	Solid	04/26/23 13:45	05/03/23 09:30
50343859006	MW-106S-37-39	Solid	04/26/23 13:55	05/03/23 09:30
50343859007	Dup-1	Solid	04/26/23 08:00	05/03/23 09:30
50343859008	MW-106D-51-53	Solid	04/27/23 12:30	05/03/23 09:30
50343859009	MW-106D-58-60	Solid	04/27/23 12:40	05/03/23 09:30

SAMPLE ANALYTE COUNT

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50343859001	MW-105-31-32	EPA 6010		1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	OAS	1	PASI-I
50343859002	MW-105-28-30	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	OAS	1	PASI-I
50343859003	MW-105-23-25	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	OAS	1	PASI-I
0343859004	MW-105-15-17	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	OAS	1	PASI-I
50343859005	MW-106S-22-24	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50343859006	MW-106S-37-39	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50343859007	Dup-1	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	QAK	1	PASI-I
50343859008	MW-106D-51-53	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	RJP	1	PASI-I
50343859009	MW-106D-58-60	EPA 6010	JPK	1	PASI-I
		EPA 6010	JPK	2	PASI-I
		EPA 6020	MGM	1	PASI-I
		SM 2540G	RJP	1	PASI-I

SAMPLE ANALYTE COUNT

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Lab ID Sample ID Method Analysts Reported Laboratory

PASI-I = Pace Analytical Services - Indianapolis

SUMMARY OF DETECTION

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Lab Sample ID	Client Sample ID	-				0 110
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
0343859001	MW-105-31-32					
EPA 6010	Iron	56400	mg/kg	963	05/12/23 02:43	
EPA 6010	Arsenic	0.024	mg/L	0.010		
EPA 6010	Iron	39.7	mg/L	0.10	05/11/23 03:07	
EPA 6020	Arsenic	26.2	mg/kg	1.1	05/09/23 19:11	
SM 2540G	Percent Moisture	10.7	%	0.10	05/05/23 19:09	N2
0343859002	MW-105-28-30					
PA 6010	Iron	24700	mg/kg	109	05/12/23 02:45	
EPA 6010	Arsenic	0.012	mg/L	0.010	05/11/23 03:21	
EPA 6010	Iron	35.8	mg/L	0.10	05/11/23 03:21	
EPA 6020	Arsenic	3.0	mg/kg	1.2	05/09/23 19:39	NO
SM 2540G	Percent Moisture	17.6	%	0.10	05/05/23 19:09	N2
0343859003	MW-105-23-25				0=11010=	
EPA 6010	Iron	23600	mg/kg		05/12/23 02:29	
EPA 6010	Arsenic	0.056	mg/L		05/11/23 03:23	
EPA 6010 EPA 6020	Iron	141	mg/L	0.10		
SM 2540G	Arsenic Percent Moisture	6.2 22.0	mg/kg %		05/09/23 19:43 05/05/23 19:10	NO
		22.0	70	0.10	05/05/25 19.10	INZ
0343859004	MW-105-15-17					
EPA 6010	Iron	20500	mg/kg	56.1		
EPA 6010	Iron Arsenic	3.6 6.3	mg/L		05/11/23 03:26 05/09/23 19:47	
EPA 6020 SM 2540G	Percent Moisture	19.5	mg/kg %	1.2 0.10	05/05/23 19:10	N2
		19.5	70	0.10	03/03/23 19.10	INZ
0343859005	MW-106S-22-24	47000	4	50.4	05/40/00 00 00	
EPA 6010	Iron	17800	mg/kg		05/12/23 02:33	
EPA 6010 EPA 6010	Arsenic Iron	0.046	mg/L	0.010 0.10		
EPA 6020	Arsenic	152 2.4	mg/L mg/kg		05/09/23 19:51	
SM 2540G	Percent Moisture	19.6	//////////////////////////////////////	0.10	05/10/23 13:18	N2
	MW-106S-37-39	10.0	70	0.10	00/10/20 10:10	142
0343859006		25000		110	05/40/02 02:57	
EPA 6010 EPA 6010	Iron Arsenic	25000 0.036	mg/kg	0.010	05/12/23 02:57 05/11/23 03:30	
EPA 6010	Iron	74.2	mg/L mg/L		05/11/23 03:30	
EPA 6020	Arsenic	3.6	mg/kg		05/09/23 20:03	
SM 2540G	Percent Moisture	17.0	g/kg %		05/10/23 13:19	N2
0343859007	Dup-1					
EPA 6010	Iron	15500	mg/kg	57 4	05/12/23 02:38	
EPA 6010	Arsenic	0.058	mg/L	0.010		
EPA 6010	Iron	189	mg/L		05/11/23 03:32	
EPA 6020	Arsenic	3.6	mg/kg		05/09/23 20:07	
SM 2540G	Percent Moisture	20.2	%		05/10/23 13:19	N2
0343859008	MW-106D-51-53					
PA 6010	Iron	45900	mg/kg	222	05/12/23 03:00	
EPA 6020	Arsenic	6.6	mg/kg	1.0		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50343859008	MW-106D-51-53					
SM 2540G	Percent Moisture	4.8	%	0.10	05/11/23 17:21	N2
50343859009	MW-106D-58-60					
EPA 6010	Iron	21600	mg/kg	98.9	05/12/23 03:02	
EPA 6010	Iron	6.3	mg/L	0.10	05/11/23 03:41	
EPA 6020	Arsenic	1.5	mg/kg	1.0	05/09/23 20:15	
SM 2540G	Percent Moisture	4.7	%	0.10	05/11/23 17:22	N2

PROJECT NARRATIVE

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Method: EPA 6010
Description: 6010 MET ICP

Client: Burns & McDonnell Engineering Company, Inc.

Date: May 12, 2023

General Information:

9 samples were analyzed for EPA 6010 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 731743

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50343772002

P6: Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike

• MS (Lab ID: 3358201)

• Iron

• MSD (Lab ID: 3358202)

• Iron

Additional Comments:

Analyte Comments:

QC Batch: 731743

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MS (Lab ID: 3358201)

• Iron

• MSD (Lab ID: 3358202)

• Iron

PROJECT NARRATIVE

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Method: EPA 6010

Description: 6010 MET ICP, SPLP

Client: Burns & McDonnell Engineering Company, Inc.

Date: May 12, 2023

General Information:

9 samples were analyzed for EPA 6010 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 732567

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50343859001

P6: Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike

• MS (Lab ID: 3362125)

• Iron

• MSD (Lab ID: 3362126)

• Iron

Additional Comments:

PROJECT NARRATIVE

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Method: EPA 6020

Description: 6020 MET ICPMS

Client: Burns & McDonnell Engineering Company, Inc.

Date: May 12, 2023

General Information:

9 samples were analyzed for EPA 6020 by Pace Analytical Services Indianapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 731827

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50343859001

P6: Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

• MS (Lab ID: 3358767)

Arsenic

• MSD (Lab ID: 3358768)

Arsenic

R1: RPD value was outside control limits.

• MSD (Lab ID: 3358768)

• Arsenic

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-105-31-32 Results reported on a "dry weig	Lab ID: 5034 ght" basis and are adj		Collected: 04/25/2 ercent moisture, sa				latrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytical	Services -	Indianapolis					
Iron	56400	mg/kg	963	20	05/08/23 08:17	05/12/23 02:43	7439-89-6	
6010 MET ICP, SPLP	,	od/Date: EF	10 Preparation Meth PA 1312; 05/06/23 16 Indianapolis		PA 3010			
Arsenic	0.024	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:07	7440-38-2	
Iron	39.7	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:07	7439-89-6	
6020 MET ICPMS	Analytical Meth Pace Analytical		20 Preparation Meth	nod: EF	PA 3050B			
Arsenic	26.2	mg/kg	1.1	10	05/06/23 05:45	05/09/23 19:11	7440-38-2	
Percent Moisture	Analytical Meth Pace Analytical							
Percent Moisture	10.7	%	0.10	1		05/05/23 19:09		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-105-28-30	Lab ID: 503	43859002	Collected: 04/25/2	3 17:1	5 Received: 05	5/03/23 09:30 N	/latrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EF	PA 3050			
	Pace Analytica	l Services -	Indianapolis					
Iron	24700	mg/kg	109	2	05/08/23 08:17	05/12/23 02:45	7439-89-6	
6010 MET ICP, SPLP	•	od/Date: EF	10 Preparation Meth PA 1312; 05/06/23 16 Indianapolis		PA 3010			
Arsenic	0.012	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:21	7440-38-2	
Iron	35.8	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:21	7439-89-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Meth	nod: EF	A 3050B			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	3.0	mg/kg	1.2	10	05/06/23 05:45	05/09/23 19:39	7440-38-2	
Percent Moisture	Analytical Meth	nod: SM 254	10G					
	Pace Analytica	l Services -	Indianapolis					
Percent Moisture	17.6	%	0.10	1		05/05/23 19:09		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-105-23-25	Lab ID: 5034	13859003	Collected: 04/25/2	3 17:20	Received: 05	5/03/23 09:30 N	Matrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3050			
	Pace Analytical	Services -	Indianapolis					
Iron	23600	mg/kg	60.2	1	05/08/23 08:17	05/12/23 02:29	7439-89-6	
6010 MET ICP, SPLP	•		10 Preparation Meth		A 3010			
			PA 1312; 05/06/23 16	5:45				
	Pace Analytical	Services -	Indianapolis					
Arsenic	0.056	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:23	7440-38-2	
Iron	141	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:23	7439-89-6	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20 Preparation Meth	nod: EP	A 3050B			
	Pace Analytical	Services -	Indianapolis					
Arsenic	6.2	mg/kg	1.2	10	05/06/23 05:45	05/09/23 19:43	7440-38-2	
Percent Moisture	Analytical Meth	od: SM 254	10G					
	Pace Analytical	Services -	Indianapolis					
Percent Moisture	22.0	%	0.10	1		05/05/23 19:10		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-105-15-17	Lab ID: 5034	13859004	Collected: 04/25/2	23 17:30	Received: 05	5/03/23 09:30 N	Matrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3050			
	Pace Analytical	Services -	Indianapolis					
Iron	20500	mg/kg	56.1	1	05/08/23 08:17	05/12/23 02:31	7439-89-6	
6010 MET ICP, SPLP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Leachate Meth	od/Date: El	PA 1312; 05/06/23 16	6:45				
	Pace Analytical	Services -	Indianapolis					
Arsenic	ND	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:26	7440-38-2	
Iron	3.6	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:26	7439-89-6	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20 Preparation Meth	nod: EP	A 3050B			
	Pace Analytical	Services -	Indianapolis					
Arsenic	6.3	mg/kg	1.2	10	05/06/23 05:45	05/09/23 19:47	7440-38-2	
Percent Moisture	Analytical Meth	od: SM 254	10G					
	Pace Analytical	Services -	Indianapolis					
Percent Moisture	19.5	%	0.10	1		05/05/23 19:10		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-106S-22-24	Lab ID: 5034	43859005	Collected: 04/26/2	23 13:45	Received: 05	5/03/23 09:30 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3050			
	Pace Analytica	l Services -	Indianapolis					
Iron	17800	mg/kg	53.1	1	05/08/23 08:17	05/12/23 02:33	7439-89-6	
6010 MET ICP, SPLP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Leachate Meth	od/Date: El	PA 1312; 05/06/23 16	6:45				
	Pace Analytica	l Services -	Indianapolis					
Arsenic	0.046	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:28	7440-38-2	
Iron	152	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:28	7439-89-6	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20 Preparation Meth	nod: EP	A 3050B			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	2.4	mg/kg	1.2	10	05/06/23 05:45	05/09/23 19:51	7440-38-2	
Percent Moisture	Analytical Meth	od: SM 254	10G					
	Pace Analytica	l Services -	Indianapolis					
Percent Moisture	19.6	%	0.10	1		05/10/23 13:18		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-106S-37-39	Lab ID: 503	43859006	Collected: 04/26/2	23 13:55	Received: 05	5/03/23 09:30 N	fatrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60°	10 Preparation Metl	nod: EP	A 3050			
	Pace Analytica	l Services - l	ndianapolis					
Iron	25000	mg/kg	112	2	05/08/23 08:17	05/12/23 02:57	7439-89-6	
6010 MET ICP, SPLP	•		10 Preparation Meth		A 3010			
	Leachate Meth	od/Date: EP	A 1312; 05/06/23 16	3:45				
	Pace Analytica	l Services - I	ndianapolis					
Arsenic	0.036	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:30	7440-38-2	
Iron	74.2	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:30	7439-89-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 602	20 Preparation Met	nod: EP	A 3050B			
	Pace Analytica	l Services - l	ndianapolis					
Arsenic	3.6	mg/kg	1.2	10	05/06/23 05:45	05/09/23 20:03	7440-38-2	
Percent Moisture	Analytical Meth	nod: SM 254	0G					
	Pace Analytica	l Services - I	ndianapolis					
Percent Moisture	17.0	%	0.10	1		05/10/23 13:19		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: Dup-1	Lab ID: 503	43859007	Collected: 04/26/2	23 08:00	Received: 05	5/03/23 09:30 N	fatrix: Solid	
Results reported on a "dry wei	ight" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Metl	nod: EP	A 3050			
	Pace Analytica	l Services -	Indianapolis					
Iron	15500	mg/kg	57.4	1	05/08/23 08:17	05/12/23 02:38	7439-89-6	
6010 MET ICP, SPLP	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EP	A 3010			
	Leachate Meth	od/Date: EF	PA 1312; 05/06/23 16	3:45				
	Pace Analytica	I Services -	Indianapolis					
Arsenic	0.058	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:32	7440-38-2	
Iron	189	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:32	7439-89-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20 Preparation Metl	nod: EP	A 3050B			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	3.6	mg/kg	1.2	10	05/06/23 05:45	05/09/23 20:07	7440-38-2	
Percent Moisture	Analytical Meth	nod: SM 254	l0G					
	Pace Analytica	I Services -	Indianapolis					
Percent Moisture	20.2	%	0.10	1		05/10/23 13:19		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-106D-51-53	Lab ID: 5034	43859008	Collected: 04/27/2	3 12:30	Received: 05	5/03/23 09:30 N	Matrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3050			
	Pace Analytical	l Services -	Indianapolis					
Iron	45900	mg/kg	222	5	05/08/23 08:17	05/12/23 03:00	7439-89-6	
6010 MET ICP, SPLP	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3010			
	Leachate Meth	od/Date: El	PA 1312; 05/06/23 16	5:45				
	Pace Analytical	l Services -	Indianapolis					
Arsenic	ND	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:39	7440-38-2	
Iron	ND	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:39	7439-89-6	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20 Preparation Meth	nod: EP	A 3050B			
	Pace Analytical	l Services -	Indianapolis					
Arsenic	6.6	mg/kg	1.0	10	05/06/23 05:45	05/09/23 20:11	7440-38-2	
Percent Moisture	Analytical Meth	od: SM 25	10G					
	Pace Analytical	l Services -	Indianapolis					
Percent Moisture	4.8	%	0.10	1		05/11/23 17:21		N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Sample: MW-106D-58-60	Lab ID: 5034	43859009	Collected: 04/27/2	23 12:40	Received: 05	5/03/23 09:30 N	1atrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60°	10 Preparation Metl	hod: EP	A 3050			
	Pace Analytica	l Services -	Indianapolis					
Iron	21600	mg/kg	98.9	2	05/08/23 08:17	05/12/23 03:02	7439-89-6	
6010 MET ICP, SPLP	•		10 Preparation Met		A 3010			
			A 1312; 05/06/23 16	6:45				
	Pace Analytica	l Services -	Indianapolis					
Arsenic	ND	mg/L	0.010	1	05/10/23 09:44	05/11/23 03:41	7440-38-2	
Iron	6.3	mg/L	0.10	1	05/10/23 09:44	05/11/23 03:41	7439-89-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 602	20 Preparation Met	hod: EP	A 3050B			
	Pace Analytica	l Services -	Indianapolis					
Arsenic	1.5	mg/kg	1.0	10	05/06/23 05:45	05/09/23 20:15	7440-38-2	
Percent Moisture	Analytical Meth	nod: SM 254	0G					
	Pace Analytica	l Services -	Indianapolis					
Percent Moisture	4.7	%	0.10	1		05/11/23 17:22		N2

BREC Sebree Station Green CCR Project:

Pace Project No.: 50343859

Iron

Iron

Date: 05/12/2023 02:18 PM

QC Batch: 731743 Analysis Method: EPA 6010 QC Batch Method: EPA 3050 Analysis Description: 6010 MET

> Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007,

50343859008, 50343859009

METHOD BLANK: 3358199 Matrix: Solid

50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007, Associated Lab Samples:

50343859008, 50343859009

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed mg/kg ND 50.0 05/12/23 01:30

LABORATORY CONTROL SAMPLE: 3358200

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. Iron mg/kg 500 534 107 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3358201 3358202

MSD MS

50343772002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 20 E,P6 21400 628 571 27300 25400 948 706 75-125 mg/kg

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

QC Batch: 732567 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET SPLP

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007,

50343859008, 50343859009

METHOD BLANK: 3362123 Matrix: Water

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007,

50343859008, 50343859009

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Arsenic mg/L ND 0.010 05/11/23 03:04 mg/L ND 05/11/23 03:04 Iron 0.10

LABORATORY CONTROL SAMPLE: 3362124

Date: 05/12/2023 02:18 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	1	1.0	102	80-120	
Iron	mg/L	2.5	2.7	106	80-120	

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 3362	125		3362126							
			MS	MSD								
	5	0343859001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/L	0.024	1	1	1.0	1.1	98	108	75-125	9	20	
Iron	mg/L	39.7	2.5	2.5	40.2	43.8	17	165	75-125	9	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Arsenic

Date: 05/12/2023 02:18 PM

QC Batch: 731827 QC Batch Method: EPA 3050B Analysis Method: EPA 6020
Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007,

50343859008, 50343859009

METHOD BLANK: 3358765 Matrix: Solid

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004, 50343859005, 50343859006, 50343859007,

50343859008, 50343859009

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers

mg/kg ND 0.10 05/09/23 18:01

LABORATORY CONTROL SAMPLE: 3358766

Spike LCS LCS % Rec Units Result % Rec Limits Qualifiers Parameter Conc. Arsenic mg/kg 4 3.9 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3358767 3358768

MS MSD

50343859001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 20 P6,R1 Arsenic 26.2 4.3 4.3 26.6 21.1 10 -119 75-125 23 mg/kg

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

QC Batch: 732019 Analysis Method: SM 2540G

QC Batch Method: SM 2540G Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859001, 50343859002, 50343859003, 50343859004

SAMPLE DUPLICATE: 3359634

 Parameter
 Units
 50343309001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 16.3
 16.5
 1
 5 N2

SAMPLE DUPLICATE: 3359635

Date: 05/12/2023 02:18 PM

		50343313001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	12.8	13.3	4		5 N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

QC Batch: 732615 Analysis Method: SM 2540G

QC Batch Method: SM 2540G Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859005, 50343859006, 50343859007

SAMPLE DUPLICATE: 3362251

50343383073 Dup Max RPD RPD Qualifiers Parameter Units Result Result 9.8 2 Percent Moisture % 9.6 5 N2

SAMPLE DUPLICATE: 3362252

Date: 05/12/2023 02:18 PM

		50343859007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	20.2	19.9	2		5 N2

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

QC Batch: 733024 Analysis Method: SM 2540G

QC Batch Method: SM 2540G Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Indianapolis

Associated Lab Samples: 50343859008, 50343859009

SAMPLE DUPLICATE: 3364282

50343578001 Dup Max RPD RPD Qualifiers Parameter Units Result Result 8.1 5 N2,R1 Percent Moisture % 9.3 13

SAMPLE DUPLICATE: 3364283

Date: 05/12/2023 02:18 PM

		50343859009	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	4.7	4.8	2		5 N2

QUALIFIERS

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/12/2023 02:18 PM

E Analyte concentration exceeded the calibration range. The reported result is estimated.

N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BREC Sebree Station Green CCR

Pace Project No.: 50343859

Date: 05/12/2023 02:18 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
50343859001	MW-105-31-32	EPA 3050	731743	EPA 6010	733084
50343859002	MW-105-28-30	EPA 3050	731743	EPA 6010	733084
50343859003	MW-105-23-25	EPA 3050	731743	EPA 6010	733084
0343859004	MW-105-15-17	EPA 3050	731743	EPA 6010	733084
0343859005	MW-106S-22-24	EPA 3050	731743	EPA 6010	733084
0343859006	MW-106S-37-39	EPA 3050	731743	EPA 6010	733084
0343859007	Dup-1	EPA 3050	731743	EPA 6010	733084
0343859008	MW-106D-51-53	EPA 3050	731743	EPA 6010	733084
0343859009	MW-106D-58-60	EPA 3050	731743	EPA 6010	733084
0343859001	MW-105-31-32	EPA 3010	732567	EPA 6010	732819
0343859002	MW-105-28-30	EPA 3010	732567	EPA 6010	732819
0343859003	MW-105-23-25	EPA 3010	732567	EPA 6010	732819
0343859004	MW-105-15-17	EPA 3010	732567	EPA 6010	732819
0343859005	MW-106S-22-24	EPA 3010	732567	EPA 6010	732819
0343859006	MW-106S-37-39	EPA 3010	732567	EPA 6010	732819
0343859007	Dup-1	EPA 3010	732567	EPA 6010	732819
0343859008	MW-106D-51-53	EPA 3010	732567	EPA 6010	732819
0343859009	MW-106D-58-60	EPA 3010	732567	EPA 6010	732819
0343859001	MW-105-31-32	EPA 3050B	731827	EPA 6020	732132
0343859002	MW-105-28-30	EPA 3050B	731827	EPA 6020	732132
0343859003	MW-105-23-25	EPA 3050B	731827	EPA 6020	732132
0343859004	MW-105-15-17	EPA 3050B	731827	EPA 6020	732132
0343859005	MW-106S-22-24	EPA 3050B	731827	EPA 6020	732132
0343859006	MW-106S-37-39	EPA 3050B	731827	EPA 6020	732132
0343859007	Dup-1	EPA 3050B	731827	EPA 6020	732132
0343859008	MW-106D-51-53	EPA 3050B	731827	EPA 6020	732132
0343859009	MW-106D-58-60	EPA 3050B	731827	EPA 6020	732132
0343859001	MW-105-31-32	SM 2540G	732019		
0343859002	MW-105-28-30	SM 2540G	732019		
0343859003	MW-105-23-25	SM 2540G	732019		
0343859004	MW-105-15-17	SM 2540G	732019		
0343859005	MW-106S-22-24	SM 2540G	732615		
0343859006	MW-106S-37-39	SM 2540G	732615		
0343859007	Dup-1	SM 2540G	732615		
0343859008	MW-106D-51-53	SM 2540G	733024		
0343859009	MW-106D-58-60	SM 2540G	733024		

DY / Analytical Request Document

Submitting a sample via this ch	ai 5034	138	5 9											/ant tields must https://info.pacela					df .			
lequired Client Information:	Required Pro	ject In	formation:				1	nvoice Ir	format	ion:							F	age:	}	Of	}	
Company: Bure & McDonneil	Report To	Hogtu	nd, Chris				/	Attestion	Acc	ounts F	^a ayable											
odress 9450 Ward Parkway	Серу То								Name	Burns	& McDen	ueii										
ansas Cily, MO 64114								Address.										Regula	tory Agen	cy	\$600 S	
mail: choglund@burnsmcd.com hone 785-317-1747 Fax	Purchase Ord Project Name		2050.0.5	- 54-4'		F3 1		Pace Quote: 01242623 Pace Project Manager kenneth hunt@pacelabs.com.														
	Project #.		SREC Sebre		Green CC	R (andriii		Pace Project Manager kenneth hunt@pacelabs.com. Pace Profile #: 9106 Line 5								State / Location						
equasted Due Date Standard TAT	1 1 - 7 - 4 1	••••	34-11	2 3	····					3100	J Line .			Remiestezi	Analysis Fil	t hase	VINI		KY			
		o left)	(AWE)	0.01			П		C) c	eserva	ativos		Z									
MATRA Destude 1 Vaster Vaster Vaster Vaster Product Grant One Character per box. (A-Z, 0-9 /, -) Sample ids must be unique Tassie	WT acos WW P	MATRIX CODE (see valid codes to left)	MIPLE TYPE (C=GRAB	ART		ND	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS Unpreserved	HNO3		NaCS203			Metals As 6020 Fe 5010 SPLP Metals As, Fe				Residual Chlorine (Y/N)				
1 MW-105-31-32		sı. (3 4/25h	TIME	DATE	TIME	1-1	Z x			~ ~ .	- 0	_	x x				- 43-	-00			
2 mw-105-20-30		sh (, Histy	1715	_			고 ×						× ×					-00			
3 mw-115 - 23 - 25		su (, 4/1sh	טורו ל				٧ ٢					l	¥ 75					-00/2			
4 MW-105 - 15-17		5L (> 41125H	1730	-			2 X						ĸ ×					COC	-		
5 mw-1065-22-24		KU (5 4/26/	1345				z ×					I	××					-00°	5		
6 MW-10les-37-39		<u>ن</u> ا		1355		-		<u>د</u> ۲				}		× ×					-ca	D.		
a DUP-1		5 니{	₂ Hhult	y —				٦ ٢						x x					-00	t		
8 mw-106D-51-53	· .	5 6 (5 4127/1	1230				2 😽	į					> 4	Lian virgi				00	ે		
1 mw-106D-58-60			5 4/27/		Promo			2 4						x x					æ	}		
10			•																			
11																						
12				Ī									İ									
ADDITIONAL COMMENTS		EUNO	LIISHED BY	AFFILIATI	ON	DAT		TIME			ACCEP	TED BY	IAFF	ILIATION	DATI		TIME		SAMPLE	ONDITION	8	
	T	e L	Fash	4 س	m n	5/11	23	1500	SXX	4		1.1	, , ,		ara escriberále	2723)) 3 (37		2010/01/2003			. (22/4)/992	
		7	115	10			-	,,,,,,,,		محر	1	1		حربي	5131	12	0930	21	V	V	17	
		1.B.	u L						1	J		$\mathcal{I}_{\mathcal{A}}$	1	سنسهم	الراد	0-2	V 120	٠. ـ	 	1	17	
				200 300 200	E R NAME NT Name	858 Sammer	0000000	annem assay	ייל ביו דיל ביו	I	ves b							S C	uo pa	λf	GE	
and the second state of the second second second second second second second second second second second second				SIG	NATURE	of SAMP	LER:	ي ب		7	V 445 Y	~ U '		DATE Signed:	4/28	12:	 ζ	TEMP	Received to	Custor Sealed Color Oran	Semple Back	

Pace

SAMPLE CONDITION UPON RECEIPT FORM

Date/Time and Initials of person examining contents	: 05/0	4/23	0915 (17			
1. Courier: EFED EX D UPS D CLIENT D PAC	ם ש	SPS 🗆	OTHER 5. Packing Material: Bubble Wrap	Bubbli	e Bags	
2. Custody Seal on Cooler/Box Present: Yes		· ·	□ None	Other		
(If yes)Seals Intact: Yes No (leave blank in the seals intact: 123456 ABCDEF	if no seals w	vere prese	6. Ice Type: Wet U Blue U None			
4. Cooler Temperature(s): 2.930 (Initial/Corrected) RECORD TEMPS OF ALL COOLERS RECEIVED	VED (use Con	nments balo	7. If temp. is over 6°C or under 0°C, was the PM	notified?:		□ No
Ail d	liscrepanci	es will be	written out in the comments section below.			
	Yes	No		Yes	No	N/A
USDA Regulated Soils? (HI, ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)			All containers needing acid/base preservation have been pH <u>CHECKED</u> ?: Exceptions: VOA, coliform, LLHg, O&G, RAD CHEM, and any container with a septum cap or preserved with HCl. Circle:			
Short Hold Time Analysis (48 hours or less)? Analysis:			HNO3 (<2) H2SO4 (<2) NaOH (>10) NaOH/ZnAc (>9) Any non-conformance to pH recommendations will be noted on the container count form			
Time 5035A TC placed in Freezer or Short Holds To Lab	Time:			Present	Absent	N/A
·			Residual Chlorine Check (SVOC 625 Pest/PCB 608)			
Rush TAT Requested (4 days or less):	-		Residual Chlorine Check (Total/Amenable/Free Cyanide)			
Custody Signatures Present?	L		Headspace Wisconsin Sulfide?			
Containers Intact?:		-	Headspace in VOA Vials (>6mm): See Containter Count form for details	Present	Absect	No VOA Vials Sem
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID			いり Blank Present?		L	
Extra labels on Terracore Vials? (soils only)			Trip Błank Custody Seałs?:			
COMMENTS:						

	7,	······································				
	, -,	······································		····		
						
					A	Page 29 of 30

** Place a RED dot on containers

that are out of conformance **

		MeOn larily) SBS	-	V	IALS						ER G							P	LAST	IC .			· 	OTHER				Nitric Red	Sulfurio Yellow	Sadium Hydraxide Green	Sodium Hydroxide/ ZnAc Black	
GGG Line Item	WGFU	ī R	DG9Н VG9Н	VOA VIAL HS (>6mm)	VG9U	DG8N	VG9T	AGOU	AG1H	AG1U	AG2U	AG3S	AG3SF	AG3C	8Р1∪	8P1N	BP2U	врзи	BP3N	врзг	BP3S	врзв	BP3Z	сезн	CG3F	Syringe Kit	どのかん		HNQ3 <2	H2\$O4 <2	NaOH >10	NaOH/Zn Ac >9
٦									.,.,																			54				
2																												1				
3																																
4																																
- 5																																
6																											\bot					
-7	_																															
. 8																											\perp					
9	<u> </u>																										JЦ	\mathcal{T}				
10																																
11																																
12		ļ																														

Jontainer Codes

	Gla	SS			
G9H	40mL HCI amber voa vial	BG1T	11. Na Thiosulfate clear glass	BP1B	1L NaOH plastic
G9P	40mL TSP amber vial	8G1U	1L unpreserved glass	BP1N	1L HNO3 plastic
G9S	40mL H2SO4 amber vial	BG3H	250mt HCl Clear Glass	BP15	1t. H2SO4 plastic
GOT	40ml. Na Thio amber vial	BG3U	250ml, Unpres Clear Glass	BP1U	1L unpreserved plastic
G9U	40mL unpreserved amber vial	AG∂U	100ml, unpres amber glass	BP1Z	1L NaOH, Zn, Ac
G9H	40mL HCl clear vial	AG1H	1L HCl amber glass	BP2N	500mL HNO3 plastic
G9T	40mL Na Thio. clear vial	AG1S	1L H2SO4 amber glass	BP2C	500mL NaOH plastic
G9U	40mL unpreserved clear vial	AG1T	1L Na Thiosulfate amber glass	BP2S	500mL H2SO4 plastic
[40mL w/hexane wipe vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic
/GK U	8oz unpreserved clear jar	AG2N	500mL HNO3 amber glass	B₽2Z	500mL NaOH, Zn Ac
GFU	4oz clear soil jar	AG2S	500mL H2SO4 amber glass	BP38	250mt. NaOH plastic
3FU	4oz unpreserved amber wide	AG2U	500mt, unpres amber glass	BP3N	250mL HNO3 plastic
G3H	250ml. clear glass HCl	AG3S	250ml, H2SO4 amber glass	BP3F	250mL HNO3 plastic-field filtered
33F	250mL clear glass HCI, Field Filter	AG3\$F	250mt H2SO4 amb glass -field filtered	BP3U	250mL unpreserved plastic
314	1L HCI clear glass	AG3U	250mL unpres amber glass	BP3S	250mL H2SO4 plastic
318	1t. H2SO4 clear glass	AG3C	250mL NaOH amber glass	BP3Z	250mL NaOH, ZnAc plastic

P	lastic								
8P4U	125mL unpreserved plastic								
8P4N	125mL HNO3 plastic								
BP45	125mL H2SO4 plastic								
	Miscellaneous								
Synnge	кл LL Cr+6 sampling kit								
ZPLC	Ziptoc Bag								
R	Terracore Kit								
SP5T	120mt. Coliform Sodium Thiosulfate								
GN	General Container								
U	Summa Can (air sample)								
WT	Water								
SL	Solid Solid								
OL:	Oil								
NAL	Non-aqueous fiquid								
WP	Wipe								

XRF SCREENING LOG

pg.	1	of	2
O	THE REAL PROPERTY.		

Project Name: MW-2 Characterization	XRF Screening Date: 7/20/2023
Site Location: BREC Green Landfill	XRF Screener Name: Eric Brown
Property ID: ~/A	Project Number: 156465

Sample ID XRF Screening 10	Sample Depth (ft bgs)	XRF Result	Accuracy Info	1 11me	eening ethod XRF ID
MW-	**************************************				
MW-105-28-30	28'-30'	Ce 1.45% AS ND	±0.1%.	1631	07/20/23 #1#3
		Fe 1512 As ND	to.12	1633	07/20/23 #4
MW-105-23-25	23'-25	Fe 2.226 AS NO	±0.1%	1635	07/20/23 #5
		Fe 2,41% As 10	10.1% 3	1636	17/20/23 £16
MW-105-15-17	15'-17	Fe 2.00%	±0.1 %	1637	07/20/23 #7
		AS 8	±0.1 %	1638	07/20/23 世8
mw-105-31-32	31'-32'	Fe 1.80%. As 8	20.1%	1640	24/20/23 出9
		Fe 2.167 As NO	±0.1%.	1641	07/22/23 #10
mW-106D-51-53	51'-53'	Fe 4.31% AS 13	9.07%	1642	07/20/23 #11
		Fe 5.30%. As 14	9.07 % H	1644	07/20/23 # 12

Page Number: 2 of 2

XRF Screening ID	Sample Depth (ft bgs)	XRF Result	Accuracy Info	Time	Screening Method	Additional Notes
MW-106D-58-60	58'-60'	Fe 1.80% AS NO	20.1%	1645		97/20/23 413
		Fe 2.46% AS NO	\$0.1%	1647		27/20/23 #18
MW-1065-37-39	37-39	Fe 2.30% AS NO	0.1%	1648		07/20/23 出19
		Fa 1.847. AS ND	69	1649		94/20/23 #20
mw-1065-22-24	22-24	AS NO Fe 1.34% AS NO	0.1%	1651		07/20/23 #23
		Fe 2.18% AS NO	0.1%	1652		07/20/23 #24
Dup-1 MW-10GS	22-24	Fe 1.81 4 AS NO	0.1%	1653		07/20/23 #25
		Fe 1.78% As 8	0.1%	1655		97/20/23 #26
	· · · · · · · · · · · · · · · · · · ·					
		-13-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-				11.

Test Report

Client:	Burns & McDonnell Engineering	MI#:	23125
Project:	N/A	Date:	07/25/23
Location:	N/A	P.O.#:	156465

Client	Burns & McDonnell Engineering						
	9400 Ward Parkway	9400 Ward Parkway					
	Kansas City, MO 64114						
	Attn: Chris Hoglund	Attn: Chris Hoglund					
Email	choglund@burnsmcd.com	Phone	816.333.9400				

Method(s)	Timothy B. Murphy
X-ray Diffraction (Bulk & Clay)	The to Marke

- Conditions & Qualifications
- Summary
- <u>Table I.1</u>
- Table I.2

CONDITIONS AND QUALIFICATIONS

Mineralogy, Inc. will endeavor to provide accurate and reliable laboratory measurements of the samples provided by the client. The results of any x-ray diffraction, petrographic or core analysis test are necessarily influenced by the condition and selection of the samples to be analyzed. It should be recognized that geological samples are commonly heterogeneous and lack uniform properties. Mineralogical, geochemical and/or petrographic data obtained for a specific sample provides compositional data pertinent to that specific sampling location. Such "site-specific data" may fail to provide adequate characterization of the range of compositional variability possible within a given project area, thus the "projection" of these laboratory findings and values to adjoining, "untested" areas of the formation or project area is inherently risky, and exceeds the scope of the laboratory work request. Hence, Mineralogy, Inc. shall not assume any liability risk or responsibility for any loss or potential failure associated with the application of "site or sample-specific laboratory data" to "untested" areas of the formation or project area. Unless otherwise directed, the samples selected for analysis will be chosen to reflect a visually representative portion of the bulk sample submitted for analysis. Where provided, the interpretation of x-ray diffraction, petrographic or core analysis results constitutes the best geological judgment of Mineralogy, Inc., and is subject to the sampling limitations described above, and the detection limits inherent to semi-quantitative and/or qualitative mineralogical and microscopic analysis. Mineralogy, Inc. assumes no responsibility nor offers any guarantee of the productivity, suitability or performance of any oil or gas well, hydrocarbon recovery process, dimension stone, and/or ore material based upon the data or conclusions presented in this report.

This report is to only be replicated in its entirety.

<u>Sample Retention:</u> Samples will be stored for a period of 30 days and thereafter discarded. If additional sample storage time and/or return shipping is required, appropriate charges will be billed to the client.

Summary

Two of four unconsolidated sediment intervals from the MW-105 well [31-32' (23125-01) & 15-17' (23125-04)] exhibit concentrations of iron-rich secondary (?) mineralization. The interval at 31-32' contains large amounts (~8.5%) of goethite (alpha-FeOOH) + minor amounts (~0.5%) of iron carbonate cement (siderite). Minor amounts (~0.5%) of siderite cement were also identified in the sediment interval from 15-17'. Goethite is a common microcrystalline corrosion product within sediments containing concentrations of iron-rich mineralization. The abundance of goethite in this interval is likely to promote the diffusion of soluble iron into ground water solutions. The XRD mineral assemblage noted for the MW-105 sediments lacks evidence of a direct mineralogical source for arsenic.

Both sediment intervals from the MW-106D well [51-53' (23125-07), and 58-60' (23125-08)] contain moderate concentrations (~2-3%) of siderite cement (FeCO3). Moderate amounts of halite (~2-5%) are also present within these sediment intervals. The localized crystallization of the siderite is consistent with the presence of significant amounts of iron in solution within this portion of the aquifer. The XRD mineral assemblages noted for the MW-106S & MW-106D sediments lack evidence of a direct mineralogical source for arsenic.

Standard-less, whole-rock x-ray diffraction mineralogical analysis is an effective lab method for surveying the bulk mineralogical properties for geologic specimens. The analytical precision for the XRD lab method is approximated at +/- 3-5%. The XRD lab method lacks the sensitivity required to reliably identify & quantify accessory or trace amounts of metallic mineral constituents (e.g., As). ICP-MS will likely be required to identify specific sediment intervals containing relatively elevated levels of As. SEM analysis with spectral imaging can be subsequently utilized to identify & analyze specific trace mineralogical sources for As within targeted sediment intervals.

X-ray Diffraction Table I.1

Client:	Burns & McDonnell Engineering	MI#:	23125
Project:	N/A	P.O.#:	156465
Location:	N/A	Method:	X-ray Diffraction

	Lab ID:	23125-01	23125-02	23125-03	23125-04
	Sample ID:	MW-105-31-32	MW-105-28-30	MW-105-23-25	MW-105-15-17
Minaval	Depth (ft):	31-32	28-30	23-25	15-17
Mineral Constituent	Chemical Formula		Relative Abu	undance (%)	
Quartz	SiO ₂	19	47	45	43
Plagioclase Feldspar	(Na,Ca)AlSi ₃ O ₈	11	11	6	8
K-Feldspar	KAISi ₃ O ₈	5	4	4	4
Calcite	CaCO₃				2
Dolomite	(Ca,Mg)(CO ₃) ₂		1.5		3.5
Siderite	FeCO₃	0.5			0.5
Goethite	alpha-FeOOH	8.5			
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	19	2	2	3
Chlorite	(Mg,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	1	1	1	1
Illite / Mica	KAI ₂ (Si ₃ AIO ₁₀)(OH) ₂	21	24	17	27
Mixed-Layered Illite/Smectite	K _{0.5} Al ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ • 2H ₂ O	15	9.5	25	8
	Total	100	100	100	100
% Illite	e in ML I/S	80%	70%	70%	75%

X-ray Diffraction Table I.2

Client:	Burns & McDonnell Engineering	MI#:	23125
Project:	N/A	P.O.#:	156465
Location:	N/A	Method:	X-ray Diffraction

	Lab ID:	23125-05	23125-06	23125-07	23125-08
	Sample ID:	MW-106S-22- 24	MW-106S-37- 39	MW-106D-51- 53	MW-106D-58- 60
Mineral	Depth (ft):	22-24	37-39	51-53	58-60
Minerai Constituent	Chemical Formula		Relative Abu	undance (%)	
Quartz	SiO ₂	50	60	19	42
Plagioclase Feldspar	(Na,Ca)AlSi ₃ O ₈	6	14	10	20
K-Feldspar	KAISi ₃ O ₈	4	3.5	3	7
Calcite	CaCO₃				0.5
Halite	NaCl			5	2
Siderite	FeCO ₃			3	2
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	3	5	13	13
Chlorite	(Mg,Al) ₆ (Si,Al) ₄ O ₁₀ (OH) ₈	1	1.5	12	1.5
Illite / Mica	KAI ₂ (Si ₃ AIO ₁₀)(OH) ₂	10	13	30	9
Mixed-Layered Illite/Smectite	K _{0.5} Al ₂ (Si,Al) ₄ O ₁₀ (OH) ₂ • 2H ₂ O	26	3	5	3
	Total	100	100	100	100
% Illit	e in ML I/S	50%	75%	85%	70%

Certificate of Analysis 3111624

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 12/11/2023 15:53

Project Name: Green Landfill Semiannual Groundwater

Workorder:

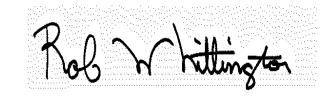
3111624

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/08/2023 14:20.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

SAMPLE SUMMARY

			SAIVIPLE SUIVIIVIA	AK I		
Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3111624-01	MW1/		Groundwater	11/07/2023 15:55	11/08/2023 14:20	Eric Brown
3111624-02	MW2/		Groundwater	11/07/2023 15:00	11/08/2023 14:20	Eric Brown
3111624-03	MW3A/		Groundwater	11/08/2023 10:10	11/08/2023 14:20	Eric Brown
3111624-04	MW4/		Groundwater	11/07/2023 10:25	11/08/2023 14:20	Eric Brown
3111624-05	MW5/		Groundwater	11/07/2023 08:45	11/08/2023 14:20	Eric Brown
3111624-06	MW6/		Groundwater	11/08/2023 09:05	11/08/2023 14:20	Eric Brown
3111624-07	DUPLICATE/		Groundwater	11/08/2023 10:30	11/08/2023 14:20	Eric Brown
3111624-08	FIELD BLANK/		Water	11/08/2023 09:15	11/08/2023 14:20	Eric Brown
<u>LabNumber</u>	<u>Measurement</u>	<u>Value</u>				
3111624-01	Field Conductance	564				
	Field pH	6.78				
	Field Temp (C)	17.26				
3111624-02	Field Conductance	1100				
	Field pH	6.46				
	Field Temp (C)	16.71				
3111624-03	Field Conductance	4390				
	Field pH	6.48				
	Field Temp (C)	16.62				
3111624-04	Field Conductance	3480				
	Field pH	6.32				
	Field Temp (C)	17.94				
3111624-05	Field Conductance	3440				
	Field pH	6.36				
2111624 06	Field Temp (C)	16.10				
3111624-06	Field Conductance	2990				
	Field pH	6.34				
	Field Temp (C)	17.37				

ANALYTICAL RESULTS

Lab Sample ID: **3111624-01**Description: **MW1**Sample Collection Date Time: 11/07/2023 15:55

Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Arsenic	0.0016		mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Barium	0.079		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Boron	1.65	D1	mg/L	1.00	1.00	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:20	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Calcium	25.2	D1	mg/L	4.00	1.30	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:20	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Iron	1.51	M2	mg/L	0.100	0.050	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:12	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Lithium	0.03		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB
Sodium	206	D1, M2	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:15	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:03	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	9	J	mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	978		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.94	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	684		mg/L	50	50	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	1.1		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 10:09	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.072	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.104	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.176	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.176	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	5.7	mg/L	0.5	0.4	SW846 9056	11/10/2023 21:54	11/10/2023 21:54	CSC
Fluoride	0.6	mg/L	0.2	0.2	SW846 9056	11/10/2023 21:54	11/10/2023 21:54	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Analyte	Result F	lag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	30	mg/L	1	0.5	SW846 9056	11/10/2023 21:54	11/10/2023 21:54	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-02**Description: **MW2**Sample Collection Date Time: 11/07/2023 15:00
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Arsenic	0.0283		mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Barium	0.270		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:26	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Calcium	179	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:42	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Iron	17.1	D2	mg/L	1.00	0.500	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:19	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Lithium	0.005	J	mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Molybdenum	0.003	J	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB
Sodium	56.2	D2	mg/L	2.60	1.00	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:19	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:07	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	20		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	1670		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.23	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	1060		mg/L	100	100	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	1.6		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 10:31	HMF

Subcontracted Analyses

Analyte	Result I	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	-0.396	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.001	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.001	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.001	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	185	D	mg/L	1.0	0.7	SW846 9056	11/10/2023 22:49	11/10/2023 22:49	CSC
Fluoride	0.3		mg/L	0.2	0.2	SW846 9056	11/10/2023 22:22	11/10/2023 22:22	CSC

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	159		mg/L	1	0.5	SW846 9056	11/10/2023 22:22	11/10/2023 22:22	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-03**Description: **MW3A**Sample Collection Date Time: 11/08/2023 10:10
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Barium	0.038		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Boron	0.31		mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:45	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Calcium	475	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:52	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Iron	0.185		mg/L	0.100	0.050	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:25	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Lithium	0.71		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB
Sodium	301	D1	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/21/2023 14:48	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:10	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	105		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	6700		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.37	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	3630		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	0.6		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 12:38	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	1.00	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.45	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	2.45	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	2.45	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1190	D	mg/L	20.0	14.4	SW846 9056	11/14/2023 03:55	11/14/2023 03:55	CSC
Fluoride	0.4		mg/L	0.2	0.2	SW846 9056	11/10/2023 23:16	11/10/2023 23:16	CSC

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

Analyte	Result Fla	ag Units	MRL	MDL Method	Prepared	Analyzed	Analyst
Sulfate	2530 D	mg/L	20	10 SW846 90	11/11/2023 00:11	11/11/2023 00:11	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-04**Description: **MW4**Sample Collection Date Time: 11/07/2023 10:25
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Barium	0.020		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Boron	0.81		mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:55	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Calcium	702	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:01	MRWD
Chromium	0.0008	J	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Iron	ND	B, U	mg/L	0.100	0.050	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:55	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Lithium	0.99	D1	mg/L	0.20	0.05	SW846-6020 A	11/10/2023 09:07	11/14/2023 14:34	AKB
Mercury	0.0004	J	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Selenium	0.001	J	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB
Sodium	240	D2	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:41	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:14	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	89		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	5710		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.16	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	4080		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	0.7		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 12:59	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.00	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.32	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	1.32	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.32	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1090	D	mg/L	10.0	7.2	SW846 9056	11/14/2023 04:22	11/14/2023 04:22	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	11/11/2023 00:39	11/11/2023 00:39	CSC
Sulfate	1890	D	mg/L	10	5	SW846 9056	11/11/2023 01:34	11/11/2023 01:34	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: **3111624-05**Description: **MW5**Sample Collection Date Time: 11/07/2023 08:45
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Barium	0.011		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Boron	0.21		mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:04	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Calcium	439	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:20	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Iron	ND	B, U	mg/L	0.100	0.050	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:04	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Lithium	0.36		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Mercury	0.0002	J	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB
Sodium	197	D2	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:44	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:18	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	75		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	6000		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.25	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	4650		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	0.7	Y1	mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 13:21	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.00	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.12	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	1.12	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.12	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	992	D	mg/L	10.0	7.2	SW846 9056	11/14/2023 04:50	11/14/2023 04:50	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	11/11/2023 02:56	11/11/2023 02:56	CSC
Sulfate	2390	D	mg/L	10	5	SW846 9056	11/11/2023 03:23	11/11/2023 03:23	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-06**Description: **MW6**Sample Collection Date Time: 11/08/2023 09:05
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Barium	0.009		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Boron	0.15	M2	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:23	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Calcium	375	D1, M3	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:30	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Iron	ND	B, U	mg/L	0.100	0.050	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:23	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Lithium	0.04		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB
Sodium	424	D2	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:47	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:21	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result F	lag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	18	mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	5120	umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.42 H	H3 Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	4030	mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	2.4	mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 13:42	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.220	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	-0.005	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.220	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.220	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	192	D, M3	mg/L	2.5	1.8	SW846 9056	11/11/2023 04:18	11/11/2023 04:18	CSC
Fluoride	0.5		mg/L	0.2	0.2	SW846 9056	11/11/2023 03:51	11/11/2023 03:51	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Analyte	Result Fla	lag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	8480 D,), M3	mg/L	50	25	SW846 9056	11/14/2023 16:40	11/14/2023 16:40	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-07**Description: **DUPLICATE**Sample Collection Date Time: 11/08/2023 10:30
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Barium	0.039		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Boron	0.30		mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:33	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Calcium	471	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:39	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Iron	ND	B, U	mg/L	0.100	0.050	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:33	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Lithium	0.74		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB
Sodium	331	D2	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:50	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:25	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	110		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	7440		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	7.25	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	5290		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	0.7		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 14:03	HMF

Subcontracted Analyses

Analyte	Result F	Flag Uni	s MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	-0.068 _	_Sub pC	L		EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.477	_Sub pC	L		EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.477	_Sub pC	L		EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.477 _	_Sub pCi	L		EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	3090	D	mg/L	25.0	18.0	SW846 9056	11/17/2023 22:54	11/17/2023 22:54	CSC
Fluoride	0.4		mg/L	0.2	0.2	SW846 9056	11/11/2023 05:13	11/11/2023 05:13	CSC

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Sulfate	1490	D	mg/L	20	10	SW846 9056	11/14/2023 05:44	11/14/2023 05:44	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111624-08**Description: **FIELD BLANK**Sample Collection Date Time: 11/08/2023 09:15
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Barium	ND	U	mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:42	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:42	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Copper	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Iron	ND	B, U	mg/L	0.100	0.050	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:42	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Lithium	ND	U	mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB
Sodium	ND	U	mg/L	0.26	0.10	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:54	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:29	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	U	mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	1		umhos/cm	1	1	2510 B-2011	11/09/2023 09:01	11/09/2023 13:45	AED
pH (Lab)	5.83	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	ND	G1, U	mg/L	50	50	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	ND	U	mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 14:24	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.00	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.520	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.520	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.520	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	0.6		mg/L	0.5	0.4	SW846 9056	11/11/2023 06:08	11/11/2023 06:08	CSC
Fluoride	ND	U	mg/L	0.2	0.2	SW846 9056	11/11/2023 06:08	11/11/2023 06:08	CSC
Sulfate	0.6	J	mg/L	1	0.5	SW846 9056	11/11/2023 06:08	11/11/2023 06:08	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3111624

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

Sample RPD exceeded the method control limit.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

Y1

RPD

В	Target analyte detected in method blank at or above the method reporting limit.
D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
G1	Residue yield was less than the method required 2.5mg.
НЗ	Sample received and analyzed past holding time.
J	Estimated value.
J5	Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.
L2	The associated blank spike recovery was below method acceptance limits.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery

Relative Percent Difference

> Greater than < Less than

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
Blank (BCK0852-BLK1)										
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2	2023 16:34									
Mercury	ND	0.0005	mg/L							U
Molybdenum	ND	0.01	mg/L							U
Antimony	ND	0.005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Copper	ND	0.003	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
Blank (BCK0852-BLK2)										
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2	2023 14:01									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
Iron	0.658	0.100	mg/L							В
Sodium	ND	0.26	mg/L							U
Blank (BCK0852-BLK3)										
Prepared: 11/10/2023 9:07, Analyzed: 11/16/2	2023 11:16									
Iron	0.720	0.100	mg/L							В
Sodium	ND	0.26	mg/L							U
LCS (BCK0852-BS1)										
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2	2023 16:37									
Antimony	0.061	0.005	mg/L	0.0625		98.0	85-115			
Molybdenum	0.06	0.01	mg/L	0.0625		98.5	85-115			
Mercury	0.0024	0.0005	mg/L	0.00250		94.4	85-115			
Arsenic	0.0605	0.0010	mg/L	0.0625		96.9	85-115			
Barium	0.060	0.004	mg/L	0.0625		95.3	85-115			
Beryllium	0.0580	0.0020	mg/L	0.0625		92.8	85-115			
Cadmium	0.0590	0.0010	mg/L	0.0625		94.4	85-115			
Chromium	0.0613	0.0020	mg/L	0.0625		98.1	85-115			
Cobalt	0.060	0.004	mg/L	0.0625		96.2	85-115			
Copper	0.060	0.003	mg/L	0.0625		95.7	85-115			
Lead	0.056	0.002	mg/L	0.0625		89.1	85-115			
Lithium	0.06	0.02	mg/L	0.0625		91.3	85-115			
Selenium	0.060	0.003	mg/L	0.0625		95.7	85-115			
Thallium	0.0576	0.0020	mg/L	0.0625		92.2	85-115			

	S Dy SW040					, -				
		Reporting		Spike	Source	0/550	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
LCS (BCK0852-BS2)										
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023	3 14:04									
Boron	0.11	0.10	mg/L	0.125		88.9	85-115			
Calcium	5.71	0.40	mg/L	6.25		91.4	85-115			
Iron	5.50	0.100	mg/L	6.25		88.0	85-115			В
Sodium	4.80	0.26	mg/L	6.25		76.8	85-115			L2
LCS (BCK0852-BS3)										
Prepared: 11/10/2023 9:07, Analyzed: 11/16/2023	3 11:19									
Iron	6.00	0.100	mg/L	6.25		95.9	85-115			В
Sodium	5.18	0.26	mg/L	6.25		82.9	85-115			L2
			<u>J</u> .	-		<u> </u>	-			
. ,	ource: 3111623-0	D1								
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023										
Mercury	0.0023	0.0005	mg/L	0.00250	ND	91.3	80-120			
Molybdenum	0.06	0.01	mg/L	0.0625	ND	101	80-120			
Antimony	0.065	0.005	mg/L	0.0625	ND	103	80-120			
Arsenic	0.0637	0.0010	mg/L	0.0625	ND	102	80-120			
Barium	0.097	0.004	mg/L	0.0625	0.037	95.1	80-120			
Beryllium	0.0580	0.0020	mg/L	0.0625	ND	92.9	80-120			
Cadmium	0.0588	0.0010	mg/L	0.0625	ND	94.1	80-120			
Chromium	0.0602	0.0020	mg/L	0.0625	ND	96.3	80-120			
Cobalt	0.058	0.004	mg/L	0.0625	ND	92.3	80-120			
Copper	0.055	0.003	mg/L	0.0625	ND	88.3	80-120			
Lead	0.054	0.002	mg/L	0.0625	ND	85.7	80-120			
Lithium	0.09	0.02	mg/L	0.0625	0.04	86.6	80-120			
Selenium	0.063	0.003	mg/L	0.0625	ND	101	80-120			
Thallium	0.0554	0.0020	mg/L	0.0625	ND	88.6	80-120			
Matrix Spike (BCK0852-MS2)	ource: 3111624-0	06								
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023	3 18:09									
Antimony	0.063	0.005	mg/L	0.0625	ND	101	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	80-120			
Mercury	0.0024	0.0005	mg/L	0.00250	ND	94.4	80-120			
Arsenic	0.0652	0.0010	mg/L	0.0625	ND	104	80-120			
Barium	0.069	0.004	mg/L	0.0625	0.009	96.0	80-120			
Beryllium	0.0568	0.0020	mg/L	0.0625	ND	91.0	80-120			
Cadmium	0.0573	0.0010	mg/L	0.0625	ND	91.7	80-120			
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120			
Cobalt	0.059	0.004	mg/L	0.0625	ND	94.1	80-120			
Copper	0.057	0.003	mg/L	0.0625	ND	90.4	80-120			
Lead	0.053	0.002	mg/L	0.0625	ND	84.8	80-120			
Lithium	0.10	0.02	mg/L	0.0625	0.04	89.2	80-120			
Selenium	0.070	0.003	mg/L	0.0625	ND	111	80-120			
Thallium	0.0551	0.0020	mg/L	0.0625	ND	88.2	80-120			

		Penarting		Snika	Source		%REC		RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Notes
			-			-				
Batch BCK0852 - EPA 200.2										
Matrix Spike (BCK0852-MS3)	Source: 3111623-0	1								
Prepared: 11/10/2023 9:07, Analyzed: 1	1/15/2023 17:33									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	226	4.00	mg/L	6.25	221	81.5	80-120			D2
Iron	8.11	1.00	mg/L	6.25	2.26	93.6	80-120			D2, B
Sodium	876	2.60	mg/L	6.25	895	NR	80-120			D2, M3
Matrix Spike (BCK0852-MS4)	Source: 3111624-0	6								
Prepared: 11/10/2023 9:07, Analyzed: 1	1/15/2023 17:39									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	377	4.00	mg/L	6.25	375	24.5	80-120			D2, M3
Iron	5.83	1.00	mg/L	6.25	ND	93.4	80-120			D2, B
Sodium	351	2.60	mg/L	6.25	351	NR	80-120			D2, M3
Matrix Spike Dup (BCK0852-MSD1)	Source: 3111623-0	1								
Prepared: 11/10/2023 9:07, Analyzed: 1										
Antimony	0.063	0.005	mg/L	0.0625	ND	101	80-120	2.41	20	
Mercury	0.0023	0.0005	mg/L	0.00250	ND	92.7	80-120	1.53	20	
Molybdenum	0.06	0.01	mg/L	0.0625	ND	100	80-120	0.770	20	
Arsenic	0.0626	0.0010	mg/L	0.0625	ND	100	80-120	1.81	20	
Barium	0.096	0.004	mg/L	0.0625	0.037	93.4	80-120	1.13	20	
Beryllium	0.0582	0.0020	mg/L	0.0625	ND	93.1	80-120	0.231	20	
Cadmium	0.0578	0.0010	mg/L	0.0625	ND	92.5	80-120	1.74	20	
Chromium	0.0596	0.0020	mg/L	0.0625	ND	95.4	80-120	0.955	20	
Cobalt	0.057	0.004	mg/L	0.0625	ND	90.8	80-120	1.64	20	
Copper	0.054	0.003	mg/L	0.0625	ND	86.6	80-120	1.94	20	
Lead	0.053	0.002	mg/L	0.0625	ND	84.3	80-120	1.71	20	
Lithium	0.09	0.02	mg/L	0.0625	0.04	86.3	80-120	0.238	20	
Selenium	0.063	0.003	mg/L	0.0625	ND	101	80-120	0.368	20	
Thallium	0.0544	0.0020	mg/L	0.0625	ND	87.0	80-120	1.83	20	
Matrix Spike Dup (BCK0852-MSD2)	Source: 3111624-0	6								
Prepared: 11/10/2023 9:07, Analyzed: 1										
Molybdenum	0.07	0.01	mg/L	0.0625	ND	105	80-120	0.478	20	
Antimony	0.066	0.005	mg/L	0.0625	ND	106	80-120	5.07	20	J5
Mercury	0.0025	0.0005	mg/L	0.00250	ND	98.5	80-120	4.18	20	J5
Arsenic	0.0662	0.0010	mg/L	0.0625	ND	106	80-120	1.49	20	
Barium	0.071	0.004	mg/L	0.0625	0.009	98.1	80-120	1.86	20	J5
Beryllium	0.0583	0.0020	mg/L	0.0625	ND	93.3	80-120	2.56	20	
Cadmium	0.0597	0.0010	mg/L	0.0625	ND	95.5	80-120	4.07	20	J5
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120	0.0251	20	
Cobalt	0.059	0.004	mg/L	0.0625	ND	94.9	80-120	0.825	20	
Copper	0.057	0.003	mg/L	0.0625	ND	91.6	80-120	1.34	20	
Lead	0.055	0.002	mg/L	0.0625	ND	87.6	80-120	3.24	20	J5
Lithium	0.10	0.02	mg/L	0.0625	0.04	94.3	80-120	3.10	20	
Selenium	0.069	0.003	mg/L	0.0625	ND	110	80-120	0.900	20	
Thallium	0.0567	0.0020	mg/L	0.0625	ND	90.7	80-120	2.82	20	J5

	Reporting		Spike	Source		%REC		RPD	
Analyte Resul	t Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2									
Matrix Spike Dup (BCK0852-MSD3) Source: 3111	623-01								
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:36									
Boron NE	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium 220	4.00	mg/L	6.25	221	NR	80-120	2.58	20	D2, M3
Iron 8.02	2 1.00	mg/L	6.25	2.26	92.2	80-120	1.07	20	D2, B
Sodium 853	3 2.60	mg/L	6.25	895	NR	80-120	2.61	20	D2, M3
Matrix Spike Dup (BCK0852-MSD4) Source: 3111	624-06								
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:43									
Boron NE	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium 374		mg/L	6.25	375	NR	80-120	0.676	20	D2, M3
Iron 5.80		mg/L	6.25	ND	92.9	80-120	0.507	20	D2, B
Sodium 349	2.60	mg/L	6.25	351	NR	80-120	0.649	20	D2, M3
Post Spike (BCK0852-PS1) Source: 3111	623-01								
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023 18:16									
Antimony 0.068	3 0.005	mg/L	0.0625	ND	109	75-125			J5
Molybdenum 0.06	0.01	mg/L	0.0625	ND	101	75-125			
Mercury 0.0024	0.0005	mg/L	0.00250	ND	96.7	75-125			J5
Arsenic 0.0632	2 0.0010	mg/L	0.0625	ND	101	75-125			
Barium 0.102	2 0.004	mg/L	0.0625	0.037	104	75-125			J5
Beryllium 0.0625	0.0020	mg/L	0.0625	ND	100	75-125			
Cadmium 0.0617	7 0.0010	mg/L	0.0625	ND	98.7	75-125			J5
Chromium 0.0590	0.0020	mg/L	0.0625	ND	94.4	75-125			
Cobalt 0.056	0.004	mg/L	0.0625	ND	90.4	75-125			
Copper 0.054	0.003	mg/L	0.0625	ND	87.0	75-125			
Lead 0.057	7 0.002	mg/L	0.0625	ND	90.6	75-115			J5
Lithium 0.10	0.02	mg/L	0.0625	0.04	102	75-125			
Selenium 0.063	0.003	mg/L	0.0625	ND	101	75-125			
Thallium 0.0587	7 0.0020	mg/L	0.0625	ND	93.9	75-125			J5
Post Spike (BCK0852-PS2) Source: 3111	623-01								
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46									
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron NE	1.00	mg/L	0.125	ND		75-125			D2, M2, U
•		mg/L mg/L	0.125 6.25	ND 221	149	75-125 75-125			D2, M2, U D2
Boron NE	4.00	•			149 94.3				

		ъ		0 "	_		0/ DEC		DDD	
		Reporting		Spike 	Source	0/==5	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1517 - EPA 200.2										
Blank (BCK1517-BLK1)										
Prepared: 11/16/2023 11:51, Analyzed: 1	1/17/2023 13:03									
Iron	ND	0.100	mg/L							U
Sodium	ND	0.26	mg/L							U
LCS (BCK1517-BS1)										
Prepared: 11/16/2023 11:51, Analyzed: 1	1/17/2023 13:06									
Iron	6.47	0.100	mg/L	6.25		104	85-115			
Sodium	6.06	0.26	mg/L	6.25		96.9	85-115			
Matrix Spike (BCK1517-MS1)	Source: 3111624-0)1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 1	1/17/2023 14:03									
Iron	7.53	10.0	mg/L	6.25	ND	121	80-120			D2, M2, J
Sodium	196	26.0	mg/L	6.25	206	NR	80-120			D2, M2
Matrix Spike Dup (BCK1517-MSD1)	Source: 3111624-0)1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 1	1/17/2023 14:06									
Iron	7.72	10.0	mg/L	6.25	ND	124	80-120	2.45	20	D2, M2, J
Sodium	199	26.0	mg/L	6.25	206	NR	80-120	1.12	20	D2
Post Spike (BCK1517-PS1)	Source: 3111624-0)1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 1	1/17/2023 14:19									
Iron	7.22	10.0	mg/L	6.25	ND	115	75-125			D2, J
Sodium	183	26.0	mg/L	6.25	206	NR	75-125			D2, M2

Conventional Chemistry Analyses Madisonville - Quality Control

		Domestic		0 11	0		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	. toodit	Limit	00		. toodit	,LJ	2			
Batch BCK0601 - Default Prep Micro										
LCS (BCK0601-BS1)	_									
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:36			0.1.11.7	5.00		00.0	0001010			
pH (Lab)	4.95		Std. Units	5.00		99.0	98.8-101.2			
LCS (BCK0601-BS2)										
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:38	8									
pH (Lab)	5.09		Std. Units	5.00		102	98.8-101.2			H3
Duplicate (BCK0601-DUP1) Source	e: 3111624-06	5								
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:38	8									
pH (Lab)	7.42	0.10	Std. Units		7.42			0.00	10	H3
Duplicate (BCK0601-DUP2) Sourc	e: 3111623-01	l								
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:36	8									
pH (Lab)	7.62	0.10	Std. Units		7.60			0.263	10	Н3
Batch BCK0621 - Default Prep Micro										
Blank (BCK0621-BLK1)										
Prepared: 11/9/2023 9:01, Analyzed: 11/9/2023 13:4	5									
Specific Conductance (Lab)	ND	1	umhos/cm							U
		<u> </u>								
LCS (BCK0621-BS1)	=									
Prepared: 11/9/2023 9:01, Analyzed: 11/9/2023 13:49 Specific Conductance (Lab)	1410		umhos/cm	1410		100	80-120			
			ullillos/cill	1410		100	00-120			
,	e: 3111624-06 -	3								
Prepared: 11/9/2023 9:01, Analyzed: 11/9/2023 13:49		4			5400			0.00	0.000	
Specific Conductance (Lab)	5120	1	umhos/cm		5120			0.00	0.938	
Duplicate (BCK0621-DUP2) Source	e: 3111624-01	l								
Prepared: 11/9/2023 9:01, Analyzed: 11/9/2023 13:49										
Specific Conductance (Lab)	973	1	umhos/cm		978			0.513	0.938	
Batch BCK0870 - Default Prep Wet Chem										
Blank (BCK0870-BLK1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 15:4	4									
Total Dissolved Solids	ND	25	mg/L							U

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0870 - Default Prep Wet Chem										
LCS (BCK0870-BS1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023	3 15:44									
Total Dissolved Solids	1480	25	mg/L	1500		98.5	80-120			
	Source: 3111623-01		1119/12	1000		00.0	00 120			
Duplicate (BCK0870-DUP1) Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023										
Total Dissolved Solids	4460	250	mg/L		4340			2.73	10	
			1119/12		1010			2.70	10	
. ,	Source: 3111625-01									
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 Total Dissolved Solids	5740	250	mg/L		5770			0.521	10	
Total Dissolved Solids	3740	250	IIIg/L		3770			0.521	10	
Batch BCK1259 - Default Prep Wet Chem										
Blank (BCK1259-BLK1)										
Prepared: 11/14/2023 8:18, Analyzed: 11/15/20	023 10:50									
Chemical Oxygen Demand	ND	13	mg/L							U
LCS (BCK1259-BS1)										
Prepared: 11/14/2023 8:18, Analyzed: 11/15/20	023 10:50									
Chemical Oxygen Demand	121	13	mg/L	125		96.8	90-110			
Duplicate (BCK1259-DUP1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15/20	23 10:50									
Chemical Oxygen Demand	ND	13	mg/L		9				25	U
Matrix Spike (BCK1259-MS1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15/20	23 10:50									
Chemical Oxygen Demand	270	13	mg/L	250	9	104	90-110			
Matrix Spike Dup (BCK1259-MSD1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15/20	023 10:50									
Chemical Oxygen Demand	270	13	mg/L	250	9	104	90-110	0.00	10	
Batch BCK1372 - Default Prep Wet Chem										
Blank (BCK1372-BLK1)										
Prepared: 11/15/2023 9:48, Analyzed: 11/16/20	023 6:16									
Total Organic Carbon	ND	0.5	mg/L							U
-										

Conventional Chemistry Analyses Madisonville - Quality Control

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1372 - Default Prep Wet Ch	em									
LCS (BCK1372-BS1)										
Prepared: 11/15/2023 9:48, Analyzed:	11/16/2023 6:38									
Total Organic Carbon	4.8	0.5	mg/L	5.00		96.0	80-120			
Duplicate (BCK1372-DUP1)	Source: 3111491-01									
Prepared: 11/15/2023 9:48, Analyzed:	11/16/2023 11:56									
Total Organic Carbon	7.7	0.5	mg/L		7.8			1.67	25	
Duplicate (BCK1372-DUP2)	Source: 3111624-05									
Prepared: 11/15/2023 9:48, Analyzed:	11/20/2023 22:54									
Total Organic Carbon	0.4	0.5	mg/L		0.7			51.2	25	Y1, J
Matrix Spike (BCK1372-MS1)	Source: 3111491-02									
Prepared: 11/15/2023 9:48, Analyzed:	11/16/2023 12:17									
Total Organic Carbon	6.8	0.5	mg/L	2.50	4.5	92.6	80-120			
Matrix Spike (BCK1372-MS2)	Source: 3111624-06									
Prepared: 11/15/2023 9:48, Analyzed:	11/20/2023 23:15									
Total Organic Carbon	6.5	0.5	mg/L	5.00	2.4	81.8	80-120			

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1030 - Default Prep IC										
Blank (BCK1030-BLK1)										
Prepared: 11/11/2023 11:36, Analyzed: 11/	/11/2023 11:36									
Chloride	ND	0.5	mg/L							U
Fluoride	ND	0.2	mg/L							U
Sulfate	ND	1	mg/L							U
LCS (BCK1030-BS1)										
Prepared: 11/11/2023 11:09, Analyzed: 11/	/11/2023 11:09									
Chloride	12.6		mg/L	12.5		100	90-110			
Fluoride	5.2		mg/L	5.00		104	90-110			
Sulfate	25		mg/L	25.0		101	90-110			
Matrix Spike (BCK1030-MS1)	Source: 3111624-06	i								
Prepared: 11/11/2023 8:52, Analyzed: 11/	11/2023 8:52									
Fluoride	1.5		mg/L	5.00	0.4	21.3	75-125			M2
Chloride	140		mg/L	12.5	173	NR	75-125			М3
Sulfate	2200		mg/L	25.0	7630	NR	75-125			М3
Matrix Spike (BCK1030-MS2)	Source: 3111625-01									
Prepared: 11/11/2023 9:47, Analyzed: 11/	11/2023 9:47									
Chloride	1520		mg/L	12.5	2240	NR	75-125			М3
Fluoride	1.3		mg/L	5.00	0.3	19.3	75-125			M2
Sulfate	2090		mg/L	25.0	3770	NR	75-125			М3
Matrix Spike Dup (BCK1030-MSD1)	Source: 3111624-06	;								
Prepared: 11/11/2023 9:19, Analyzed: 11/	11/2023 9:19									
Chloride	138		mg/L	12.5	173	NR	75-125	1.87	15	М3
Fluoride	1.7		mg/L	5.00	0.4	24.2	75-125	9.09	15	M2
Sulfate	2160		mg/L	25.0	7630	NR	75-125	1.51	15	М3
Matrix Spike Dup (BCK1030-MSD2)	Source: 3111625-01									
Prepared: 11/11/2023 10:14, Analyzed: 11	/11/2023 10:14									
Chloride	1530		mg/L	12.5	2240	NR	75-125	0.502	15	МЗ
Fluoride	1.2		mg/L	5.00	0.3	18.6	75-125	2.73	15	M2
Sulfate	2100		mg/L	25.0	3770	NR	75-125	0.421	15	М3

Certified Analyses included in this Report

Analyte Certifications

2510 B-2011 in Water

Specific Conductance (Lab) KY Drinking Water Mdv (00030) VA NELAC MDV (460210) TN Drinking Water (02819) WV Wastewater

Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 FL Drinking Water Mdv (E871159)

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

5310 C-2014 in Water

Total Organic Carbon KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) ADEM Drinking Water Mdv (41880) WV Wastewater Madisonville (241), 825 Industrial Rd

Madisonville, KY 42431 MS Drinking Water MADV

HACH 8000 in Water

Chemical Oxygen Demand KY Wastewater Mdv (00030) VA NELAC MDV (460210) WV Wastewater Madisonville (241), 825 Industrial Rd

Madisonville, KY 42431

SM 4500-H+ B-2011 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3111624
Shipped By: Client	Temperature: 3.00° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	
Check if bottles are intact	
Check if bottles are correct	☑
Check if bottles have sufficient volume	
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	
Check if samples are preserved properly	☑

Pace Analytical Services LLC Kentucky	ý
P.O. Box 907	
Madisonville KY 42431	

Chain of Custody

Scheduled for: <u>11/13/2023</u>

Page 27 of 55

Printed: 10/27/2023 3:19:37PM

		<u> </u>			
Client: Big Rivers Electric C Reid/Green Station	orporation	Station	orporation Reid/Green	_	Electric Corporation Reid/Green Station
Project: Green Landfill Semi	se Print Legibly ted by (Signature): Fequired information omposite samples please indicate begin time, ent: Start Date Start time Start Date Start time JSE ONLY required information of the intermediate Collection (mm/dd/yy): Time (24 hr): Bott olie ID# 24-01 A 11/7/23 1555 Prese 24-01 D 11/7/23 1555 Prese Prese rvation Check Performed by: fata collected by: Fric Brown 6.78 Cond (mahe) 0.564 (oC) 17.26 or (oF)	Mark Bertram 9000 Highway 2096 Robards, KY 42452		Mark Bertrai 9000 Highw Robards, KY	ay 2096
		Phone: (270) 844-60	00	PO#:	
Please Print Legibly		State: KY	——	Quote#	·····
Collected by (Signature):	required	I information*	_	Compli	iance Monitoring? Yes No _X
*For composite samples pleas	e indicate begin time	, end time and temp(oC) at en	d time below:	Sample	es Chlorinated? Yes No X
Influent: Start Date	Start time	End Date E	End TimeT	emp (oC)	***************************************
Effluent: Start Date	Start time	End Date N/A	nd TimeT	emp (oC)	
Workorder # Date	Collection	iners			
3111624 (mm/dd/yy): Sample ID#	Time (24 hr): Bo	Solution and Preservative Solution of the self-	Sample Description	Composite	Sample Analysis Requested
3111624-01 A 11/7/23	<u>1555</u>	Plastic 500mL pH<2 1 w/HNO3	MW1	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot
In 1		servation Check: pH :			6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 60108 +Se,TI, Fe
3111624-01 B 11/7/23	[555	Plastic 1L 1	MW1	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride
3111624-01 C 11/7/23		Plastic 500mL pH<2 1 w/H2SO4	MW1	g/c	9056 COD TOC
3111624-01 D 11/7/23		stic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	_ MW1	g/c	Radium 226 (sub)
	Pres	servation Check: pH :			
Preservation Check Perform	ed by:	Sw			
Field data collected by:		Date (mm/dd/yy) 11/4	13 Time (24 hr) /	555	mw-1
	ond (wmbe) 0.56	Res CI (mg/L)	Tot CI (mg/L)	Fro	ee CI (mg/L)
Temp (oC) 17.26 or	(oF)	Static Water Level	DO (mg/L)	т	urb. (NTU)
Flow (MGD) or	(CFS)	or (g/min)	**		,
Relinquished by: (Signature)		Received by: (Signature)	/	Date (mm.	,
tic Dem		8mg		11/8/	23 1420
				<u>.</u>	
<u></u>		 	······································		

PACE- Check here if trip charge applied to associated COC

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/13/2023</u>

	<u>L</u>						
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Ground	Station Mark Bertram		Invoice To: Big Rivers E Mark Bertral 9000 Highwa Robards, KY	Electric Corporation Reid/Green m ay 2096	Station		
	Phone: <u>(270) 844-60</u> PWS ID#:	200	PO#:				
Please Print Legibly	State: KY		Quote#				
Collected by (Signature): File Burner	Jired information	_	Compliance Monitoring? Yes No _				
*For composite samples please indicate begin		ad time below:	Sample	es Chlorinated? Yes No	<u>×</u>		
Influent: Start Date Start time	. <i>I</i> .	End Time1	emp (oC)				
Effluent: Start Date Start time		End Time					
			(00)				
required information Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative	Sample Description	Composite	Sample Analysis Request	ted		
3111624-01 E 11/7/23 /535	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW1	g/c	Radium 228 (sub)			
3111624-01 F 11/7/23 1555	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH :	MW1	g/c	Radium 228 (sub)			
3111624-01 G 11/7/23 1555	Plastic 1L pH<2 w/HNO3 1 (Sub) Preservation Check: pH :	MW1	g/c	Radium Total (sub)			
3111624-01 H 11/7/23 1555	AG 250mL pH<2 1 / w/H2SO4 Preservation Check: pH:	MW1	g/c	TOC			
Preservation Check Performed by:	Sv						
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)					
pH Cond (umho)				ee Cl (mg/L)			
	Static Water Level			urb. (NTU)			
Flow (MGD) or (CFS)			·				
Relinquished by: (Signature)	Received by: (Signature)		Date (mm/	/dd/yy) Time (24 hr)			

PACE- Check here if trip charge applied to associated COC

*rinted: 10/27/2023 3:19:37PM

Pace Analytical Services ŁLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

				Schedu	icu it	71. 11/13/2023]	11 E 31 B2 11 E 1		
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater				Report To: Big Rivers E Station Mark Bertra	Electric (Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452			
				9000 Highw Robards, K	•					
				Phone: (270	0) 844-6	000	PO#:			
Please Print Legibly	/	10		PWS ID#: State: <u>KY</u>			Quote#			
Collected by (Signature):	- 12	102	uired infor	mation			Compli	iance Monitorin	g? YesNo_ <u>≭</u> _	
*For composite samples	bni seselo.	icate begir	Ltime, end ti	me and temp(d	oC) at e	nd time below:	Sample	es Chiorinated?	Yes No	
Influent: Start Date	St	art time		End Date	NL	≰ nd Time	Temp (oC)			
Effluent: Start Date	Si	art time _	1				Temp (oC)			
_ ·	uired info			l	হ					
Workorder # Da 3111624 (mm/d Sample ID#	ite C id/yy): Tin	ollection se (24 hr):	Bottle an	d Preservative	Containers	Sample Description	Composite	Sample A	inalysis Requested	
3111624-02 A 11/7	23	500		500mL pH<2 /HNO3	- -	MW2	g/c	Beryllium Tot 6020 Calcium	6020 Cadmium Tot Tot 6010B Barium Tot Im Tot 6020 Cobalt Tot	
	-							6020 Arsenic 6010B Coppe Tot 6020 Lead 6020 Mercury	Tot 6020 Coolait for Tot 6020 Boron Tot r Tot 6020 Antimony 1 Tot 6020 Lithium Tot Tot 6020 Malybdenum um Tot 6010B	
1	<i>;</i>		Preservati	on Check: pH	i: <u>C</u>	_		+Se,T	, Fe	
3111624-02 B 11/7	<u> </u>	300	Pla	astic 1L	1	MW2	g/c		ductivity (Lab) TDS Chloride 9056 Fluoride	
3111624-02 C 11/7/	23	500	w/	500mL pH<2 'H2SO4	1	MW2	g/c	COD TOC		
	62	500		on Check: pH	***************************************					
3111624-02 D 11/7/23 1500				pH<2 w/HNO3 226 (Sub)	3 1 •	MW2	g/c	g / c Radium 226 (sut		
11/2/	23 [509		on Check: pH						
3111024-02		Rad	pH<2 w/HNO3 228 (Sub) on Check: pH		MW2	g/c	Radium 228 (sub)			
Preservation Check Pe	formed by	r	/) _	·	<u>.</u>				
			. ^		. 1.	. / -	1600	m	υ-2	
Field data collected by:		~			,	•				
pH <u>6.46</u> Cond (Marko) <u>1.10</u> Temp (oC) <u>16.71</u> or (oF) st						Free Cl (mg/L)				
Temp (oC) 16.71 Flow (MGD)	-	· · · —			el n)	DO (mg/L)	T	urb. (NTU)		
Relinquished by: (Signate	.rc)	<u></u>	D _n	ceived by: (Sig	zastura)		Date (mm	Markey A	Ti (24 ha)	
A B	uie) 		110	C/2		•	Date (ISSIS	/ou/yy) /o.a.	Time (24 hr)	
man				sru.	7 1		_ '' / 0/	<u> </u>	1420	
							<u> </u>	<u></u>		
								······································		

PACE- Check here if trip charge applied to associated COC

'rinted: 10/27/2023 3:19:37PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

Page 30 of 55

¹rinted: 10/27/2023 3:19:37PM

Client: Big Rivers Electric Corporation Reid/Green Station	Report To:		Invoice To:					
		Big Rivers Electric Corporation Reid/Green						
Project: Green Landfill Semiannual Groundwater	Station Mark Bertram 9000 Highway 2096 Robards, KY 42452		Mark Bertram 9000 Highway 2096 Robards, KY 42452					
	Phone: (270) 844-60	<u>000</u>	PO#:		_			
Please Print Legibly	PWS ID#: State: KY	Quote#						
Collected by (Signature): # E & Brand	ormation*		Compli	ance Monitorii	ng? Yes No 🔀			
*For composite samples please indicate begin time, end		nd time below:	Sample	s Chlorinated	? Yes No <u>×</u>			
Influent: Start Date Start time	End Date	Temp (oC)						
		End Time						
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): Bottle a	and Preservative to	Sample Description	Composite	Sample	Analysis Requested			
3111624-02 F 11/7/23 1500 Plastic	IL pH<2 w/HNO3 1	MW2	g/c	Radium 228				
	d 228 (Sub) ation Check: pH :							
1.1.1 0 1600	L pH<2 w/HNO3 1 (Sub)	MW2	g/c	Radium Tota	i (sub)			
مأرا	ation Check: pH:	. •						
	250mL pH<2 1 w/H2SO4	MW2	g/c	TOC				
مريمين البال	ation Check: pH : c 500mL pH<2 1 w/HNO3	- MW3A	g/c	6020 Calciur 6020 Chrom 6020 Arseni 6010B Copp Tot 6020 Lea	t 6020 Cadmium Tot in Tot 6010B Barium Tot ium Tot 6020 Cobalt Tot io Tot 6020 Boron Tot er Tot 6020 Antimony ad Tot 6020 Lithium Tot			
1. 4/03	etion Check: pH :	- MW3A	g/c	6020 Mercury Tot 6020 Molybdeni Tot 6020 Sodium Tot 6010B + Se, T1, Fe pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluori 9056				
Preservation Check Performed by:	<u>a</u>							
Field data collected by: Eric Brown	Date (mm/dd/yy) 11/1	8/23 Time (24 hr)	010		mw-3A			
pH <u>6.48</u> Cond (mm) 4.39	Res CI (mg/L)	Tot Cl (mg/L)	Fre	se Cl (mg/L) _				
Temp (oC) 16.62 or (oF) S	Static Water Level	Turb. (NTU)						
Flow (MGD) or (CFS) o	or (g/min)							
Relinquished by: (Signature)	Received by: (Signature)	Date (mm	/dd/yy)	Time (24 hr)				
die Bre	Shuff	11/8/23		1420				

PACE- Check here if trip charge applied to associated COC

Chain of Custody Scheduled for: 11/13/2023

Project: Green Landfill Semiannual Groundwater State Mark Bertram 9000 Highway 2096 Robards, KY 42452 Robards, KY 42452 Phone: [270] 844-6090 PO#:	·			Schedule	u IV	1. 11/13/2023]	0	# HIWOTIZE:31 413	i
Project: Green Landfill Semiannual Groundwater Mark Bertram Mark Bertram Mark Bertram Mod Highway 2096 S000 Highway 2096 Robards, KY 42452 Robards, KY 42452 Robards, KY 42452 Robards, KY 42452 Phone (2701 844 6800) POST: Preservation Check: pH Please Print Legibly (Signature): Procomposite samples please indicate begin time, end time and temp(oC) at end time below Samples Chlorinated? Yes No 2 Sample Chlorinated? Yes N		Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096			Sig Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096					
Post	Project: Green Landfill Semi									
Preservation Check: pH					844-60	<u>00</u>	PO#:			
*For composite samples please indicate begin time, end time and temp(oC) at end time below. Samples Chlorinated? Yes No 2 Influent: Start Date	Please Print Legibly		VV			Quote#				
For composite samples please indicate begin time, end time and temp(oC) at end time below: Influent: Start Date Start time End Date Start time End Date Start time End Date End Time End Time End Time (oC) Sample Description Temp (oC) LAB USE ONLY Terequired information* Collection (minddyn): Time (24 fn): Bottle and Preservative Sample Description Sample Description Composite Sample Analysis Requested COD TOC Preservation Check: pH:	Collected by (Signature):	mation*		-	Comp	liance Monito	ring? Yes	No <u>×</u>		
Effluent: Start Date	*For composite samples please		•) at en	d time below:	Samp	les Chlorinate	d? Yes	No 🔀
Collection Composite Collection Coll				End DateAnd/fale			Temp (oC)			
Morked	Effluent: Start Date	Start time		End Date	e End Time		Temp (oC)			
Plastic 50mL pH<2	Workorder # Date 3111624 (mm/dd/yy):	Collection	Bottle an	nd Preservative	Containers	Sample Description	Composite	Samol	e Analysis Requ	rested
Preservation Check: pH:		1010			1	MW3A	g/c			
3111624-03 D 1 8 23										
3111624-03 E	3111624-03 D 11813	1010	Plastic 1L pH<2 w/HN Rad 226 (Sub)		_		g/c	Radium 226 (sub)		
3111624-03 F 11 8 27 1010 Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	3111624-03 E 11/8/23	1010	Plastic 1L Rad	. pH<2 w/HNO3 228 (Sub)	1 /	MW3A	·g/c	Radium 22	8 (sub)	
Static Water Level Do (mg/L) Time (24 hr) T	3111624-03 F 1 8 23	1010	Plastic 1L Rad	pH<2 w/HNO3 228 (Sub)	1/	МWЗA	g/c	Radium 22	8 (sub)	
3111624-03 H 11/8/13 10/0 AG 250mL pH<2 1 MW3A g / c TOC W/H2SO4 Preservation Check: pH:	3111624-03 G 11/8/23	1010	Plastic 1L	. pH<2 w/HNO3		мwза	g/c	Radium Total (sub)		
Field data collected by: Eric Brown Date (mm/dd/yy) IL/8/23 Time (24 hr) 1010 M W - 3 A pH 6.48 Cond (mm/bc) 4.39 Res CI (mg/L) Tot CI (mg/L) Free Ci (mg/L) Temp (oC) 16.62 or (oF) Static Water Level DO (mg/L) Turb. (NTU) Flow (MGD) or (CFS) or (g/min) Date (mm/dd/yy) Time (24 hr)	3111624-03 H 11/8/13	1010	AG 25	50mL pH<2 /H2SQ4	1/	MW3A	g/c	тос		
Field data collected by: Eric Brown Date (mm/dd/yy) 1L/8/23 Time (24 hr) 1010 M W - 3.A pH 6.48 Cond (mm/bc) 4.39 Res CI (mg/L) Tot CI (mg/L) Free Ci (mg/L) Temp (oC) 16.62 or (oF) Static Water Level DO (mg/L) Turb. (NTU) Flow (MGD) or (CFS) or (g/min) Date (mm/dd/yy) Time (24 hr)	Preservation Check Performs	ed by:	Sa							
pH 6.48 Cond (umbo) 4.39 Res CI (mg/L) Tot CI (mg/L) Free Ci (mg/L) Temp (oC) 16.62 or (oF) Static Water Level DO (mg/L) Turb. (NTU) Flow (MGD) or (CFS) or (g/min) Date (mm/dd/yy) Time (24 hr)					ula	laa	1210		M 61 - 2 A	
Temp (oC) 16-62 or (oF) Static Water Level DO (mg/L) Turb. (NTU) Flow (MGD) or (CFS) or (g/min) Date (mm/dd/yy) Time (24 hr)		c			٠,	-				
Flow (MGD) or (CFS) or (g/min) Relinquished by: (Signature) Date (mm/dd/yy) Time (24 hr)										
Relinquished by: (Signature) Received by: (Signature) Date (mm/dd/yy) Time (24 hr)						DO (mg/L) _		lerb. (NTU) _		
		· · · · · · · · · · · · · · · · · · ·								
	Reinquished by: (Signature)			Swyl-			1 I			·
		· · · · · · · · · · · · · · · · · · ·		0		-				

PACE- Check here if trip charge applied to associated COC

'rinted: 10/27/2023 3:19:37PM

Chain of Custody

	Scheduled to	or: <u>11/13/2023</u>	31 3 0 0 3 1 6 3 4 1 11 6 6 3 1 6 3 1 6 5 1			
Client: Big Rivers Electric Corporation Reld/Green Station	Report To: Big Rivers Electric C	Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452			
Project: Green Landfill Semiannual Groundwater	Mark Bertram 9000 Highway 2096 Robards, KY 42452					
	Phone: (270) 844-60	<u>000</u>	PO#:			
Please Print Legibly	PWS ID#: State: KY	<i>•</i> 	Quote#			
Collected by (Signature):	ormation		Compli	ance Monitoring? Yes No X		
*For composite samples please indicate begin time, en		nd time below:	Sample	es Chiorinated? Yes No X		
Influent: Start Date Start time	End Date	End 1/10ge1	emp (oC)			
Effluent: Start Date Start time	_ End Date	End Time	Гетр (оС)			
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): Bottle	and Preservative		^			
Sample ID#	<u>~</u>	Sample Description	Composite	Sample Analysis Requested		
3111624-04 A 11 4 23 1025 Plas	tic 500mL pH<2 1 w/HNO3	MW4	g/c	Beryllium Tot 6020 Cadmium Tot 6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B		
lal .	vation Check: pH :			tSe,TI, Fe		
3111624-04 B 11/7/23 1026	Plastic 1L 1	MW4	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride		
	tic 500mL pH<2 1 w/H2SO4 /	MW4	g/c	9056 COD TOC		
3111624-04 D 11/7/23 1025 Plastic	ration Check: pH: 1L pH<2 w/HNO3 1 ad 226 (Sub) ration Check: pH:	MW4	g/c	Radium 226 (sub)		
3111624-04 E [] 7/23 1025 Plastic	1L pH<2 w/HNO3 1 ad 228 (Sub)	, MW4	g/c	Radium 228 (sub)		
Preservation Check Performed by:	51-J					
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)		mo4-		
pH Cond (umho)	Res Cl (mg/L)	Tot Ci (mg/L)	Fre	e CI (mg/L)		
Temp (oC) or (oF)	Static Water Level	ĐO (mg/L)	т	ນrb. (NTU)		
Flow (MGD) or (CFS)	or (g/min)					
Relinquished by: (Signature)	Received by: (Signature)	· · · · · · · · · · · · · · · · · · ·	Date (mm/	dd/yy) Time (24 hr)		
Joich	Shiff		11/8/	/420		
PACE- Check here If trip charge applied to a	ssociated COC	rinted: 10	 9/27/2023 3:19:	237PM Page 32 of 55		

'rinted: 10/27/2023 3:19:37PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

Page 33 of 55

Printed: 10/27/2023 3:19:37PM

•	0011044104104	11,10,2020		* (D E T T) (D	*****
Client: Big Rivers Electric Corporation Reid/Green Station	Station	orporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station		
Project: Green Landfill Semiannual Groundwa	ter Mark Bertram 9000 Highway 2096 Robards, KY 42452		Mark Bertrai 9000 Highwa Robards, KY	ay 2095	
•	Phone: (270) 844-60	00	PO#:		
Please Print Legibly	PWS ID#: State: <u>KY</u>		Quote#		
Collected by (Signature):	ed information*	_	Compli	ance Monitoring?	Yes No ★
*For composite samples please indicate begin time		d time below:	Sample	es Chlorinated?	Yes No
	End DateE		Temp (oC)		
Effluent: Start Date Start time		nd Time			
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): B	Sottle and Preservative	Sample Description	Composite		
Sample ID#		, , ,	•		lysis Requested
	astic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	WW4	g/c	Radium 228 (sul	b)
1 1	eservation Check: pH :	4 10 4 1 4	,	5 ° 5	
3111624-04 G 11/7/23 1025 P	astic 1L pH<2 w/HNO3 1 (Sub)	MW4	g/c	Radium Total (su	10)
1 /	eservation Check: pH :				
3111624-04 H 11/7/23 1825	AG 250mL pH<2 1 w/H2SO4 eservation Check: pH :	MW4	g/c	TOC	
3111624-05 A 11/3/23 0845	Plastic 500mL pH<2 1 w/HNO3	MW5	g/c	6020 Calcium To 6020 Chromium 6020 Arsenic To 6010B Copper T Tot 6020 Lead To 6020 Mercury To	20 Cadmium Tot ot 6010B Barium Tot Tot 6020 Cobalt Tot t 6020 Boron Tot ot 6020 Antimony ot 6020 Lithium Tot ot 6020 Molybdenum
Pri	eservation Check: pH :			+Se,T1,	
3111624-05 B 11/3/23 0845	Plastic 1L 1	MW5	g/c	pH (Lab) Condu	ctivity (Lab) TDS loride 9056 Fluoride
Preservation Check Performed by:	_Sn/				,
Field data collected by: Eric Brown	Date (mm/dd/yy) 11/7	23 Time (24 hr)	025	m	w-4
	Res CI (mg/L)	1		e CI (ma/L)	
011	Static Water Level				
	or (g/min)	•			***************
Relinquighed by: (Signature)	Received by: (Signature)	1	Date (mm/	/dd/vv) Tir	ne (24 hr)
bicken	_ Shuff	<u> </u>	11/8/	,	1420

Pace Analytical Services Lt.C Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

	Scheduled for	r: <u>11/13/2023</u>				
Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundy	Station Mark Bertram vater 9000 Highway 2096 Robards, KY 42452	Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096		Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452		
Please Print Legibly	Phone: (270) 844-600 PWS ID#: State:	<u>90</u>	PO#: Quote#			
Collected by (Signature): A: Run-				ance Monitoring? Yes No 🔀		
For composite samples please indicate begin ti	red information	f time balow		es Chiorinated? Yes No		
	End Date		Temp (of)			
Effluent: Start Date Start time						
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested		
3111624-05 C 1\(\frac{7}{23}\)	Plastic 500mL pH<2 1 w/H2SQ4	MW5	g/c	COD TOC		
3111624-05 D 11/23 0845	Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub) Preservation Check: pH:	MW5	g/c	Radium 226 (sub)		
	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW5	g/c	Radium 228 (sub)		
3111624-05 F 11/7/23 0845	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW5	g/c	Radium 228 (sub)		
3111624-05 G 11/7/23 9845	Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1 (Sub) Preservation Check: pH:	MW5	g/c	Radium Total (sub)		
3111624-05 H 11/23 0845	AG 250mL pH<2 1 w/H2SO4	MW5	g/c	тос		
Preservation Check Performed by:						
Field data collected by: Fric Brown	Date (mm/dd/yy) 11/3/	73 Time (24 hr)	1845	Mw-5		
pH 6.36 Cond (umho) 3.4				li di di di di di di di di di di di di di		
Temp (aC) 16.10 or (oF) Flow (MGD) or (CFS)			T ₁	arb. (NTU)		
Relinquished by: (Signature)	Received by: (Signature)		Date (mm/	1		
	<u> </u>					

PACE- Check here if trip charge applied to associated COC

¹rinted: 10/27/2023 3:19:37PM

Chain of Custody
Scheduled for: 11/13/2023

Page 35 of 55

Printed: 10/27/2023 3:19:37PM

	001100010010				
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Co	orporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452		
Project: Green Landfill Semiannual Groundwater	Mark Bertram 9000 Highway 2096 Robards, KY 42452				
	Phone: (270) 844-600 PWS ID#: 174/	<u>00</u>	PO#:	<u>.</u>	
Please Print Legibly	State: KY		Quote#		
Collected by (Signature): Wich required in	formation*	_	Compli	ance Monitoring? Yes No X	
*For composite samples please indicate begin time, en	d time and temp(oC) at end	d time below:	Sample	es Chlorinated? Yes No 🔀	
Influent: Start Date Start time	End Date	ind TimeTe	emp (oC)		
Effluent: Start Date Start time	_ End DateE	ind Time 1	emp (oC)		
	and Preservative	Sample Description	Composite	Commission of Property of	
Sample ID# 3111624-06 A 11/K/23 0905 Plas	tic 500mL pH<2 1	MW6	g/c	Sample Analysis Requested Beryllium Tot 6020 Cadmium Tot	
	w/HNO3		·	6020 Calcium Tot 6010B Barium Tot 6020 Chromium Tot 6020 Cobalt Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Copper Tot 6020 Antimony Tot 6020 Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Sodium Tot 6010B	
11	vation Check: pH :	24444		the, TI, Fe	
	Fiasuc II.	MW6	g/c	pH (Lab) Conductivity (Lab) TDS Sulfate 9056 Chloride 9056 Fluoride 9056	
	tic 500mL pH<2 1 w/H2SO4	MW6	g/c	сов тос	
WIDE AGAK	vation Check: pH :	MW6	0/0	Radium 226 (sub)	
	ad 226 (Sub)	1917 0 0	g/c	(300)	
3111624-06 E 11 8 23 0905 Plastic	at L pH<2 w/HNO3 1 ad 228 (Sub) vation Check: pH:	MW6	g/c	Radium 228 (sub)	
Preservation Check Performed by:	SV				
Field data collected by: _Eric Brown	Date (mm/dd/yy) 11/8/	23 Time (24 hr) 0	905	mw-6	
pH. 6.34 Cond (Marie) 2.99	Res CI (mg/L)			ee CI (mg/L)	
200	Static Water Level			urb. (NTU)	
Flow (MGD) or (CFS)					
Relinquished by: (Signature)	Received by: (Signatura)		Date (mm/	/dd/yy) Time (24 hr)	
4:Bu	8hm/fr	<u> </u>	11/8/	1420	

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Landfill Semiannual Groundwater	Report To: Big Rivers Electric Co Station Mark Bertram 9000 Highway 2096 Robards, KY 42452	Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096			Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452			
	Phone: (270) 844-600 PWS ID#:	<u>00</u>	PO#:		-			
Please Print Legibly	State: K)	<u> </u>	Quote#		.			
Collected by (Signature): required in	nformation	····	Compli	ance Monitori	ng? Yes No			
*For composite samples please indicate begin time, e	and time and temp(oC) at end	time below:	Sample	s Chlorinated	!? Yes No			
Influent: Start DateStart time	End Date N/6	his Time Te	mp (oC)					
Effluent: Start Date Start time	End Date E	nd Time 16	тр (о С)					
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr): Bottl Sample ID#	le and Preservative	Sample Description	Composite	Sample	Analysis Requested			
	ic 1L pH<2 w/HNO3 1 Rad 228 (Sub) rvation Check: pH :	MVV6	g/c	Radium 228	(sub)			
- ()	ic 1L pH<2 w/HNO3 1 (Sub)	MW6	g/c	Radium Tota	ıl (sub)			
3111624-06 H 11/8/23 0905 A	NG 250mL pH<2 1 w/H2SO4	MW6	g/c	тос				
11/0/02 1020	rvation Check: pH : astic 500mL pH<2 1 w/HNO3	DUPLICATE	g/c	6020 Calciu 6020 Chrom 6020 Arseni 6010B Copp	t 6020 Cadmium Tot in Tot 6010B Barium Tot ium Tot 6020 Cobalt Tot c Tot 6020 Boron Tot er Tot 6020 Antimony			
3111624-07 B 11 8 23 1039 Prese	rvation Check: pH :	DUPLICATE	g/c	6020 Mercul Tot 6020 So +Se	ad Tot 6020 Lithium Tot ry Tot 6020 Molybdenum dium Tot 6010B T1, Fe nductivity (Lab) TDS 6 Chloride 9056 Fluoride			
Preservation Check Performed by:	SV			9056				
Field data collected by: Eric Brown	Date (mm/dd/yy)	Time (24 hr)						
pH Cond (umho)				e CI (mg/L) _				
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	т	urb. (NTU) _				
Flow (MGD) ar (CFS)				. —				
Relinquished by: (Gignature)	Received by: (Signature)		Date (mm/	dd/yy)	Time (24 hr)			
PACE- Check here if trip charge applied to	associated COC	²rinted: 10/	27/2023 3:19	37PM	Page 36 of 55			

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

	ŧ							
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric (Station	Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096			Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452			
Project: Green Landfill Semiannual Grou	ndwater							
	Phone: (270) 844-60		PO#:					
Please Print Legibly	PWS ID#: State:		Quote#		_			
Collected by (Signature):	equired information		Compl	iance Monito	ring? Yes No 🔀			
*For composite samples please indicate beg		nd time below:	Sample	es Chlorinate	ed? Yes No 🔀			
Influent: Start Date Start time _	\ .\ .\		етр (aC)					
Effluent: Start Date Start time	End Date	End TimeT	emp (oC)					
LAB USE ONLY *required information* Workorder # Date Collection 3111624 (mm/dd/yy): Time (24 hr)	Sottle and Preservative	Sample Description	Composite		la Analogia Dagosata I			
Sample ID# 3111624-07 C 1/6/23 (03.0	Płastic 500mL pH<2 1	DUPLICATE	g/c	COD TOC	le Analysis Requested			
	w/H2SO4 Preservation Check: pH :	_	·					
3111624-07 D 11/8/23 6030	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	DUPLICATE	g/c	Radium 22	?6 (sub)			
3111624-07 E 11/8/23 1030	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	DUPLICATE	g/c	Radium 22	'8 (sub)			
3111624-07 F 11/8/23 1039	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	DUPLICATE	g/c	Radium 22	28 (sub)			
3111624-07 G 11/8/23 1630	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 1 (Sub)	DUPLICATE	g/c	Radium To	tal (sub)			
3111624-07 H 11/8/23 1030	Preservation Check: pH : AG 250mL pH<2 1 w/H2SO4	DUPLICATE	g/c	TOC				
Preservation Check Performed by:	Preservation Check: pH :							
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
pH Cond (umho)	Res CI (mg/L)	Tot CI (mg/L)	Fr	ee CI (mg/L)				
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	т	urb. (NTU)				
Flow (MGD) or (CFS)	or (g/min)							
Relinquished by: (Signature)	Received by: (Signature)		Date (mm		Time (24 hr) /420			
					<u></u>			
PACE- Check here if trip charge a	pplied to associated COC	²rinted: 10		:37PM	Page 37 of 55			

rinted: 10/27/2023 3:19:37PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

		<u> </u>					
Client: Big Rivers Electr Reid/Green Station	ic Corporation	Report To: Big Rivers Elec Station	tric Corporation Reid/Green		Invoice To: Big Rivers Electric Corporation Reid/Green Station		
Project: Green Landfill S	Samiannual Graun	Mark Bertram		Mark Bertra	m		
Project. Green Landini C	SCHIRATINIDES GIOGIS	9000 Highway 2		9000 Highw	•		
		Robards, KY 42	2452	Robards, K	Y 42452		
		Phone: <u>(270) 8</u> PWS ID#:	44-6000	PO#:	·····		
Please Print Legibly	00	State: K	<u>(Y</u> _	Quote#			
Collected by (Signature):	Sin & Spe	Uired Information		Compl	iance Monitoring? Yes	No <u>×</u>	
*For composite samples o		time, end time and temp(oC)	at end time below:	Sampl	es Chlorinated? Yes	No <u>×</u>	
		End Date		Temp (of)			
		1 🗸	<i>1 /</i> -	Temp (oC)	***************************************		
Effluent: Start Date	Start ume _	End Date		temb (or)			
Workorder # Date	ired information* Collection /yy): Time (24 hr):	Bottle and Preservative	Sample Description				
Sample ID#		bottle and Fleservative	Sample Description	Composite	Sample Analysis Re	quested	
3111624-08 A 11/8/2	<u> </u>	Plastic 500mL pH<2 w/HNO3	1 FIELD BLANK	g/c	Beryllium Tot 6020 Cadm 6020 Calcium Tot 6010B 6020 Chromium Tot 6020 6020 Arsenic Tot 6020 B 6010B Copper Tot 6020 I Tot 6020 Lead Tot 6020 I 6020 Mercury Tot 6020 N Tot 6020 Sodium Tot 601	Barium Tot 0 Cobalt Tot oron Tot Antimony Lithium Tot Malybdenum	
,		Preservation Check: pH:_	<u>/</u>		+Se,TI,Fe		
3111624-08 B 11/8/23	0915	Plastic 1L	1 FIELD BLANK	g/c	pH (Lab) Conductivity (La Sulfate 9056 Chloride 90		
3111624-08 C 11/8/2	3 2915	w/H2SO4	1 FIELD BLANK	g/c	9056 COD TOC		
3111624-08 D 11/8/2	2 0915	Preservation Check: pH : _ Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)	1 FIELD BLANK	g/c	Radium 226 (sub)		
3111624-08 E 11/8/2	0915	Preservation Check: pH : Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1 FIELD BLANK	g/c	Radium 228 (sub)		
Preservation Check Perf	ormed by:	Preservation Check: pH : _					
Field data collected by: _		Date (mm/dd/yy)	Time (24 hr)			Ì	
рH	Cond (umho)	Res Cl (mg/L)	Tot CI (mg/L)	Fr	ee Cl (mg/L)		
		Static Water Level	DO (mg/L)	Turb. (NYU)		1	
Flow (MGD)							
Relinquished by: (Signatur	re)	Received by: (Signa	ture	Date (mm	//dd/yy) Time (24 hr	 r)	
Cabo		Chu	//_	11/01	/23 /43		
- VIII-CO				- <u>''/४/</u>			
		— <i>— — —</i>		<u></u>			
							
PACE- Check he	re if trip charge an	plied to associated COC	'rinted: 1		Page 3	38 of 55	

'rinted: 10/27/2023 3:19:37PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/13/2023</u>

Page 39 of 55

'rinted: 10/27/2023 3:19:37PM

Client: Big Rivers Electric Reid/Green Station	Corporation	Report To: Big Rivers Electric C Station	Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station		
Project: Green Landfill Ser	miannual Ground	Mark Bertram		Mark Bertram 9000 Highway 2 Robards, KY 42		
		Phone: (270) 844-60 PWS ID#:	<u>000</u>	PO#:		
Please Print Legibly		State: KY		Quote#		
Collected by (Signature): 🛨	20 C Dange	ilred information		Complianc	e Monitoring? Yes No 🔀	
*For composit s samples plea		time, end time and temp(oC) at er			hlorinated? Yes No 👱	
influent: Start Date	Stantime	End Date	End Time	Temp (oC)	latin man	
Effluent: Start Date	Start time	End Date	End Time	Temp (oC)		
Workorder # Date	d information* Collection): Time (24 hr):	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested	
3111624-08 F 1/8/23	0915	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH :	FIELD BLANK	g/c Ra	adium 228 (sub)	
3111624-08 G 11/8/23	0915	Plastic 1L pH<2 w/HNO3 1 (Sub) Preservation Check: pH:	FIELD BLANK	g/c Ra	adium Total (sub)	
3111624-08 H 11/8/23	0915	AG 250mL pH<2 1 w/H2SO4 Preservation Check: pH :	FIELD BLANK	g/c TO	oc	
Preservation Check Perfor	med by:	The	ermometer Seria _/ 1813902 1814600 Temp 2.0 %			
Field data collected by:		Date (mm/dd/yy)	Time (24 hr)			
		Res CI (mg/L)			N/	
					l l	
Temp (oC) o		Static Water Level or (g/min)		Turb.	(NIO)	
Relinquished by: (Signature)		Received by (Signature)		Date (mm/dd/		

(724)850-5600

December 08, 2023

Rob Whittington
Pace Analytical Madisonville
825 Industrial Rd
Madisonville, KY 42431

RE: Project: 3111624-Revised Report

Pace Project No.: 30639443

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on November 14, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the December 7, 2023 report. This project was revised on December 8, 2023 to include QC sheets.

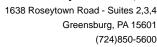
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

samantha.bayura@pacelabs.com

Samuelle Bayrue


(724)850-5622

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3111624-Revised Report

Pace Project No.: 30639443

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA010

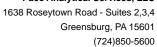
Louisiana DEQ/TNI Certification #: 04086 Maine Certification #: 2023021

Maryland Certification #: 202302 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249


Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: 3111624-Revised Report

Pace Project No.: 30639443

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30639443001	3111624-01	Water	11/07/23 15:55	11/14/23 10:20
30639443002	3111624-02	Water	11/07/23 00:00	11/14/23 10:20
30639443003	3111624-03	Water	11/07/23 00:00	11/14/23 10:20
30639443004	3111624-04	Water	11/07/23 00:00	11/14/23 10:20
30639443005	3111624-05	Water	11/07/23 00:00	11/14/23 10:20
30639443006	3111624-06	Water	11/08/23 00:00	11/14/23 10:20
30639443007	3111624-07	Water	11/08/23 00:00	11/14/23 10:20
30639443008	3111624-08	Water	11/08/23 00:00	11/14/23 10:20

SAMPLE ANALYTE COUNT

Project: 3111624-Revised Report

Pace Project No.: 30639443

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30639443001	3111624-01	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443002	3111624-02	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443003	3111624-03	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443004	3111624-04	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443005	3111624-05	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443006	3111624-06	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443007	3111624-07	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30639443008	3111624-08	EPA 903.1	MAR1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

(724)850-5600

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3111624-Revised Report

Pace Project No.: 30639443

Sample: 3111624-01 Lab ID: 30639443001 Collected: 11/07/23 15:55 Received: 11/14/23 10:20 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 0.0720 ± 0.547 (1.08) Radium-226 pCi/L 12/07/23 14:24 13982-63-3 C:NA T:82% Pace Analytical Services - Greensburg EPA 904.0 $0.104 \pm 0.426 \quad (0.967)$ Radium-228 pCi/L 12/04/23 15:22 15262-20-1 C:65% T:85% Pace Analytical Services - Greensburg Total Radium Total Radium 0.176 ± 0.973 (2.05) pCi/L 12/07/23 16:35 7440-14-4 Calculation Sample: 3111624-02 Lab ID: 30639443002 Collected: 11/07/23 00:00 Received: 11/14/23 10:20 PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. Act ± Unc (MDC) Carr Trac **Parameters** Method Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg Radium-226 EPA 903.1 -0.396 ± 0.562 (1.32) pCi/L 12/07/23 14:37 13982-63-3 C:NA T:85% Pace Analytical Services - Greensburg $0.00129 \pm 0.328 \quad (0.774)$ Radium-228 EPA 904.0 12/04/23 15:22 15262-20-1 pCi/L C:75% T:79% Pace Analytical Services - Greensburg Total Radium Total Radium 0.00129 ± 0.890 (2.09) pCi/L 12/07/23 16:35 7440-14-4 Calculation Sample: 3111624-03 Lab ID: 30639443003 Collected: 11/07/23 00:00 Received: 11/14/23 10:20 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $1.00 \pm 0.670 \quad (0.831)$ Radium-226 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:82% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.45 ± 0.524 (0.722) pCi/L 12/04/23 15:22 15262-20-1 C:77% T:81% Pace Analytical Services - Greensburg Total Radium Total Radium 2.45 ± 1.19 (1.55) pCi/L 12/07/23 16:35 7440-14-4 Calculation

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

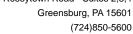
Project: 3111624-Revised Report

Pace Project No.: 30639443

Sample: 3111624-04 Lab ID: 30639443004 Collected: 11/07/23 00:00 Received: 11/14/23 10:20 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.000 \pm 0.334 \quad (0.748)$ Radium-226 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:91% Pace Analytical Services - Greensburg EPA 904.0 $1.32 \pm 0.512 \quad (0.765)$ Radium-228 pCi/L 12/04/23 15:22 15262-20-1 C:76% T:86% Pace Analytical Services - Greensburg Total Radium Total Radium 1.32 ± 0.846 (1.51) pCi/L 12/07/23 16:35 7440-14-4 Calculation Sample: 3111624-05 Lab ID: 30639443005 Collected: 11/07/23 00:00 Received: 11/14/23 10:20 PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. Act ± Unc (MDC) Carr Trac **Parameters** Method Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg 0.000 ± 0.607 (1.21) Radium-226 EPA 903.1 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:87% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 1.12 ± 0.531 (0.903) 12/04/23 15:22 15262-20-1 pCi/L C:73% T:77% Pace Analytical Services - Greensburg Total Radium Total Radium 1.12 ± 1.14 (2.11) pCi/L 12/07/23 16:35 7440-14-4 Calculation Sample: 3111624-06 Lab ID: 30639443006 Collected: 11/08/23 00:00 Received: 11/14/23 10:20 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.220 \pm 0.336 \quad (0.541)$ Radium-226 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 -0.00535 ± 0.325 (0.767) pCi/L 12/04/23 15:22 15262-20-1 C:75% T:79% Pace Analytical Services - Greensburg Total Radium Total Radium 0.220 ± 0.661 (1.31) pCi/L 12/07/23 16:35 7440-14-4

REPORT OF LABORATORY ANALYSIS

Calculation


This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

12/04/23 15:22 15262-20-1

12/07/23 16:35 7440-14-4

pCi/L

pCi/L

Radium-228

Total Radium

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3111624-Revised Report

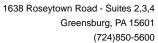
Pace Project No.: 30639443

Lab ID: 30639443007 Sample: 3111624-07 Collected: 11/08/23 00:00 Received: 11/14/23 10:20 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 -0.0683 ± 0.518 (1.08) Radium-226 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:81% Pace Analytical Services - Greensburg $0.477 \pm 0.398 \quad (0.793)$ EPA 904.0 Radium-228 pCi/L 12/04/23 15:22 15262-20-1 C:79% T:77% Pace Analytical Services - Greensburg **Total Radium** Total Radium 0.477 ± 0.916 (1.87) pCi/L 12/07/23 16:35 7440-14-4 Calculation Sample: 3111624-08 Lab ID: 30639443008 Collected: 11/08/23 00:00 Received: 11/14/23 10:20 PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 $0.000 \pm 0.487 \quad (0.975)$ Radium-226 pCi/L 12/07/23 14:37 13982-63-3 C:NA T:95%

 $0.520 \pm 0.407 \quad (0.798)$

 0.520 ± 0.894 (1.77)

C:76% T:83%


Pace Analytical Services - Greensburg

Pace Analytical Services - Greensburg

EPA 904.0

Total Radium

Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3111624-Revised Report

Pace Project No.: 30639443

QC Batch: 630814 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radiu

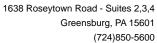
Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30639443001, 30639443002, 30639443003, 30639443004, 30639443005, 30639443006, 30639443007,

30639443008

METHOD BLANK: 3075669 Matrix: Water


Associated Lab Samples: 30639443001, 30639443002, 30639443003, 30639443004, 30639443005, 30639443006, 30639443007,

30639443008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.284 ± 0.361 (0.763) C:66% T:85%
 pCi/L
 12/04/23 15:21

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3111624-Revised Report

Pace Project No.: 30639443

QC Batch: 630813 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30639443001, 30639443002, 30639443003, 30639443004, 30639443005, 30639443006, 30639443007,

30639443008

METHOD BLANK: 3075668 Matrix: Water

Associated Lab Samples: 30639443001, 30639443002, 30639443003, 30639443004, 30639443005, 30639443006, 30639443007,

30639443008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.241 (0.540) C:NA T:88%
 pCi/L
 12/07/23 14:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 3111624-Revised Report

Pace Project No.: 30639443

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 12/08/2023 04:46 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3111624

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis	. "::::	Expire	s	Laboratory ID	Comments
Sample ID: 3111624-01	Water	Sampled: 11/07/	2023 15:55	Specific Method	
Radium 228 (sub)		05/05/	2024 15:55	EPA 904.0 Radium S	ium C
Radium Total (sub)		05/05/	2024 15:55	EPA 904.0 Radium S	ium C
Radium 226 (sub)		05/05/	2024 15:55	EPA 903.1	
SAMPLE STATE OF ORIG	GIN	KY	MINNE MARKET TO THE PARTY OF TH	RI	USH MULTIPLIER (
Sample ID: 3111624-02	Water	Sampled:11/07/	2023 00:00	Specific Method	
Radium 226 (sub)		05/05/	2024 00:00	EPA 903.1	
Radium 228 (sub)		05/05/	2024 00:00	EPA 904.0 Radium S	Sum C
Radium Total (sub)	•	05/05/	2024 00:00	EPA 904,0 Radium S	kum C
SAMPLE STATE OF ORIG	GIN	KY		RU	USH MULTIPLIER
Sample ID: 3111624-03	Water	Sampled:11/07/	2023 00:00	Specific Method	
Radium 226 (sub)		05/05/	2024 00:00	EPA 903.1	
Radium 228 (sub)		05/05/	2024 00:00	EPA 904.0 Radium S	
Radium Total (sub)		05/05/	2024 00:00	EPA 904.0 Radium S	Sum C
SAMPLE STATE OF ORI	GIN	WY		RI	USH MULTIPLIER

Released By

teceived By

11/14/2-3102d

Released By

Date

Received By

Date

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky

3	1	1	1	۸	2	1
•	1	1	1	v	_	Ŧ

		V 1.	11024	
Analysis		Expires	Laboratory ID	Comments
Sample ID: 3111624-04	Water	Sampled: [1/07/2023 00:00	Specific Method	
Radium Total (sub)		05/05/2024 00:00	EPA 904.0 Radium Su	m (
Radium 226 (sub)		05/05/2024 00:00	EPA 903.1	m C
Radium 228 (sub)		05/05/2024 00:00		m C
Madiani wao (Sas)		03/03/2024 00:00	DO HIDIDAN O, POC P. ICA	in C
SAMPLE STATE OF ORIGI	N	S KA	RU:	SH MULTIPLIER (
Sample ID: 3111624-05	Water	Sampled:11/07/2023 00:00	Specific Method	
Radium 228 (sub)		05/05/2024 00:00	EPA 904.0 Radium Su	m (
Radium Total (sub)		05/05/2024 00:00	EPA 904.0 Radium Su	•••
Radium 226 (sub)		05/05/2024 00:00		
		1 a 1 f		
		KX		
SAMPLE STATE OF ORIGI	N	t (RUS	SH MULTIPLIER
	337- 4	S.,,,,,1,4,0,0,12,0,2,0,0,0	G. J. W. XX. A. J	
Sample ID: 3111624-06	Water	Sampled:11/08/2023 00:00	Specific Method	· · · · · · · · · · · · · · · · · · ·
Radium 226 (sub)		05/06/2024 00:00	EPA 903.1	
Radium 228 (sub)		05/06/2024 00:00	EPA 904.0 Radium Sur	
Radium Total (sub)		U3/V0/2024 UU;UU	EPA 904.0 Radium Sui	m C
SAMPLE STATE OF ORIGI	N.	KY	ĐIK	SH MULTIPLIER ()
WHILE SIME OF ORIG			21.0%	II WOLLIE
Sample ID: 3111624-07	Water	Sampled:11/08/2023 00:00	Specific Method	
Radium Total (sub)		05/06/2024 00:00	EPA 904.0 Radium Sur	m (
Radium 226 (sub)		05/06/2024 00:00	EPA 903.1	
Radium 228 (sub)		05/06/2024 00:00	EPA 904.0 Radium Sur	m (
AMPLE STATE OF ORIGI	N	KY	RUS	SH MULTIPLIER (
)#:3063 <u>9443</u>
			Selection of the select	
			Marting Street	SMB Due Date: 12/07/23 ENT: PRCE_44_MVKY
			1 1 a	
15 W		11-13-23	Musto	11/14/23 (020 Date
eleased By		Date	Received By	Date
eleased By		Date	Received By	Date

PRoce 12 of 16 Page 51 of 55

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky

3111624

Analysis		Expires	Laboratory ID Comments	
Sample ID: 3111624-08	Water	Sampled:11/08/2023 00:00	Specific Method	
Radium 226 (sub)	······································	05/06/2024 00:00	EPA 903.1	
Radium 228 (sub)		05/06/2024 00:00	EPA 904.0 Radium Sum C	
Radium Total (sub)		05/06/2024 00:00	EPA 904.0 Radium Sum (
SAMPLE STATE OF ORI	GIN	Kt	RUSH MULTIPLIER	

WO#:30639443

PM: SMB Due D CLIENT: PACE_44_MVKY

Due Date: 12/07/23

Released By Date Date Date Date

Released By

Date

Received By

Date

Page 52 of 55

B	DC#_Title: ENV-FRM Pittsburgh	-GBUI	₹-008	8 v0(UO#	4:306	39443
Pace	Effective Date: 09/20/2023	3		· · · · · · · · ·			8	Due Date: 12/0
Client Name:	Pace Ky	/				CLIENT	: PACE_44	_MVKY
Courier: Fed	Ex DUPS DUSPS DClient		merci	al Dip	ace [] Other	e as the directly see the		Initial / Date
Tracking Number		40, 4017			_		Examined By	उ गार्थ 23
Custody Seal on Thermometer U	Cooler/Box Present:		:e: 🙋	Ø BI	ue None	200	Labeled By: _ Temped By: _	ा।। जा।।यान्य
	iture: Observed Temp 🔏		۰C	Согге	ction Factor: + 0	· <i>O</i> •	C Final Ter	np: _ 3,0 °C
Temp should be abo	rve freezing to 6°C	Q.8		1	pH paper Lot#		D.P.D. Residu	ial Chlorine Lot#
Comments:		Yes	No	NA	1010134	1		
Chain of Custod			 	<u> </u>	1.			
Chain of Custod		. —	 	1	2.			
	t corrections present on COC			<u> </u>	3.			
Chain of Custod	y Kennquisnea & Signature on COC:	-	 		4.			
Sample Labels m	A			-	5.			
-Includes da			WT					
Matrix:	,,							
Samples Arrived	within Hold Time:		Τ	Ţ	6.			
	Analysis (<72hr	1	7	1	7.			
remaining):	, ,		/.					
Rush Turn Arou	nd Time Requested:				8.	-		
Sufficient Volum			,	ļ	9.			
Correct Containe			<u> </u>	<u> </u>	10.		,	
-Pace Conta		ļ						
Containers Intac			.		11.			
Orthophosphate		- 	ļ		12.			
	samples field filtered:	<u> </u>			13. 14:			
	checked for dechlorination received for dissolved tests:		-		15:			
	necked for preservation:	+	<u> </u>		16.			
	VOA, coliform, TOC, O&G,		<u></u>			·	·	
,	adon, non-aqueous matrix				D\	442	_	
•	eet method preservation		·	<u> </u>	Initial when		Date/Time of	
requiremen	•		<u> </u>		completed US		Preservation	
requiremen	***				Lot# of added Preservative			
8260C/D: Heads	pace in VOA Vials (> 6mm)				17.	***************************************		
624.1: Headspace	ce in VOA Vials (0mm)				18.			
Trip Blank Preser	nt:	+			Trip blank ci	ustody s	eal present?	YES or NO
····	eened <.05 mrem/hr.				Initial when completed 173	Date:	1114/23	Survey Meler SN 250 (43/6
Comments:			i					

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Pace Analytical"

Quality Control Sample Performance Assessment

Ra-226 MAR1 11/27/2023 76478 DW Analyst: Date: Test Batch ID: Matrix:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	I CSW/SW	MS/MSD 2
	Sample Collection Date:		
	Sample I.D.		
	Semple MS I.D.		
	Sample MSD I.D.		
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCi/mL);		
	Spike Volume Used in MS (ml.):		
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L. g. F.);		•
	MS Target Conc.(pCi/L, g, F);		
	MSD Aliquot (1, g, F):		
	MSD Target Conc. (pCi/L. g. F).		
	MS Spike Uncertainty (calculated):		
Γ	MSD Spike Uncertainty (calculated);		
8/47	Sample Result:		
23	Sample Result Counting Uncertainty (pCIAL, g, F):		
	Sample Matrix Spike Result:		
d)	Matrix Spike Result Counting Uncertainty (pCI/L, 9, F):		
	Sample Matrix Spike Duplicate Result:		
	Matrix Spike Dupitcate Result Counting Uncertainty (pCirl., g, F).		•
	MS Numerical Performance Indicator:		
	MSD Namerical Performance Indicator:		
	MS Percent Recovery:		
	MSD Percent Recovery:		
	MS Status vs Numerical Indicator,		
×.	MSD Status vs Numerical Indicator:		
	MS Status vs Recovery:		
	MSD Status vs Recovery:		
. 0	MS/MSD Upper % Recovery Limits:		
	MSWSD Lower % Recovery Limits:		

LCSD (Y or N)?

Laboratory Control Sample Assessment

3075668 0.000 0.241 0.540 0.00 N/A Pass

MB MDC

MB Sample ID

Method Blank Assessment

MB concentration:

MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
MB Status vs. MDC.

Matrix Spike/Matrix			Dupitcate Sample Assessment
	73%	73%	Lower % Recovery Limits:
	33%	133%	Upper % Recovery Limits:
	Pass	Pass	Status vs Recovery:
	K/N	A/A	Status vs Numerical Indicator:
	94-92%	116.86%	Percent Recovery.
	ф. ф.	1.41	Numerical Performance Indicator:
	0.973	1.139	LCS/LCSD Counting Uncertainty (pCi/L, g, F):
	4.692	5.794	Result (pC//L, g, F):
	0.232	0.233	Uncertainty (Calculated):
	4.943	4,958	Target Conc. (pC//L, g, F):
Matrix Spike Dupis	0.653	0.651	Aliquot Volume (L, g, F):
	0.10	0.10	Volume Used (ml.):
Matrix S	32.279	32.279	Spike Concentration (pCi/mt.):
	23-013	23-013	Spike I.D.:
Sar	(2/7/2023	12/7/2023	Count Date:
	LCSD76478	LCS76478	

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pC/IL, g. F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit
	Enter Duplicate	sample IDs if	other than	LCS/LCSD In	the space below.							
	LCS76478	LCSD76478	5.794	1.139	4.692	0.973	9	1.441	20.71%	N/A	Pass	32%
piicate Sample Assessment	Sample LD.:	. Duplicate Sample I.D.	Sample Result (pCVIL, g, F);	Sample Result Counting Uncertainty (pCift, g, F);	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCi/L, g, F);	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the PtL.

Comments:

7	
<u>د</u> ~	

1

Ra-226 (ENV-FRM-GBUR-0294 02).xls

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Freids Highlighted in Yellow. Sample Matrix Spike Control Assessment

Face Analytical"

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D.

Sample Collection Date:

Sample MSD LD.

Spike 1.D.

MS/MSD Decay Corrected Spike Concentration (pCl/mL):

Spike Volume Used in MS (mL) Spike Volume Used in MSD (mi.)

JJS1 11/29/2023 76479 WT Test Worklist: Matrix: Analyst Date

0.361 0.284 MB Sample ID M/B 2 Sigma CSU: MB MDC: MB concentration

Method Blank Assessment

Pass 1.54 MB Status vs Numerical Indicator: MB Status vs. MDC: MB Numerical Performance Indicator:

MSD Aliquot (L. g. F):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): Sample Result: Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCl/L, g, F): Matrix Spike Dupitcate Result 2 Sigma CSU (pCi/L, g, F): MS Percent Recovery. MSD Status vs Numerical Indicator MSD Status vs Recovery: MS/MSD Upper % Recovery Limits MS/MSD Lower % Recovery Limits MSD Spike Uncertainty (calculated): Sample Matrix Spike Duplicate Result MS Numerical Performance Indicator MSD Numerical Performance Indicator MSD Percent Recovery MS Status vs Numerical Indicator MS Status vs Recovery CSD76479 0.10 0.617 4.744 0.232 6.091 1.134 0.59 107.31% N/A 23-043 23-043 38.775

23-043 38,775 0,10 0,824 4,707 0,231 5,434 1,197

Aliquot Volume (L, g, F): Target Conc. (pCid., g, F):

Volume Used (mL):

Decay Corrected Spike Concentration (pCl/mL):

Count Date:

Laboratory Control Sample Assessmen

Spike LD.

Result (pCi/L, g, F):

Uncertainty (Calculated):

LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator:

115,45%

Percent Recovery: Stafus vs Recovery:

Status vs Numerical indicator

₹ X

Pass 135% 60%

Upper % Recovery Limits: Lower % Recovery Limits:

Duplicate Sample Assessmen

Matrix Spike/Matrix Spike Duplicate Sample Assessment other than Enter Cupicate he space below sample IDs if LCS76479 LCSD76479 0.409 7.31% Pass Pass 36% 5.091 1.134 5,434 2 Z Sample Result (PC/IL, g. F): Sample Result 2 Sigma CSU (PC/IL, g. F): Sample Duplicate Result (PC/IL, g. F): Sample I.D.: Duplicate Sample I.D. Sample Dupicate Result 2 Sigma CSU (pCiA., g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: Duplicate Status vs RPD; (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD Ouplicate Status vs Numerical Indicator. % RPD Limit

MS/ MSD Duplicate Status vs RPD: % RPD Limit: Sample MS I.D. Sample MSD LD. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g. F). Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCl/L, g, F): (Based on the Percent Recoveries) MS/ MSD Dupticate RPD: MS/ MSD Duplicate Status vs Numerical Indicator Duplicate Numerical Performance Indicator

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

12 m

Ra-228 NELAC DW2 Printed: 12/5/2023 9:08 AM

Certificate of Analysis 3111625

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 12/11/2023 15:36

Project Name: Green Landfill Semiannual Well MW104

Workorder:

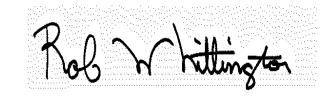
3111625

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/08/2023 14:20.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3111625-01	MW-104/		Groundwater	11/07/2023 11:25	11/08/2023 14:20	Eric Brown
<u>LabNumber</u>	<u>Measurement</u>	<u>Value</u>				
3111625-01	Field Conductance	4820				
	Field pH	6.35				
	Field Temp (C)	17.28				

ANALYTICAL RESULTS

 Lab Sample ID: 3111625-01
 Sample Collection Date Time: 11/07/2023 11:25

 Description: MW-104
 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Arsenic	0.0010		mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Barium	0.016		mg/L	0.004	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Boron	0.24		mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 16:55	MRWD
Cadmium	0.0004	J	mg/L	0.0010	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Calcium	496	D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 17:01	MRWD
Chromium	0.0006	J	mg/L	0.0020	0.0006	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Cobalt	0.004		mg/L	0.004	0.004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Copper	0.001	J	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Iron	0.412		mg/L	0.100	0.050	SW846 6010 B	11/16/2023 11:51	11/17/2023 13:57	MRWD
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Lithium	0.05		mg/L	0.02	0.005	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB
Sodium	736	D1	mg/L	26.0	10.0	SW846 6010 B	11/16/2023 11:51	11/17/2023 14:00	MRWD
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:50	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chemical Oxygen Demand	95		mg/L	13	8	HACH 8000	11/14/2023 08:18	11/15/2023 10:50	HMF
Specific Conductance (Lab)	8330		umhos/cm	1	1	2510 B-2011	11/10/2023 08:16	11/14/2023 16:17	AED
pH (Lab)	7.33	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:58	11/09/2023 16:18	AED
Total Dissolved Solids	5770		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG
Total Organic Carbon	0.9		mg/L	0.5	0.4	5310 C-2014	11/15/2023 09:48	11/16/2023 14:45	HMF

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.00	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.710	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.710	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.710	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	2490	D, M3	mg/L	10.0	7.2	SW846 9056	11/11/2023 07:57	11/11/2023 07:57	CSC
Fluoride	0.3		mg/L	0.2	0.2	SW846 9056	11/11/2023 07:30	11/11/2023 07:30	CSC
Sulfate	4190	D, M3	mg/L	50	25	SW846 9056	11/11/2023 08:25	11/11/2023 08:25	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3111625

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

Sample RPD exceeded the method control limit.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

Y1

% Rec

В	Target analyte detected in method blank at or above the method reporting limit.
D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
H3	Sample received and analyzed past holding time.
J	Estimated value.
J5	Concentration estimated. Internal standard recoveries did not meet method acceptance criteria.
L2	The associated blank spike recovery was below method acceptance limits.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate

Percent Recovery RPD Relative Percent Difference

Greater than Less than

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
Blank (BCK0852-BLK1)										
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023	3 16:34									
•		0.000-								
Melvhdanum	ND	0.0005	mg/L							U
Molybdenum	ND	0.01	mg/L							U
Antimony Arsenic	ND ND	0.005 0.0010	mg/L							U U
Arsenic Barium	ND ND	0.0010	mg/L mg/L							U
Beryllium	ND ND	0.004	mg/L mg/L							U
Cadmium	ND ND	0.0020	mg/L							U
Chromium	ND	0.0010	mg/L							U
Cobalt	ND ND	0.0020	mg/L							U
Copper	ND	0.004	mg/L							U
Lead	ND	0.003	mg/L							U
Lithium	ND	0.002	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L	_						U
Blank (BCK0852-BLK2)				_					_	
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023	3 14:01									
Boron	ND	0.10	mg/L							U
Calcium	ND ND	0.10	mg/L							U
Iron	0.658	0.100	mg/L							В
Sodium	ND	0.26	mg/L							Ū
Blank (BCK0852-BLK3)										
Prepared: 11/10/2023 9:07, Analyzed: 11/16/2023	3 11:16									
Iron	0.720	0.100	mg/L							В
Sodium	ND	0.26	mg/L							Ū
LCS (BCK0852-BS1)										
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023	3 16:37									
Mercury	0.0024	0.0005	mg/L	0.00250		94.4	85-115			
Molybdenum	0.06	0.00	mg/L	0.0625		98.5	85-115			
Antimony	0.061	0.005	mg/L	0.0625		98.0	85-115			
Arsenic	0.0605	0.0010	mg/L	0.0625		96.9	85-115			
Barium	0.060	0.004	mg/L	0.0625		95.3	85-115			
Beryllium	0.0580	0.0020	mg/L	0.0625		92.8	85-115			
Cadmium	0.0590	0.0010	mg/L	0.0625		94.4	85-115			
Chromium	0.0613	0.0020	mg/L	0.0625		98.1	85-115			
Cobalt	0.060	0.004	mg/L	0.0625		96.2	85-115			
Copper	0.060	0.003	mg/L	0.0625		95.7	85-115			
Lead	0.056	0.002	mg/L	0.0625		89.1	85-115			
Lithium	0.06	0.02	mg/L	0.0625		91.3	85-115			
Selenium	0.060	0.003	mg/L	0.0625		95.7	85-115			
Thallium	0.0576	0.0020	mg/L	0.0625		92.2	85-115			

	-	5 "	Wictious	0 "	•	-	0/8=0		DE-	
Analyta	Dozult	Reporting	l lmit-	Spike	Source	0/ DEC	%REC	DDD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
LCS (BCK0852-BS2)										
Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023	14:04									
Boron	0.11	0.10	mg/L	0.125		88.9	85-115			
Calcium	5.71	0.40	mg/L	6.25		91.4	85-115			
Iron	5.50	0.100	mg/L	6.25		88.0	85-115			В
Sodium	4.80	0.26	mg/L	6.25		76.8	85-115			L2
LCS (BCK0852-BS3)										
Prepared: 11/10/2023 9:07, Analyzed: 11/16/2023	11:19									
Iron	6.00	0.100	mg/L	6.25		95.9	85-115			В
Sodium	5.18	0.26	mg/L	6.25		82.9	85-115			L2
			··· <i>y</i> –							
, ,	urce: 3111623-	01								
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023	18:01									
Molybdenum	0.06	0.01	mg/L	0.0625	ND	101	80-120			
Mercury	0.0023	0.0005	mg/L	0.00250	ND	91.3	80-120			
Antimony	0.065	0.005	mg/L	0.0625	ND	103	80-120			
Arsenic	0.0637	0.0010	mg/L	0.0625	ND	102	80-120			
Barium	0.097	0.004	mg/L	0.0625	0.037	95.1	80-120			
Beryllium	0.0580	0.0020	mg/L	0.0625	ND	92.9	80-120			
Cadmium	0.0588	0.0010	mg/L	0.0625	ND	94.1	80-120			
Chromium	0.0602	0.0020	mg/L	0.0625	ND	96.3	80-120			
Cobalt	0.058	0.004	mg/L	0.0625	ND	92.3	80-120			
Copper	0.055	0.003	mg/L	0.0625	ND	88.3	80-120			
Lead	0.054	0.002	mg/L	0.0625	ND	85.7	80-120			
Lithium	0.09	0.02	mg/L	0.0625	0.04	86.6	80-120			
Selenium	0.063	0.003	mg/L	0.0625	ND	101	80-120			
Thallium	0.0554	0.0020	mg/L	0.0625	ND	88.6	80-120			
Matrix Spike (BCK0852-MS2) So	urce: 3111624-	06								
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023	18:09									
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	80-120			
Mercury	0.0024	0.0005	mg/L	0.00250	ND	94.4	80-120			
Antimony	0.063	0.005	mg/L	0.0625	ND	101	80-120			
Arsenic	0.0652	0.0010	mg/L	0.0625	ND	104	80-120			
Barium	0.069	0.004	mg/L	0.0625	0.009	96.0	80-120			
Beryllium	0.0568	0.0020	mg/L	0.0625	ND	91.0	80-120			
Cadmium	0.0573	0.0010	mg/L	0.0625	ND	91.7	80-120			
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120			
Cobalt	0.059	0.004	mg/L	0.0625	ND	94.1	80-120			
Copper	0.057	0.003	mg/L	0.0625	ND	90.4	80-120			
Lead	0.053	0.002	mg/L	0.0625	ND	84.8	80-120			
Lithium	0.10	0.02	mg/L	0.0625	0.04	89.2	80-120			
Selenium	0.070	0.003	mg/L	0.0625	ND	111	80-120			
Thallium	0.0551	0.0020	mg/L	0.0625	ND	88.2	80-120			

	Metals by SW846 6	UUU Series	Wethous	S Wauisui	IVIIIe - Q	lanty Co	111101			
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
Matrix Spike (BCK0852-MS3)	Source: 3111623-0	1								
Prepared: 11/10/2023 9:07, Analyzed: 1										
Boron	ND	1.00	ma/l	0.125	ND		80-120			D2, M2, U
Calcium	226	1.00	mg/L	0.125	ND 221	01 E	80-120			D2, W2, U
	8.11	4.00	mg/L	6.25 6.25	2.26	81.5 93.6	80-120			D2, B
Iron Sodium	876	1.00 2.60	mg/L		2.26 895					
Sodium	0/0	2.00	mg/L	6.25	090	NR	80-120			D2, M3
Matrix Spike (BCK0852-MS4)	Source: 3111624-0	6								
Prepared: 11/10/2023 9:07, Analyzed: 1	11/15/2023 17:39									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	377	4.00	mg/L	6.25	375	24.5	80-120			D2, M3
Iron	5.83	1.00	mg/L	6.25	ND	93.4	80-120			D2, B
Sodium	351	2.60	mg/L	6.25	351	NR	80-120			D2, M3
Matrix Spike Dup (BCK0852-MSD1)	Source: 3111623-0	1								
Prepared: 11/10/2023 9:07, Analyzed: 3	11/13/2023 18:05									
Antimony	0.063	0.005	mg/L	0.0625	ND	101	80-120	2.41	20	
Molybdenum	0.06	0.01	mg/L	0.0625	ND	100	80-120	0.770	20	
Mercury	0.0023	0.0005	mg/L	0.00250	ND	92.7	80-120	1.53	20	
Arsenic	0.0626	0.0010	mg/L	0.0625	ND	100	80-120	1.81	20	
Barium	0.096	0.004	mg/L	0.0625	0.037	93.4	80-120	1.13	20	
Beryllium	0.0582	0.0020	mg/L	0.0625	ND	93.1	80-120	0.231	20	
Cadmium	0.0578	0.0010	mg/L	0.0625	ND	92.5	80-120	1.74	20	
Chromium	0.0596	0.0020	mg/L	0.0625	ND	95.4	80-120	0.955	20	
Cobalt	0.057	0.004	mg/L	0.0625	ND	90.8	80-120	1.64	20	
Copper	0.054	0.003	mg/L	0.0625	ND	86.6	80-120	1.94	20	
Lead	0.053	0.002	mg/L	0.0625	ND	84.3	80-120	1.71	20	
Lithium	0.09	0.02	mg/L	0.0625	0.04	86.3	80-120	0.238	20	
Selenium	0.063	0.003	mg/L	0.0625	ND	101	80-120	0.368	20	
Thallium	0.0544	0.0020	mg/L	0.0625	ND	87.0	80-120	1.83	20	
Matrix Calles Dun (DCK0052 MCD2)	Sauraa, 2444524 0	•								
Matrix Spike Dup (BCK0852-MSD2) Prepared: 11/10/2023 9:07, Analyzed: 1	Source: 3111624-0	•								
		0.005	m a/l	0.0605	ND	106	90 100	E 07	20	15
Antimony	0.066 0.07	0.005	mg/L	0.0625 0.0625	ND ND	106 105	80-120 80-120	5.07 0.478	20	J5
Molybdenum		0.01 0.0005	mg/L	0.0025					20	1E
Mercury	0.0025		mg/L		ND	98.5	80-120	4.18	20	J5
Arsenic	0.0662	0.0010	mg/L	0.0625	ND 0.000	106	80-120	1.49	20	1E
Barium	0.071	0.004	mg/L	0.0625	0.009	98.1	80-120	1.86	20	J5
Beryllium	0.0583	0.0020	mg/L	0.0625	ND	93.3	80-120	2.56	20	IE
Chromium	0.0597	0.0010	mg/L	0.0625	ND	95.5	80-120	4.07	20	J5
Chromium	0.0621	0.0020	mg/L	0.0625	ND	99.3	80-120	0.0251	20	
Cobalt	0.059	0.004	mg/L	0.0625	ND	94.9	80-120	0.825	20	
Copper	0.057	0.003	mg/L	0.0625	ND	91.6	80-120	1.34	20	15
Lead	0.055	0.002	mg/L	0.0625	ND 0.04	87.6	80-120	3.24	20	J5
Lithium	0.10	0.02	mg/L	0.0625	0.04	94.3	80-120	3.10	20	
Selenium	0.069	0.003	mg/L	0.0625	ND	110	80-120	0.900	20	15
Thallium	0.0567	0.0020	mg/L	0.0625	ND	90.7	80-120	2.82	20	J5

Analyte Result Limit Units Level Result WREC Limits RPD Limit Notes			Damadia		0 11	0		0/ DEC		DDD	
Batch BCK0852 - EPA 200.2 Matrix Spike Dug (BCK0852-MSD3) Source: 3111623-01 Source: 111/10/2023 9.07, Analyzed: 111/15/2023 17:36 Source: 111/10/2023 9.07, Analyzed: 111/15/2023 17:36 Source: 3111623-01 S	Analysis		Reporting	11	Spike	Source	0/ DEC	%REC	DDD	RPD	Nister
Prepared: 11/10/20/23 9:07, Analyzed: 11/15/20/23 7:36 Boron ND 1:00 mg/L 0.125 ND 80-120 2.58 20 02, M2, Lacibium 20 0.80	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Prepared: 11/10/2023 9.07, Analyzed: 11/15/2023 17:36 Boron ND 1.00 mg/L 6.25 221 NR 80-120 2.58 20 D2, M2, LC Calcium 220 4.00 mg/L 6.25 226 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, M3 (10 mg/L 6.25 1.07 80-120 1.07 20 D2,	Batch BCK0852 - EPA 200.2										
Boron ND 1.00 mg/L 0.125 ND 80-120 2.58 20 D2, M2, L1	Matrix Spike Dup (BCK0852-MSD3)	Source: 3111623-01									
Calcium 220 4.00 mg/L 6.25 221 NR 80-120 2.58 20 D2, M3 Iron 8.02 1.00 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, B Sodium 853 2.00 mg/L 6.25 2.89 NR 80-120 2.61 20 D2, M3 Matrix Spike Dup (BCK0852-MSD4) Source: 3111624-06 Secure: 311624-06 Secure: 3111624-06 Secure: 3111624-06 Secure: 3111624-06 Secure: 311624-06 Secure: 3111624-06 Secure: 311624-06 Secure: 311624-06 Secure: 311624-06 Secure: 311624-06 Secure: 311624-06 Secure:	Prepared: 11/10/2023 9:07, Analyzed: 11/	15/2023 17:36									
Rondium 8.02 1.00 mg/L 6.25 2.26 92.2 80-120 1.07 20 D2, B Sodium 86-35 2.60 mg/L 6.25 985 NR 80-120 2.61 20 D2, M3 Matrix Spike Dup (BCK0852-MSD4) Source: 3111624-05 Prepared: 11/10/2023 9.07, Analyzed: 11/15/2023 17-43 Boron ND 1.00 mg/L 6.25 375 ND 80-120 6.076 20 D2, M3, R3 R3 R3 R3 R3 R3 R3 R3	Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Sodium Sodium Sodium Source: 3111624-06 S	Calcium	220	4.00	mg/L	6.25	221	NR	80-120	2.58	20	D2, M3
Matrix Spike Dup (BCK0852-MSD4) Source: 3111624-06 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:43 Boron ND 1.00 mg/L 6.25 375 NR 80-120 0.676 20 D2, M2, L Calcium 374 4.00 mg/L 6.25 375 NR 80-120 0.676 20 D2, M3 lron 5.80 1.00 mg/L 6.25 ND 92.9 80-120 0.507 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 92.9 80-120 0.676 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 92.9 80-120 0.649 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 92.9 80-120 0.649 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 92.9 80-120 0.649 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 92.9 80-120 0.649 20 D2, M3 lron 3.49 2.60 mg/L 6.25 ND 96.7 75-125 5 J5 M3 lron 3.49 2.60 mg/L 6.25 ND 96.7 ND	Iron	8.02	1.00	mg/L	6.25	2.26	92.2	80-120	1.07	20	D2, B
Prepared:::11/10/2023 9:07, Analyzed::11/15/2023 17:43 Boron ND 1.00 mg/L 0.125 ND 80-120 0.676 20 D2, M3, L0 Mg/L 0.625 ND 80-120 0.676 20 D2, M3, L0 Mg/L 0.625 ND 80-120 0.676 20 D2, M3 ND Mg/L 0.625 ND 80-120 0.676 20 D2, M3 ND Mg/L 0.625 ND 80-120 0.649 20 D2, M3 ND Mg/L 0.625 ND Mg/L 0.625 ND Mg/L 0.649 20 D2, M3 ND Mg/L 0.625 ND Mg/L 0.6	Sodium	853	2.60	mg/L	6.25	895	NR	80-120	2.61	20	D2, M3
Boron ND 1.00 mg/L 0.125 ND 80.120 0.676 20 D2, M2, L3	Matrix Spike Dup (BCK0852-MSD4)	Source: 3111624-06									
Calcium 374 4.00 mg/L 6.25 375 NR 80-120 0.676 20 D2, M3 Iron 5.80 1.00 mg/L 6.25 ND 92.9 80-120 0.507 20 D2, B3 Sodium 349 2.60 mg/L 6.25 351 NR 80-120 0.507 20 D2, M3 Post Spike (BCK0852-PS1) Source: 3111623-01 Source: 3111623-01 Source: 3111623-01 Source: 3111623-01 Source: 3111623-01 ND 96.7 75-125 Source: 315 J5 Mercury 0.0628 0.005 mg/L 0.0625 ND 109 75-125 J5 J5 Antimony 0.068 0.001 mg/L 0.0625 ND 101 75-125 J5 J5 Arsenic 0.068 0.01 mg/L 0.0625 ND 101 75-125 J5 J5 Beryllium 0.102 0.004 mg/L 0.0625 ND 100	Prepared: 11/10/2023 9:07, Analyzed: 11/	15/2023 17:43									
Calcium 374 4.00 mg/L 6.25 375 NR 80-120 0.676 20 D2, M3 Iron 1.00 mg/L 6.25 ND 92.9 80-120 0.507 20 D2, B D2, B D2, B Sodium Sodium 6.25 ND 92.9 80-120 0.507 20 D2, B D2, B D2, B Sodium D2, B Sodium 6.25 ND 92.9 80-120 0.507 20 D2, B D2, B D2, B Sodium D2, B D2, B Sodium D2, B Sodium 6.25 ND 90.9 80-120 0.699 20 D2, M3 D2, B Sodium D2, D3, M3 D2, D3, D3, M3 D2, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3	Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Sodium Sodium Source: 3111623-01 Source: 31	Calcium	374	4.00	•	6.25	375	NR	80-120	0.676	20	D2, M3
Post Spike (BCK0852-PS1)	Iron	5.80	1.00	mg/L	6.25	ND	92.9	80-120	0.507	20	D2, B
Prepared: 11/10/2023 9:07, Analyzed: 11/13/2023 18:16	Sodium	349	2.60	mg/L	6.25	351	NR	80-120	0.649	20	D2, M3
Mercury 0.0024 0.0005 mg/L 0.00250 ND 96.7 75-125 J5 Antimony 0.068 0.005 mg/L 0.0625 ND 109 75-125 J5 Molybdenum 0.06 0.01 mg/L 0.0625 ND 101 75-125 J5 Arsenic 0.0632 0.0010 mg/L 0.0625 ND 101 75-125 J5 Barium 0.102 0.004 mg/L 0.0625 ND 100 75-125 J5 Beryllium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Cadmium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 J5 Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 J5 Lead	Post Spike (BCK0852-PS1)	Source: 3111623-01									
Antimony 0.068 0.005 mg/L 0.0625 ND 109 75-125 J5 Molybdenum 0.06 0.01 mg/L 0.0625 ND 101 75-125 J5 Molybdenum 0.06 0.01 mg/L 0.0625 ND 101 75-125 J5 Molybdenum 0.0632 0.0010 mg/L 0.0625 ND 101 75-125 J5 Molybdenum 0.102 0.004 mg/L 0.0625 ND 101 75-125 J5 Molybdenum 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Molybdenum 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Molybdenum 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 J5 Molybdenum 0.0590 0.0020 mg/L 0.0625 ND 98.7 75-125 J5 Molybdenum 0.0566 0.004 mg/L 0.0625 ND 94.4 75-125 Molybdenum 0.0566 0.004 mg/L 0.0625 ND 94.4 75-125 Molybdenum 0.0566 0.004 mg/L 0.0625 ND 94.4 75-125 Molybdenum 0.0566 0.004 mg/L 0.0625 ND 96.6 75-115 J5 Molybdenum 0.056 0.004 mg/L 0.0625 ND 96.6 75-115 J5 Molybdenum 0.056 0.004 mg/L 0.0625 ND 96.6 75-115 J5 Molybdenum 0.056 0.004 mg/L 0.0625 ND 96.6 75-115 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.6 75-115 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.6 75-125 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.6 75-125 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.6 75-125 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 J5 Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 J5 J5 J5 D2, Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 D2, Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 D2, Molybdenum 0.063 0.003 mg/L 0.0625 ND 96.9 75-125 D2, Molybdenum 0.0625 ND 96.9 75-125 D2, Molybdenum 0.0625 ND 96.9 75-12	Prepared: 11/10/2023 9:07, Analyzed: 11/	13/2023 18:16									
Molybdenum 0.06 0.01 mg/L 0.0625 ND 101 75-125 Arsenic 0.0632 0.0010 mg/L 0.0625 ND 101 75-125 Barium 0.102 0.004 mg/L 0.0625 0.037 104 75-125 J5 Beryllium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Cadmium 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 J5 Chromium 0.0590 0.0020 mg/L 0.0625 ND 99.4 75-125 J5 Cobalt 0.056 0.004 mg/L 0.0625 ND 99.4 75-125 J5 Copper 0.054 0.003 mg/L 0.0625 ND 90.4 75-125 J5 Lithium 0.10 0.02 mg/L 0.0625 ND 90.6 75-115 J5 Selenium 0.063 0.03	Mercury	0.0024	0.0005	mg/L	0.00250	ND	96.7	75-125			J5
Arsenic 0.0632 0.0010 mg/L 0.0625 ND 101 75-125 Barium 0.102 0.004 mg/L 0.0625 0.037 104 75-125 Beryllium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 Cadmium 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 Cadmium 0.0590 0.0020 mg/L 0.0625 ND 98.7 75-125 Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 Cobalt 0.056 0.004 mg/L 0.0625 ND 94.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 90.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 90.4 75-125 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 Lithium 0.10 0.02 mg/L 0.0625 ND 90.6 75-115 Selenium 0.063 0.003 mg/L 0.0625 ND 91.0 75-125 Thallium 0.0587 0.002 mg/L 0.0625 ND 93.9 75-125 Thallium 0.0587 0.002 mg/L 0.0625 ND 93.9 75-125 J5 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, MB Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, MB Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Antimony	0.068	0.005	mg/L	0.0625	ND	109	75-125			J5
Barium 0.102 0.004 mg/L 0.0625 0.037 104 75-125 J5 Beryllium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 J5 Cadmium 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 J5 Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 J5 Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 J5 Copper 0.054 0.003 mg/L 0.0625 ND 87.0 75-125 J5 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 ND 101 75-125 Selenium 0.063 0.03 mg/L 0.0625 ND 101 75-125 J5 Post Spike (BCK0852-PS2)	Molybdenum	0.06	0.01	mg/L	0.0625	ND	101	75-125			
Beryllium 0.0625 0.0020 mg/L 0.0625 ND 100 75-125 Cadmium 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 J5 Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 J5 Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 97.0 75-125 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 ND 90.6 75-125 J5 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L	Arsenic	0.0632	0.0010	mg/L	0.0625	ND	101	75-125			
Cadmium 0.0617 0.0010 mg/L 0.0625 ND 98.7 75-125 J5 Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 J5 Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 90.4 75-125 Copper 0.057 0.002 mg/L 0.0625 ND 87.0 75-125 5 75-125 5 1 <	Barium	0.102	0.004	mg/L	0.0625	0.037	104	75-125			J5
Chromium 0.0590 0.0020 mg/L 0.0625 ND 94.4 75-125 Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 87.0 75-125 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 0.04 102 75-125 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149	Beryllium	0.0625	0.0020	mg/L	0.0625	ND	100	75-125			
Cobalt 0.056 0.004 mg/L 0.0625 ND 90.4 75-125 Copper 0.054 0.003 mg/L 0.0625 ND 87.0 75-125 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 0.04 102 75-125 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, B Iron 8.16 1.00 mg/L 6.25 2.26 <td< td=""><td>Cadmium</td><td>0.0617</td><td>0.0010</td><td>mg/L</td><td>0.0625</td><td>ND</td><td>98.7</td><td>75-125</td><td></td><td></td><td>J5</td></td<>	Cadmium	0.0617	0.0010	mg/L	0.0625	ND	98.7	75-125			J5
Copper 0.054 0.003 mg/L 0.0625 ND 87.0 75-125 Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 0.04 102 75-125 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, B Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Chromium	0.0590	0.0020	mg/L	0.0625	ND	94.4	75-125			
Lead 0.057 0.002 mg/L 0.0625 ND 90.6 75-115 J5 Lithium 0.10 0.02 mg/L 0.0625 0.04 102 75-125 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, B Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Cobalt	0.056	0.004	mg/L	0.0625	ND	90.4	75-125			
Lithium 0.10 0.02 mg/L 0.0625 0.04 102 75-125 Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, M2, U Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Copper	0.054	0.003	mg/L	0.0625	ND	87.0	75-125			
Selenium 0.063 0.003 mg/L 0.0625 ND 101 75-125 Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2 Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Lead	0.057	0.002	mg/L	0.0625	ND	90.6	75-115			J5
Thallium 0.0587 0.0020 mg/L 0.0625 ND 93.9 75-125 J5 Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2, B Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Lithium	0.10	0.02	mg/L	0.0625	0.04	102	75-125			
Post Spike (BCK0852-PS2) Source: 3111623-01 Prepared: 11/10/2023 9:07, Analyzed: 11/15/2023 17:46 Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2 Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Selenium	0.063	0.003	mg/L	0.0625	ND	101	75-125			
Boron ND 1.00 mg/L 0.125 ND 75-125 D2, M2, L Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2 Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Thallium	0.0587	0.0020	mg/L	0.0625	ND	93.9	75-125			J5
Boron ND 1.00 mg/L 0.125 ND 75-125 T5-125 D2, M2, U Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2 Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Post Spike (BCK0852-PS2)	Source: 3111623-01									
Calcium 230 4.00 mg/L 6.25 221 149 75-125 D2 Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Prepared: 11/10/2023 9:07, Analyzed: 11/	15/2023 17:46									
Iron 8.16 1.00 mg/L 6.25 2.26 94.3 75-125 D2, B	Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
· · · · · · · · · · · · · · · · · · ·	Calcium	230	4.00	mg/L	6.25	221	149	75-125			D2
Sodium 891 2.60 mg/L 6.25 895 NR 75-125 D2, M3	Iron	8.16	1.00	mg/L	6.25	2.26	94.3	75-125			D2, B
	Sodium	891	2.60	mg/L	6.25	895	NR	75-125			D2, M3

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1517 - EPA 200.2										
Blank (BCK1517-BLK1)										
Prepared: 11/16/2023 11:51, Analyzed: 11	//17/2023 13:03									
Iron	ND	0.100	mg/L							U
Sodium	ND	0.26	mg/L							U
LCS (BCK1517-BS1)										
Prepared: 11/16/2023 11:51, Analyzed: 11	/17/2023 13:06									
Iron	6.47	0.100	mg/L	6.25		104	85-115			
Sodium	6.06	0.26	mg/L	6.25		96.9	85-115			
Matrix Spike (BCK1517-MS1)	Source: 3111624-0	1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 11	1/17/2023 14:03									
Iron	7.53	10.0	mg/L	6.25	ND	121	80-120			D2, M2, J
Sodium	196	26.0	mg/L	6.25	206	NR	80-120			D2, M2
Matrix Spike Dup (BCK1517-MSD1)	Source: 3111624-0	1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 11	1/17/2023 14:06									
Iron	7.72	10.0	mg/L	6.25	ND	124	80-120	2.45	20	D2, M2, J
Sodium	199	26.0	mg/L	6.25	206	NR	80-120	1.12	20	D2
Post Spike (BCK1517-PS1)	Source: 3111624-0	1RE1								
Prepared: 11/16/2023 11:51, Analyzed: 11	/17/2023 14:19									
Iron	7.22	10.0	mg/L	6.25	ND	115	75-125			D2, J
Sodium	183	26.0	mg/L	6.25	206	NR	75-125			D2, M2

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0832 - Default Prep Micro										
LCS (BCK0832-BS1)										
Prepared: 11/9/2023 8:58, Analyzed: 11/9/2023	16:18									
pH (Lab)	5.04		Std. Units	5.00		101	98.8-101.2			
Duplicate (BCK0832-DUP1)	Source: 3111625-01									
Prepared: 11/9/2023 8:58, Analyzed: 11/9/2023	16:18									
pH (Lab)	7.37	0.10	Std. Units		7.33			0.544	10	НЗ
Batch BCK0870 - Default Prep Wet Chem										
Blank (BCK0870-BLK1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023	15:44									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCK0870-BS1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023	15:44									
Total Dissolved Solids	1480	25	mg/L	1500		98.5	80-120			
Duplicate (BCK0870-DUP1)	Source: 3111623-01									
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023	15:44									
Total Dissolved Solids	4460	250	mg/L		4340			2.73	10	
Duplicate (BCK0870-DUP2)	Source: 3111625-01									
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023	15:44									
Total Dissolved Solids	5740	250	mg/L		5770			0.521	10	
Batch BCK0963 - Default Prep Micro										
Blank (BCK0963-BLK1)										
Prepared: 11/13/2023 10:59, Analyzed: 11/14/20	23 16:17									
Specific Conductance (Lab)	ND	1	umhos/cm							U
LCS (BCK0963-BS1)										
Prepared: 11/13/2023 10:59, Analyzed: 11/14/20	23 16:17									
Specific Conductance (Lab)	1410		umhos/cm	1410		99.8	80-120			

Conventional Chemistry Analyses Madisonville - Quality Control

A I. d.		Reporting	116.9	Spike	Source	0/ 550	%REC	DDD	RPD	Nice
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0963 - Default Prep Micro										
Duplicate (BCK0963-DUP1)	Source: 3111625-01									
Prepared: 11/13/2023 10:59, Analyzed: 11/14	1/2023 16:17									
Specific Conductance (Lab)	8380	1	umhos/cm		8330			0.598	0.938	
Batch BCK1259 - Default Prep Wet Chem										
Blank (BCK1259-BLK1)										
Prepared: 11/14/2023 8:18, Analyzed: 11/15	/2023 10:50									
Chemical Oxygen Demand	ND	13	mg/L							U
LCS (BCK1259-BS1)										
Prepared: 11/14/2023 8:18, Analyzed: 11/15	/2023 10:50									
Chemical Oxygen Demand	121	13	mg/L	125		96.8	90-110			
Duplicate (BCK1259-DUP1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15	/2023 10:50									
Chemical Oxygen Demand	ND	13	mg/L		9				25	U
Matrix Spike (BCK1259-MS1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15	/2023 10:50									
Chemical Oxygen Demand	270	13	mg/L	250	9	104	90-110			
Matrix Spike Dup (BCK1259-MSD1)	Source: 3111624-01									
Prepared: 11/14/2023 8:18, Analyzed: 11/15	/2023 10:50									
Chemical Oxygen Demand	270	13	mg/L	250	9	104	90-110	0.00	10	
Batch BCK1372 - Default Prep Wet Chem										
Blank (BCK1372-BLK1)										
Prepared: 11/15/2023 9:48, Analyzed: 11/16	/2023 6:16									
Total Organic Carbon	ND	0.5	mg/L							U
LCS (BCK1372-BS1)										
Prepared: 11/15/2023 9:48, Analyzed: 11/16	/2023 6:38									
Total Organic Carbon	4.8	0.5	mg/L	5.00		96.0	80-120			
· · · · · · · · · · · · · · · · · · ·										

Conventional Chemistry Analyses Madisonville - Quality Control

	Re	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1372 - Default Prep Wet Ch	em									
Duplicate (BCK1372-DUP1)	Source: 3111491-01									
Prepared: 11/15/2023 9:48, Analyzed:	11/16/2023 11:56									
Total Organic Carbon	7.7	0.5	mg/L		7.8			1.67	25	
Duplicate (BCK1372-DUP2)	Source: 3111624-05									
Prepared: 11/15/2023 9:48, Analyzed:	11/20/2023 22:54									
Total Organic Carbon	0.4	0.5	mg/L		0.7			51.2	25	Y1, J
Matrix Spike (BCK1372-MS1)	Source: 3111491-02									
Prepared: 11/15/2023 9:48, Analyzed:	11/16/2023 12:17									
Total Organic Carbon	6.8	0.5	mg/L	2.50	4.5	92.6	80-120			
Matrix Spike (BCK1372-MS2)	Source: 3111624-06									
Prepared: 11/15/2023 9:48, Analyzed:	11/20/2023 23:15									
Total Organic Carbon	6.5	0.5	mg/L	5.00	2.4	81.8	80-120			

Ion Chromatography Madisonville - Quality Control

	R	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1030 - Default Prep IC										
Blank (BCK1030-BLK1)										
Prepared: 11/11/2023 11:36, Analyzed: 1	1/11/2023 11:36									
Fluoride	ND	0.2	mg/L							U
Chloride	ND	0.5	mg/L							U
Sulfate	ND	1	mg/L							U
LCS (BCK1030-BS1)										
Prepared: 11/11/2023 11:09, Analyzed: 1	1/11/2023 11:09									
Chloride	12.6		mg/L	12.5		100	90-110			
Fluoride	5.2		mg/L	5.00		104	90-110			
Sulfate	25		mg/L	25.0		101	90-110			
Matrix Spike (BCK1030-MS1)	Source: 3111624-06									
Prepared: 11/11/2023 8:52, Analyzed: 11	/11/2023 8:52									
Fluoride	1.5		mg/L	5.00	0.4	21.3	75-125			M2
Chloride	140		mg/L	12.5	173	NR	75-125			МЗ
Sulfate	2200		mg/L	25.0	7630	NR	75-125			M3
Matrix Spike (BCK1030-MS2)	Source: 3111625-01									
Prepared: 11/11/2023 9:47, Analyzed: 11	/11/2023 9:47									
Fluoride	1.3		mg/L	5.00	0.3	19.3	75-125			M2
Chloride	1520		mg/L	12.5	2240	NR	75-125			М3
Sulfate	2090		mg/L	25.0	3770	NR	75-125			M3
Matrix Spike Dup (BCK1030-MSD1)	Source: 3111624-06									
Prepared: 11/11/2023 9:19, Analyzed: 11	/11/2023 9:19									
Chloride	138		mg/L	12.5	173	NR	75-125	1.87	15	М3
Fluoride	1.7		mg/L	5.00	0.4	24.2	75-125	9.09	15	M2
Sulfate	2160		mg/L	25.0	7630	NR	75-125	1.51	15	M3
Matrix Spike Dup (BCK1030-MSD2)	Source: 3111625-01									
Prepared: 11/11/2023 10:14, Analyzed: 1	1/11/2023 10:14									
Chloride	1530		mg/L	12.5	2240	NR	75-125	0.502	15	М3
Fluoride	1.2		mg/L	5.00	0.3	18.6	75-125	2.73	15	M2
Sulfate	2100		mg/L	25.0	3770	NR	75-125	0.421	15	М3

P.O. Box 907

270.821.7375

Certified Analyses included in this Report

Certifications Analyte

2510 B-2011 in Water

KY Drinking Water Mdv (00030) VA NELAC MDV (460210) TN Drinking Water (02819) WV Wastewater Specific Conductance (Lab)

Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 FL Drinking Water Mdv (E871159)

2540 C-2015 in Water

KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water **Total Dissolved Solids**

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

5310 C-2014 in Water

KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water Total Organic Carbon

(02819) ADEM Drinking Water Mdv (41880) WV Wastewater Madisonville (241), 825 Industrial Rd

Madisonville, KY 42431 MS Drinking Water MADV

HACH 8000 in Water

KY Wastewater Mdv (00030) VA NELAC MDV (460210) WV Wastewater Madisonville (241), 825 Industrial Rd Chemical Oxygen Demand

Madisonville, KY 42431

SM 4500-H+ B-2011 in Water

KY Drinking Water Mdv (00030) TN Drinking Water (02819) pH (Lab)

SW846 6010 B in Water

VA NELAC MDV (460210) Calcium

	Sample Acceptance Checklist for Work Order 3111625
Shipped By: Client	Temperature: 3.00° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	abla
Check if bottles are intact	
Check if bottles are correct	
Check if bottles have sufficient volume	
Check if samples received on ice	abla
Check if VOA headspace is acceptable	
Check if samples received in holding time.	
Check if samples are preserved properly	☑

Pace Analytical	Services	LLC Kentucky	,
P.O. Box 907			
Madisonville, KY	42431		

Chain of Custody

Scheduled for: 11/13/2023 Client: Big Rivers Electric Corporation Invoice To: Report To: Reid/Green Station Big Rivers Electric Corporation Reid/Green Big Rivers Electric Corporation Reid/Green Station Station Mark Bertram Mark Bertram Project: Green Landfill Semiannual Well MW104 9000 Highway 2096 9000 Highway 2096 Robards, KY 42452 Robards, KY 424521 Phone: (270) 844-6000 PWS ID#: Please Print Legibly Quote# Compliance Monitoring? Yes ____ No K Collected by (Signature): Samples Chlorinated? Yes ___ No X *For composite samples please indicate begin time, end time and temp(oC) at end time below: End Date __ Temp (oC) _ Effluent: Start Date_ End Date LAB USE ONLY *required information* Workorder# Date Collection (mm/dd/yy): Time (24 hr): 3111625 Bottle and Preservative Sample Description Composite Sample ID# Sample Analysis Requested 3111625-01 A Plastic 500mL pH<2 MW-104 Thallium Tot 6020 Antimony Tot g/c . w/HNO3 6020 Beryllium Tot 6020 Barium Tot 6020 Arsenic Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Copper Tot 6020 Iron Tot 6010B Lead Tot 6020 Lithium Tot 6020 Mercury Tot 6020 +Se, TI, Fe Preservation Check: pH: Plastic tL MW-104 Chloride 9056 Fluoride 9056 pH g/c (Lab) Sulfate 9056 TDS Plastic 500mL pH<2 MW-104 COD TOC g/c w/H2SO4 Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1 MW-104 g/c Radium 226 (sub) Rad 226 (Sub) Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1 MW-104 Radium 228 (sub) Rad 228 (Sub) Preservation Check: pH; Preservation Check Performed by: Brown Date (mm/dd/yy) 11/7/23 Time (24 hr) 1/25 Res CI (mg/L) Tot CI (mg/L) Free CI (mg/L) Temp (oC) 17.28 (oF) _____ Static Water Level _ DÓ (mg/L) __ Turb. (NTU) (CFS)_ (g/min) Received by: (Signature Relinquished by: (Signature) Date (mm/dd/vy) Time (24 hr) 1420

PACE- Check here if trip charge applied to associated COC

¹rinted: 10/31/2023 8:37:38AM

Page 15 of 28

Chain of Custody

Scheduled for: 11/13/2023

Client: Big Rive Reid/Green Stat		orporation	Station	rs Electric C	Corporation Reid/Green		lectric Corpo	ration Reid/Green Station			
Project: Green	Landfill Semi	annual Well M	9000 Hig	jhway 2096 , KY 42452		Mark Bertral 9000 Highw Robards, Ki	ay 2096				
			Phone: (270) 844-60 #:	000	PO#:		_			
Please Print Le	gibly		State:			Quote#		_			
Collected by (Sig	nature):	*rec	uired information		AAAAMA	Compliance Monitoring? Yes No					
*For composite s	amples please	e indicate begin	time, end time and tem	ip(oC) at en	nd time below:	Sample	es Chlorinate	d? Yes No			
Influent: Start Da	ate	Start time	End Date	F	End Time1	emp (oC)					
Effluent: Start Da	ate	Start time	End Date		End Time1	Temp (oC)					
LAB USE ONLY Workorder # 3111625	Date	Information* Collection Time (24 hr):	Bottle and Preservat	ē Sontainers							
Sample ID#			Dotte and Frederick	S	Sample Description	Composite	Sample	Analysis Requested			
3111625-01 F	11/7/25	1/25	Plastic 1L pH<2 w/HN Rad 228 (Sub) Preservation Check:	,	MW-104	g/c	Radium 22	3 (sub)			
3111625-01 G	11/7/23	1/25	Plastic 1L pH<2 w/HA (Sub)		MW-104	g/c	Radium Tot	at (sub)			
r			Preservation Check:	pH :							
3111625-01 H	11/7/23	1/25	AG 250mL pH<2 w/H2SO4	1	MW-104	g/c	TOC				
			Preservation Check:	рН :			•				
					944.4	. •					
					Inermo	meter Ser	ial Numl	oer .			
					garage Property	_ 18139(7287	. 77 			
						18146(Temp <u>S. C</u>)))				
Preservation Ch	eck Performe	ed by:	GN	_			`				
Field data collecte	ed by:		Date (mm/d	ld/ yy)	Time (24 hr)		-				
рН	Col	nd (umho)	Res CI (n	ng/L)	Tat CI (mg/L)	Fre	e Ct (mg/L) _				
Temp (oC)	or	(oF)	Static Water Le	evel	DO (mg/L)		arb. (NTU) _				
Flow (MGD)	or	(CFS)	or (g/r	min)	· ·						
Relinquished by	(Signature)		Received by: (Signature)		Date (mm/	dd/yy) 123	Time (24 hr) / 4 2 0			
			<u> </u>					***************************************			

PACE- Check here if trip charge applied to associated COC

Printed: 10/31/2023 8:37:38AM

(724)850-5600

December 08, 2023

Rob Whittington
Pace Analytical Madisonville
825 Industrial Rd
Madisonville, KY 42431

RE: Project: 3111625-Revised Report

Pace Project No.: 30639440

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on November 15, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

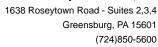
(Greensburg, PA) - Revision 1 - This report replaces the December 7, 2023 report. This project was revised on December 8, 2023 to include QC sheets.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

samantha.bayura@pacelabs.com


Samuelle Bayrue

(724)850-5622 Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3111625-Revised Report

Pace Project No.: 30639440

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040 Guam Certification

Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Iowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

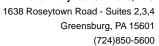
Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03

New Hampshire/TNI Certification #: 297622 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282

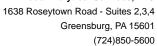

Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



SAMPLE SUMMARY

Project: 3111625-Revised Report

Pace Project No.: 30639440

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30639440001	3111625-01	Water	11/08/23 11:25	11/15/23 12:34

SAMPLE ANALYTE COUNT

Project: 3111625-Revised Report

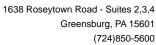
Pace Project No.: 30639440

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
30639440001	3111625-01	EPA 903.1	MAR1	1	PASI-PA	
		EPA 904.0	JJS1	1	PASI-PA	
		Total Radium Calculation	LAL	1	PASI-PA	

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3111625-Revised Report


Pace Project No.: 30639440

Sample: 3111625-01 Lab ID: 30639440001 Collected: 11/08/23 11:25 Received: 11/15/23 12:34 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Samplers name and signature not listed on COC.

Parameters	e and signature not listed of Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.566 (1.13) C:NA T:92%	pCi/L	12/07/23 14:51	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.710 ± 0.529 (1.05) C:69% T:86%	pCi/L	12/04/23 15:23	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.710 ± 1.10 (2.18)	pCi/L	12/07/23 16:35	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3111625-Revised Report

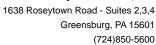
Pace Project No.: 30639440

QC Batch: 630814 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30639440001


METHOD BLANK: 3075669 Matrix: Water

Associated Lab Samples: 30639440001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.284 ± 0.361 (0.763) C:66% T:85%
 pCi/L
 12/04/23 15:21

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3111625-Revised Report

Pace Project No.: 30639440

QC Batch: 630813 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30639440001

METHOD BLANK: 3075668 Matrix: Water

Associated Lab Samples: 30639440001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.241 (0.540) C:NA T:88%
 pCi/L
 12/07/23 14:24

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 3111625-Revised Report

Pace Project No.: 30639440

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 12/08/2023 04:44 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky

3111625

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431

Phone: (270) 821-7375

Fax: 844-270-7904

Project Manager: Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone :(724) 850-5615

Fax:

Analysis		Expires	Laboratory ID	Comments
Sample ID: 3111625-01 V Radium Total (sub) Radium 228 (sub) Radium 226 (sub)	Vater	05/06/2024 11:25	EPA 904.0 Radium Sum EPA 904.0 Radium Sum	
SAMPLE STATE OF ORIGIN		<u> </u>	RUSI	H MULTIPLIER

WO#:30639440

K. D. 11-13-5

And to

11/14/2 31820

	DC#_Title: ENV-FRM-G				No and the Control of	
\sim	Pittsburgh				110#	: 30639440 Due Date: 12/0
(Pace	Effective Date: 09/20/2023			,, 	- CM	Due Date: **
Marketti serika		,_			PM: SME	PRCE_44_MVKY
lient Name:	Pace KY				CLIEN	
	Ex 🗆 UPS 🖸 USPS 🖟 Client 🗅	Caro	mercia	 1 (74)	ice Other	Initlal / Date
		COIII	rici on	1 000 1 1		Examined By: 35 th (1/2)
racking Numbe	er:					4 11/12
ustody Seaf on	Cooler/Box Present: 🛘 🗎 Ye	s ZN	ر د		ntact: 🛘 🖺 Yes 🔊 No	Labeled By: 3 (11) (3) Temped By: 3 (11) (3)
hermometer U	ised: 6 _ Type				ue None	17.2
ooler Tempera	sture: Observed Temp	.6	۰C	Corre	ction Factor: +0.0	<u>•</u> C Final Temp: <u>4.6 •</u> C
emp should be abo						la an a da sold de de
			_	<i>-</i>	pH paper Lot#	D.P.D. Residual Chlorine Lot#
Comments:		Yes	No	NA	10120134	<u> </u>
hain of Custod	y Present			<u> </u>	1.	
hain of Custod	y Filled Out:		<u> </u>		2	
-Were clien	t corrections present on COC				<u> </u>	
hain of Custod	y Relinquished				3,	
ampfer Name	& Signature on COC:	<u></u>		<u> </u>	4.	
ample Labels r	natch COC:		سرب	<u></u>	5.	
	ate/time/ID	<u>1</u>	<u> </u>			
Matrix:			<u> </u>		<u></u>	
amples Arrived	within Hold Time:		<u> L</u>		6.	
hort Hold Tim	e Analysis (<72hr				7.	
emaining):		<u> </u>	<u>/</u>	<u> </u>	ļ	
Rush Turn Arot	ınd Time Requested:	Ļ.,,		↓ —	8	
sufficient Volur			4	-	9.	
Correct Contain			سز 🕂	<u> </u>	10.	
	ainers Used	ļ		1	11.	
Containers Inta				1	112.	
Orthophosphat	e field filtered:	ļ		1	113.	-,
Hex Cr Aqueou	s samples field filtered:	 		1	14:	
Organic Sample	es checked for dechlorination	<u> </u>		+-	15:	
filtered volume	received for dissolved tests:	<u> </u>	—	<u> </u>	16.	
	thecked for preservation:		1	J	1	
exceptions	VOA, coliform, TOC, O&G,				BILD	
	Radon, non-aqueous matrix					Datefilme of
All containers	meet method preservation		1		Initial when 555	Preservation
requireme	nts:	L.,	_L		Lots of edded	
		.,	~ 		Proservative	
	space in VOA Vials (> 6mm)	_			17.	
624.1: Headsp	ace in VOA Vials (0mm)				18.	
Trip Blank Pres	ent;		1	1		ly seal present? YES or NO
	creened <.05 mrem/hr.				Initial when Da	11119/83 Survey Wester 143
(taa sampi				1		

Quality Control Sample Performance Assessment

Pace Analytical

Ra-226 MAR1 11/27/2023 76478 DW Batch ID: Matrix: Analyst: Date:

3075668 0.000 0.241 0.540 0.00 N/A Pass

MB MDC

MB Sample ID

Method Blank Assessment

MB Counting Uncertainty:

MB Numerical Performance Indicator: MB Status vs Numerical Indicator; MB Status vs. MDC:

Laboratory Control Sample Assessmen

Analyst Must Manually Enter All Fields Highlighted in Yellow.

	Sample Matrix Spike Control Assessment	1 OSM/SM	MS/MSD 2
	Sample Collection Date:		·
	Sample I.D.		
	Semple MS I.D.		
	Cample MSD I.D.		
	Spike I.D.:		
	MS/MSD Decay Corrected Spike Concentration (pCl/mL):		
	Spike Volume Used in MS (ml.):		
	Spike Volume Used in MSD (mL):		
	MS Aliquot (L. g. F.);		
	MS Target Conc.(pCi/L, g, F);		
	MSD Aliquot (1, g, F):		
	MSD Target Conc. (p.Ci.R., g, F).		
	MS Spike Uncertainty (calculated);		
Γ	MSD Spike Uncertainty (calculated):		
8/47	Sample Result:		
23	Sample Result Counting Uncertainty (pCl/L, g, F);		
m	Sample Matrix Spike Result.		
ø,	Matrix Spike Result Counting Uncertainty (pCI/L, g, F):		
	Sample Matrix Spike Duplicate Result:		
_	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F).		
_	MS Numerical Performance Indicator:		
	MSD Namerical Performance Indicator:		
	MS Percent Recovery:		
_	MSD Percent Recovery:		
	MS Status vs Numerical Indicator:		
*	MSD Status vs Numerical Indicator:		
	MS Status vs Recovery:		
	MSD Status vs Recovery:		
	MS/MSD Upper % Recovery Limits:		

MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pC//L, g, F):	Sample Matrix Spike Result:	Metrix Spike Result Counting Uncertainty (pCI/L, 9, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCirl., g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:	
· >-	LCSD76478	12/7/2023	23-013	32.279	0.10	0.653	4.943	0.232	4.692	0.973	ф. ф.	94-92%	N/A	Pass	133%	73%	
LCSD (Y or N)?	LCS76478	12/7/2023	23-013	32.279	0.10	0.651	4,958	0.233	5.794	1.139	1.41	116.86%	ΑŻ	Pass	133%	73%	
of Sample Assessment		Count Date:	Spike I.D.:	Spike Concentration (pCi/mt.):	Volume Used (ml.):	Aliquat Volume (L, g, F):	Target Conc. (pC/A., g. F):	Uncertainty (Calculated):	Result (pCI/L, g, F):	LCS/LCSD Counting Uncertainty (pCi/L, g, F):	Numerical Performance Indicator:	Percent Recovery.	Status vs Numerical Indicator:	Status vs Recovery:	Upper % Recovery Limits:	Lower % Recovery Limits:	

Matrix SpikerMadrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pC/IL, g. F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	% RPD Limit
	Enter Duplicate	sample IDs if	other than	LCS/LCSD In	the space below.							
	LCS76478	LCSD76478	5.794	1.139	4.692	0.973	2	1,441	20.71%	N/A	Pass	32%
Dupiicate Sample Assessment	Sample 1.D.:	. Duplicate Sample I.D.	Sample Result (pCt/L, g, F);	Sample Result Counting Uncertainty (pCirt. g, F);	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result Counting Uncertainty (pCirl., g, F);	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

Comments:

VAM12/1123

Ra-226 (ENV-FRM-GBUR-0294 02).xls

^{##} Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Quality Control Sample Performance Assessment

Face Analytical"

Analyst Must Manually Enter All Freids Highlighted in Yellow.

JJS1 11/29/2023 76479 WT Test Worklist: Matrix: Analyst Date

Method Blank Assessment

0.361 Pass 0.284 1.54 MB Status vs Numerical Indicator: MB Status vs. MDC: MB Sample ID M/B 2 Sigma CSU: MB MDC: MB Numerical Performance Indicator: MB concentration

Laboratory Control Sample Assessmen

MS/MSD 2 MS/MSD 1 Sample I.D. Sample MS I.D. MSD Aliquot (L. g. F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated): Sample Result: Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCl/L, g, F): Matrix Spike Dupitcate Result 2 Sigma CSU (pCi/L, g, F): MS Percent Recovery. MSD Status vs Numerical Indicator MSD Status vs Recovery: MS/MSD Upper % Recovery Limits MS/MSD Lower % Recovery Limits Sample MSD LD. MS/MSD Decay Corrected Spike Concentration (pCl/mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Spike Uncertainty (calculated): Sample Matrix Spike Duplicate Result MS Numerical Performance Indicator MSD Numerical Performance Indicator MSD Percent Recovery MS Status vs Numerical Indicator MS Status vs Recovery Sample Collection Date: Spike 1.D. Spike Volume Used in MS (mL) Spike Volume Used in MSD (mi.) Sample Matrix Spike Control Assessment

CSD76479 0.10 0.817 4.744 0.232 5.091 1.134 0.59 23-043 23-043 38.775 Α¥ 115,45% 23-043 38,775 0,10 0,824 4,707 0,231 5,434 1,197 Pass 135% 60% ₹ X Result (pCi/L, g, F): Upper % Recovery Limits: Lower % Recovery Limits: Aliquot Volume (L, g, F): Target Conc. (pCid., g, F): LCS/LCSD 2 Sigma CSU (pCi/L, g, F): Numerical Performance Indicator: Uncertainty (Calculated): Percent Recovery: Stafus vs Recovery: Count Date: Decay Corrected Spike Concentration (pCl/mL): Volume Used (mL): Status vs Numerical indicator Spike LD.

MS/ MSD Duplicate Status vs RPD: % RPD Limit: Sample MS I.D. Sample MSD LD. Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g. F). Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCl/L, g, F): (Based on the Percent Recoveries) MS/ MSD Dupticate RPD: MS/ MSD Duplicate Status vs Numerical Indicator Duplicate Numerical Performance Indicator Matrix Spike/Matrix Spike Duplicate Sample Assessment other than Enter Cupicate sample IDs if

LCS76479 LCSD76479

Sample I.D.: Duplicate Sample I.D.

Duplicate Sample Assessmen

5,434

he space below 0.409 7.31% Pass Pass 36% 5.091 1.134 2 Z Sample Result (PC/IL, g. F): Sample Result 2 Sigma CSU (PC/IL, g. F): Sample Duplicate Result (PC/IL, g. F): Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): Are sample and/or duplicate results below RL? Duplicate Numerical Performance Indicator: (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD Ouplicate Status vs Numerical Indicator.

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. Duplicate Status vs RPD; % RPD Limit

1 2 m

Ra-228 NELAC DW2 Printed: 12/5/2023 9:08 AM

Certificate of Analysis 3112898

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 11/20/2023 15:46

Project Name:

Green Landfill Arsenic Wells

Workorder:

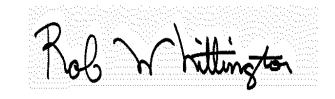
3112898

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/08/2023 14:20.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias	Matrix	Date Collected	Date Received	Sampled By
3112898-01	MW-106S/MW-106S	Groundwater	11/07/2023 14:00	11/08/2023 14:20	Eric Brown
3112898-02	MW-106D/MW-106D	Groundwater	11/07/2023 13:05	11/08/2023 14:20	Eric Brown
3112898-03	MW-105/MW-105	Groundwater	11/08/2023 11:55	11/08/2023 14:20	Eric Brown

ANALYTICAL RESULTS

Lab Sample ID: 3112898-01
Description: MW-106S MW-106S

Sample Collection Date Time: 11/07/2023 14:00 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag Units		MRL	MDL Method		Prepared Analyzed		Analyst
Arsenic	0.0832	mg/L	0.0010	0.0004	SW846-6020 A	11/10/2023 09:07	11/13/2023 17:54	AKB

ANALYTICAL RESULTS

Lab Sample ID: 3112898-02
Description: MW-106D MW-106D

Sample Collection Date Time: 11/07/2023 13:05 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
Arsenic	0.0012	mg/L	0.0010	0.0004 SW846-6020 A	11/13/2023 08:43	11/16/2023 16:01	AKB

ANALYTICAL RESULTS

Lab Sample ID: **3112898-03**Description: **MW-105 MW-105**

Sample Collection Date Time: 11/08/2023 11:55 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag	Units	MRL	MDL Method	Prepared	Analyzed	Analyst
Arsenic	0.0103	ma/L	0.0010	0.0004 SW846-6020 A	11/10/2023 09:07	11/13/2023 17:58	AKB

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3112898

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

D2 Sample required dilution due to matrix interference.

U Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL Method Detection Limit
MRL Minimum Reporting Limit

ND Not Detected

LCS Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate
DUP Sample Duplicate
% Rec Percent Recovery

RPD Relative Percent Difference

> Greater than < Less than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	_	Donortin		Cnile	Course		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BCK0852 - EPA 200.2										
Blank (BCK0852-BLK1)	10000 4004									
Prepared: 11/10/2023 9:07, Analyzed: 11/13/		0.0040	pa e: II							
Arsenic	ND	0.0010	mg/L							U
LCS (BCK0852-BS1)										
Prepared: 11/10/2023 9:07, Analyzed: 11/13/										
Arsenic	0.0605	0.0010	mg/L	0.0625		96.9	85-115			
Matrix Spike (BCK0852-MS1)	Source: 3111623-01									
Prepared: 11/10/2023 9:07, Analyzed: 11/13/	/2023 18:01									
Arsenic	0.0637	0.0010	mg/L	0.0625	ND	102	80-120			
Matrix Spike (BCK0852-MS2)	Source: 3111624-06									
Prepared: 11/10/2023 9:07, Analyzed: 11/13/	2023 18:09									
Arsenic	0.0652	0.0010	mg/L	0.0625	ND	104	80-120			
Matrix Spike Dup (BCK0852-MSD1)	Source: 3111623-01									
Prepared: 11/10/2023 9:07, Analyzed: 11/13/										
Arsenic	0.0626	0.0010	mg/L	0.0625	ND	100	80-120	1.81	20	
Matrix Spike Dup (BCK0852-MSD2)	Source: 3111624-06									
Prepared: 11/10/2023 9:07, Analyzed: 11/13/										
Arsenic	0.0662	0.0010	mg/L	0.0625	ND	106	80-120	1.49	20	
Post Spike (BCK0852-PS1)	Source: 3111623-01		-							
Prepared: 11/10/2023 9:07, Analyzed: 11/13/										
Arsenic	0.0632	0.0010	mg/L	0.0625	ND	101	75-125			
-	0.0002	3.5010	9/ -	3.5020			120			
Batch BCK1114 - EPA 200.2										
Blank (BCK1114-BLK2)										
Prepared: 11/13/2023 8:43, Analyzed: 11/16/										
Arsenic	ND	0.0010	mg/L							U
LCS (BCK1114-BS2)										
Prepared: 11/13/2023 8:43, Analyzed: 11/16/	¹ 2023 15:54									
Arsenic	61.8		ug/L	62.5		98.8	85-115			

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1114 - EPA 200.2										
Matrix Spike (BCK1114-MS2)	Source: 3110769-01									
Prepared: 11/13/2023 8:43, Analyzed: 11	1/16/2023 16:48									
Arsenic	62.3		ug/L	62.5	0.115	99.5	80-120			D2
Matrix Spike Dup (BCK1114-MSD2)	Source: 3110769-01									
Prepared: 11/13/2023 8:43, Analyzed: 11	1/16/2023 16:52									
Arsenic	63.3		ug/L	62.5	0.115	101	80-120	1.55	20	D2
Post Spike (BCK1114-PS2)	Source: 3110769-01									
Prepared: 11/13/2023 8:43, Analyzed: 11	1/16/2023 16:56									
Arsenic	62.9		ug/L	62.5	0.115	100	75-125			D2

	Sample Acceptance Checklist for Work Order 3112898
Shipped By: Client	Temperature: 3.00° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	☑
Check if Collector Signature Present	abla
Check if bottles are intact	
Check if bottles are correct	☑
Check if bottles have sufficient volume	
Check if samples received on ice	☑
Check if VOA headspace is acceptable	
Check if samples received in holding time.	☑
Check if samples are preserved properly	

aldmes tot **Container Size: (1) 11, (2) 500ml, (3) 250ml, (4) 125ml (5) 100ml, (6) 40ml vial, (?) €nCove, (B) †erratone, (9) ••• Rescradue Type: (2) ham. (2) hHO; (3) hEGO, (4) HC; (5) hBOW, (6) En Amine. (7) heHGO4. (8) Sod. Thlosultate. (9) Assamble Add. (10) McOH; (11) Other Connected Temp. ("C): ENV-PRM-CORQ-0019_v01_082123 @ | Jeed | jurs | John Delivered by: 🚦 J.m. Person 📗 | Courter Sample Comment relog / Bottle Ord, ID: Acetivum / Client ID: Profile / Template Obs Temp. 70 Proj. Mgr. LAB USE CNLY. Affix Workerdorfoghs Lebel Her Page: 3112898 Correction factor (C): Scan OR Code for instructions のス、エ Additional Instructions from Pace Date/Time; Date/Time: a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace? Terms and Conditions found at https://www.pacelabs.com/resource/pace-terms-and-considens × × × Number & Type of Containers Plastic Glass I nequence:

Marix Codes (Insert in Matrix box below:: Drinking Water (DW), Ground Water (GW), Wastewater (MW), Product (P), Solf/Solid (SS), Oil (Cit), Wipe (WP), Tissue (TS), Bloassay (B), Vapor (VI, Other (OT), Soliment (StD), Studge (St), Caulk CHAIN-OF-CUSTODY Analytical Request Document Callected By: Eric Brown Signature g G Chain-of-Custody is a LEGAL DOCUMENT - Complete all release Reds etrived by/Company: (Signature) Composite End Analysis: 1155 3 1 2 8 11/7/23 1305 1420 County / State origin of sample(s): togulatory Program (DW, RCRA, etc.) as applicable: | |2 Day (|3 day (|5 day (|Cther_ (1/4/23 Purchase Order # (If applicable):
Ouote #: 11/8/12 87 8/11 Invoice E-mail: Cc E-Mail: hybice to: Phone #: E-Mail: ate/Time: DateChme Comp / Grab Date Results Requested <u></u> 3 3 1 Thermometer Serial Number <u>...</u> Customer Remarks / Special Conditions / Possible Hazards 181390287 18146005 Sebree Grasm Temp 30°C TM . { } Level IV Customer Sample ID 7001 COMPANY NAME BIS RIVERS Ste Collection brio/Facility ID (as applicable) 14 } 90/ MW-105 70 Level ithed by/Consony: [Signature] thed by/Company: (Signature) Time Zono Collected: | 14K 13W Pace. 3 Customer Project #: 1 Data Deliverables then Address: { }Level1 esject Name | TEQUE [Cther Page 6 of 6

ſ

Certificate of Analysis 3061148

Greg Dick Big Rivers Electric Corporation Reid/Green Station PO Box 24 Henderson, KY 42419 Customer ID: Report Printed:

44-102032 07/10/2023 10:21

Project Name:

Green Surface Impoundment

Workorder:

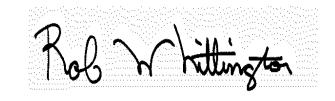
3061148

Dear Greg Dick

Enclosed are the analytical results for samples received by the laboratory 06/26/2023 12:14.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3061148-01	MW11/		Groundwater	06/25/2023 07:55	06/26/2023 12:14	Greg Dick
3061148-02	MW12/		Groundwater	06/25/2023 11:20	06/26/2023 12:14	Greg Dick
3061148-03	MW13/		Groundwater	06/25/2023 09:30	06/26/2023 12:14	Greg Dick
3061148-04	MW14/		Groundwater	06/25/2023 08:45	06/26/2023 12:14	Greg Dick
3061148-05	DUPLICATE/		Groundwater	06/25/2023 09:00	06/26/2023 12:14	Greg Dick
3061148-06	FIELD BLANK/		Water	06/25/2023 11:45	06/26/2023 12:14	Greg Dick
<u>LabNumber</u>	Measurement	<u>Value</u>				
3061148-01	Field Conductance	5610				
	Field pH	6.87				
	Field Temp (C)	17.49				
3061148-02	Field Conductance	919				
	Field pH	6.90				
	Field Temp (C)	21.55				
3061148-03	Field Conductance	1160				
	Field pH	6.65				
	Field Temp (C)	21.70				
3061148-04	Field Conductance	1630				
	Field pH	6.69				
	Field Temp (C)	18.90				

Work Order Comments:

Corrected Report:

This report has been issued as a revision of the previous report dated 7/5/23@1553. Collection date corrected.

Pace*
ANALYTICAL SERVICES

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 3061148-01

Description: MW11

Sample Collection Date Time: 06/25/2023 07:55 Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result F	lag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.57	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 10:53	MRWD
Calcium	131 D)1 mg/L	40.0	13.0	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:00	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.53	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	2960		mg/L	50	50	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	1790	D	mg/L	25.0	18.0	SW846 9056	07/03/2023 01:40	07/03/2023 01:40	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	07/03/2023 01:13	07/03/2023 01:13	CSC
Sulfate	568	D	mg/L	50	25	SW846 9056	07/03/2023 01:40	07/03/2023 01:40	CSC

ANALYTICAL RESULTS

Lab Sample ID: 3061148-02

Description: MW12

Sample Collection Date Time: 06/25/2023 11:20 Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.31		mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:03	MRWD
Calcium	94.3	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:06	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.48	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	608		mg/L	100	100	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	9.5	mg/L	0.5	0.4	SW846 9056	07/03/2023 02:08	07/03/2023 02:08	CSC
Fluoride	0.4	mg/L	0.2	0.2	SW846 9056	07/03/2023 02:08	07/03/2023 02:08	CSC
Sulfate	4	mg/L	1	0.5	SW846 9056	07/03/2023 02:08	07/03/2023 02:08	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 3061148-03

Description: MW13

Sample Collection Date Time: 06/25/2023 09:30 Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:22	MRWD
Calcium	94.0	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:25	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.24	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	656		mg/L	100	100	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	21.0	mg/L	0.5	0.4	SW846 9056	07/03/2023 02:35	07/03/2023 02:35	CSC
Fluoride	0.2	mg/L	0.2	0.2	SW846 9056	07/03/2023 02:35	07/03/2023 02:35	CSC
Sulfate	77	mg/L	1	0.5	SW846 9056	07/03/2023 02:35	07/03/2023 02:35	CSC

ANALYTICAL RESULTS

Lab Sample ID: 3061148-04

Description: MW14

Sample Collection Date Time: 06/25/2023 08:45 Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:31	MRWD
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:31	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.24	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	992		mg/L	100	100	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	107	mg/L	0.5	0.4	SW846 9056	07/03/2023 03:02	07/03/2023 03:02	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	07/03/2023 03:02	07/03/2023 03:02	CSC
Sulfate	184	mg/L	1	0.5	SW846 9056	07/03/2023 03:02	07/03/2023 03:02	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3061148-05**Description: **DUPLICATE**Sample Collection Date Time: 06/25/2023 09:00
Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.15	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:41	MRWD
Calcium	189 D1	mg/L	40.0	13.0	SW846 6010 B	07/03/2023 09:56	07/05/2023 11:47	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.36	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	896		mg/L	100	100	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	101	mg/L	0.5	0.4	SW846 9056	07/03/2023 03:57	07/03/2023 03:57	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	07/03/2023 03:57	07/03/2023 03:57	CSC
Sulfate	173	mg/L	1	0.5	SW846 9056	07/03/2023 03:57	07/03/2023 03:57	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3061148-06**Description: **FIELD BLANK**Sample Collection Date Time: 06/25/2023 11:45
Sample Received Date Time: 06/26/2023 12:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:00	MRWD
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:00	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	5.80	H3	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	ND	U	mg/L	50	50	2540 C-2015	06/30/2023 13:02	06/30/2023 13:02	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	ND	U	mg/L	0.5	0.4	SW846 9056	07/03/2023 04:52	07/03/2023 04:52	CSC
Fluoride	ND	M1, U	mg/L	0.2	0.2	SW846 9056	07/03/2023 04:52	07/03/2023 04:52	CSC
Sulfate	ND	U	mg/L	1	0.5	SW846 9056	07/03/2023 04:52	07/03/2023 04:52	CSC

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

Notes for work order 3061148

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .

laboratory method detection limit in our LIMS system).

- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

Results reported from dilution.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

D

D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
H1	Sample analysis performed past holding time.
Н3	Sample received and analyzed past holding time.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the

Standard Qualifiers/Acronyms

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected

LCS Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate
DUP Sample Duplicate
% Rec Percent Recovery

RPD Relative Percent Difference

> Greater than < Less than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Blank (BCG0024-BLK1)										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 10:44									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
LCS (BCG0024-BS1)										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 10:47									
Boron	0.13	0.10	mg/L	0.125		103	85-115			
Calcium	6.32	0.40	mg/L	6.25		101	85-115			
Matrix Spike (BCG0024-MS1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 12:09									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	160	4.00	mg/L	6.25	152	123	80-120			D2, M3
Matrix Spike (BCG0024-MS2)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 12:16									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	8.40	4.00	mg/L	6.25	ND	134	80-120			D2, M1
Matrix Spike Dup (BCG0024-MSD1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 12:13									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	165	4.00	mg/L	6.25	152	214	80-120	3.48	20	D2, M3
Matrix Spike Dup (BCG0024-MSD2)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 12:19									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	7.31	4.00	mg/L	6.25	ND	117	80-120	13.9	20	D2
Post Spike (BCG0024-PS1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/20	023 12:22									
Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
Calcium	173	4.00	mg/L	6.25	152	340	75-125			D2, M3

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCF2697 - Default Prep Micro										
LCS (BCF2697-BS1)										
Prepared: 7/5/2023 13:07, Analyzed: 7	7/5/2023 14:27									
pH (Lab)	4.96		Std. Units	5.00		99.2	98.8-101.2			
LCS (BCF2697-BS2)										
Prepared: 7/5/2023 13:07, Analyzed: 7	7/5/2023 14:27									
pH (Lab)	4.99		Std. Units	5.00		99.8	98.8-101.2			
Duplicate (BCF2697-DUP1)	Source: 3032611-06									
Prepared: 7/5/2023 13:07, Analyzed: 7	7/5/2023 14:27									
pH (Lab)	5.79	0.10	Std. Units		5.84			0.860	10	Н3
Duplicate (BCF2697-DUP2)	Source: 3064450-01									
Prepared: 7/5/2023 13:07, Analyzed: 7	7/5/2023 14:27									
pH (Lab)	9.64	0.10	Std. Units		9.64			0.00	10	Н3
Batch BCF2798 - Default Prep Wet Ch	em									
Blank (BCF2798-BLK1)										
Prepared: 6/30/2023 13:02, Analyzed:	6/30/2023 13:02									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2798-BS1)										
Prepared: 6/30/2023 13:02, Analyzed:	6/30/2023 13:02									
Total Dissolved Solids	1490	25	mg/L	1500		99.3	80-120			
Duplicate (BCF2798-DUP1)	Source: 3061148-01									
Prepared: 6/30/2023 13:02, Analyzed:	6/30/2023 13:02									
Total Dissolved Solids	2970	50	mg/L		2960			0.202	10	
Duplicate (BCF2798-DUP2)	Source: 3064431-04									
Prepared: 6/30/2023 13:02, Analyzed:	6/30/2023 13:02									
Total Dissolved Solids	1200	50	mg/L		1190			0.502	10	H1

Ion Chromatography Madisonville - Quality Control

	F	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0015 - Default Prep IC										
Matrix Spike (BCG0015-MS1)	Source: 3061148-06									
Prepared: 7/3/2023 6:14, Analyzed: 7/3/2023	6:14									
Chloride	15.5		mg/L	12.5	0.0	124	75-125			
Fluoride	6.6		mg/L	5.00	0.0	132	75-125			M1
Sulfate	31		mg/L	25.0	0.2	125	75-125			
Matrix Spike Dup (BCG0015-MSD1)	Source: 3061148-06									
Prepared: 7/3/2023 6:42, Analyzed: 7/3/2023	6:42									
Chloride	14.8		mg/L	12.5	0.0	119	75-125	4.39	15	
Fluoride	6.1		mg/L	5.00	0.0	121	75-125	8.30	15	
Sulfate	31		mg/L	25.0	0.2	125	75-125	0.523	15	

Certified Analyses included in this Report

Analyte Certifications

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431

4500-H+ B-2000 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3061148
Shipped By: Client	Temperature: 5.70° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	lacksquare
Check if bottles are intact	☑
Check if bottles are correct	abla
Check if bottles have sufficient volume	
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	✓
Check if samples are preserved properly	✓

Chain of Custody

Scheduled for: 06/05/2023

				<u> </u>	 -1		
Client: Big Rin Reid/Green St	vers Electric C	orporation	Report To:	tric Corporation Reid	Invoice T	o: s Electric Corporation	n Reid/Green Station
Treid/Orceit ou	41.011		Station	inc Corporation Netu	•	•	THEID/GIECH Station
Project: Green	n Surface impo	oundment	Greg Dick PO Box 24		Greg Dick PO Box 2		
			Henderson, KY	42419		n, KY 42419	
			Phone: (270) 8				
			PWS ID#:		PO#: ¸		
Please Print i	Legibly		State:	<u> </u>	Quote# _		
Collected by (S	ignature):	My (Uired Information			pliance Monitoring?	
*For composite	samples pleas	e indicate begin	time, end time and temp(oC)	at end time below:	Sam	ples Chlorinated?	Yes No
Influent: Start I	Date	Start time	End Date	End Time	Temp (oC)		
Effluent: Start	Date	Start time	End Date	End Time	Тетр (оС)		
LAB USE ONL	Y *required	information*		ត៍			
Workorder#	Date (mm/dd/w/):	Collection Time (24 hr):	South and South and South	arine en		·r	
3061148 Sample ID#	(mneud/yy).	(fille (24 la).	Bottle and Preservative	sa Julia Sample Des O	cription Composit	e Sample Ana	lysis Requested
3061148-01 A	06 25 23	0755	Plastic 500mL pH<2 w/HNO3	MW11	g/c	Calcium Tot 601	0B Boron Tol 6010B
			Preservation Check: pH:_	<u> </u>			
3061148-01 B	06/25/23	0755	Plastic 500mL pH<2 w/HNO3	1 MW11	g/c	Całcium Tot 601	0B Baron Tot 6010B
3	\		Preservation Check: pH:_	<u> </u>			
3061148-01 C	06 15 13	0755		1 MW11	g/c	TDS Sulfate 905 9056 Chloride 9	6 pH (Lab) Fluoride 056
3061148-02 A	06/25/23	1120	Plastic 500mL pH<2 w/HNO3	1 MW12	g/c	Calcium Tot 601	0B Baron Tot 6010B
			Preservation Check: pH : _	<u> </u>			
3061148-02 B	óp 15 23	1120	Plastic 500mL pH<2 w/HNO3	1 MW12	? g/c	Calcium Tot 601	0B Boron Tot 6010B
			Preservation Check: pH:_	<u>/</u>			
3061148-02 C	06 25 23	1120	Plastic 1L	1 MW12	g/c	TDS Sulfate 905 9056 Chloride 9	6 pH (Lab) Fluoride 056
•		1		·			
		VC					
Preservation (Check Perform	ed by: <u>しつ</u> こ	<u> </u>				
	OLS	7001	D. v	01-12-122	MW-11 / W	<u> 12 </u>	
Field data colle			I Din - I -		24 hr) 0755 112		
рн (-	87 6.90 Co	ond (umho) 561	0 9 9 Res CI (mg/L)	Tot CI (mg/L)	Free Ci (mg/L)	
Temp (oC) 17	.49 21.55 or	(oF)	Static Water Level _	DO (n	ng/L)	Turb. (NTU)	
Flow (MGD)	o.	(CFS)	or (g/min)	<u></u>	•		
Relinquished b	y: (Signature)		Received by: (Signa	ture)	Date (m	ım/dd/yy) Tin	ne (24 hr)
0.			16 5	\bigcirc	~ I	1/22	
- Jepun	of Chiril			/		<u> </u>	1214
					···········		
						i i	

Chain of Custody

Scheduled for: 06/05/2023

	Schedule	G 101. 00/03/2023	J	41 2 3 9 8 1 1 1 2 2 3 2 2 2 2 3 4 5 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Ele Station	ectric Corporation Reid/Gree	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station
Project: Green Surface Impoundment	Greg Dick PO Box 24 Henderson, K	XY 42419	Greg Dick PO Box 24 Henderson,	KY 42419
	Phone: (270)	844-5736	PO#:	-
Please Print Legibly	PWS ID#: State:	KY	Quote#	
Collected by (Signature):	ച്ച	······································	Compli	ance Monitoring? Yes No
*For composite samples please indicate beg		C) at end time below:	Sample	es Chlorinated? Yes No
_			Temp (oC)	
Influent: Start Date Start time Effluent: Start Date Start time	End Date	End Time	Temp (oC)	
LAB USE ONLY *required information*		S		
Workorder # Date Collection 3061148 (mm/dd/yy): Time (24 hr) Sample ID#	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested
3061148-03 A 06 L5 L3 0932	Plastic 500mL pH<2	1 MW13	g/c	Calcium Tot 6010B Boron Tot 6010B
	Preservation Check: pH :			
3061148-03 B 06 25/13 0930	Plastic 500mL pH<2 w/HNO3	1 MW13	g/c	Calcium Tot 6010B Boron Tot 6010B
	Preservation Check: pH :	<u> </u>		
3061148-03 C 06/25/23 0930	Plastic 1L	1 MW13	g/c	TDS Sulfate 9056 pH (Lab) Fluoride 9056 Chloride 9056
3061148-04 A 66/25/23 0845	Plastic 500mL pH<2 w/HNO3	1 MW14	g/c	Calcium Tot 6010B Boron Tot 6010B
	Preservation Check: pH:			
3061148-04 B 06/25/23 0845	Plastic 500mL pH<2 w/HNO3	1 MW14	g/c	Calcium Tot 6010B Boron Tot 6010B
	Preservation Check: pH:			
3061148-04 C 66/25/23 0845	Plastic 1L	1 MW14	g/c	TDS Sulfate 9056 pH (Lab) Fluoride 9056 Chloride 9056
3061148-05 A 06/6/23 0900	Plastic 500mL pH<2 w/HNO3	1 DUPLICATE	g/c	Calcium Tot 6010B Boron Tot 6010B
	Preservation Check: pH:			
Preservation Check Performed by:	60			
Preservation Check Performed by: 1			<u> </u>	
Field data collected by: Greg Dick 9	Date (mm/dd/yy) <u>0 25 23</u> Time (24 hr)		
pH 6-65 6-69 Cond (umho) 11	60 1630 Res CI (mg/L) Tot CI (mg/L)	Fre	ee Cl (mg/L)
Temp (oC) 21.70 18.90 or (oF)	Static Water Level	DO (mg/L)	T	urb. (NTU)
Flow (MGD) or (CFS)	or (g/min)			
Relinquished by: (Signature)	Received by: (Sign	nature)	Date (mm/	/dd/yy) Time (24 hr)
Mry Oirf	16 8	12_	06/26	1214
			<u> </u>	

Printed: 6/21/2023 2:32:55PM

Chain of Custody

Scheduled for: 06/05/2023

		Ш
--	--	---

Page 12 of 15

Printed: 6/21/2023 2:32:55PM

					_			
Client: Big Rivers Electric Corporation Reid/Green Station		Report To: Big Rivers Electric Corporation Reid/Green			Invoice To: Big Rivers Electric Corporation Reid/Green Station			
		Station Greg Dick	Station Grea Dick			Greg Dick		
Project: Green Surface Imp	oundment	PO Box 24	"			PO Box 24		
		Henderson, K	(Y 4241	9	Henderson,	KY 42419		
		Phone: <u>(270)</u> PWS ID#:	844-57	<u>36</u>	PO#:		_	
Please Print Legibly		State:	KY	_	Quote#			
Collected by (Signature):	المركبة	juired information*			Compl	iance Monitori	ing? Yes No 🗹	
*For composite samples plea	se indicate begir	time, end time and temp(of	C) at end	d time below:	Sample	es Chlorinated	1? Yes No <u>~</u>	
Influent: Start Date Start time		End Date End Time		Temp (oC)				
Effluent: Start Date	Start time	End Date	E	End Time	Temp (oC)			
Workorder # Date 3061148 (mm/dd/yy)	f Information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Somula	Analysis Daggaratasi	
Sample ID# 3061148-05 B 66 25 23	0900	Plastic 500mL pH<2	· -	DUPLICATE	0.10		Analysis Requested 6010B Boron Tot 6010B	
3001140-03 B BE CO (E)		w/HNO3	١	DUFLICATE	g/c	Carcillar 10t	00108 801001 101 00108	
-(ae a-	۸.	Preservation Check: pH:						
3061148-05 C 06/25/23	0900	Plastic 1L	1	DUPLICATE	g/c	TDS Sulfate 9056 Chloric	9056 pH (Lab) Fluoride de 9056	
3061148-06 A •6 25 23	1145	Plastic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c		6010B Boron Tot 6010B	
		Preservation Check; pH:						
3061148-06 B 06/5/2)	1145	Plastic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c	Calcium Tot	6010B Boron Tot 6010B	
		Preservation Check: pH:						
3061148-06 C 06/25/23	1145	Plastic 1L	1	FIELD BLANK	g/c	TDS Sulfate 9056 Chloric	9056 pH (Lab) Fluoride le 9056	
Preservation Check Perform	ned by: KG	<u>D</u>						
Field data collected by:		Date (mm/dd/yy)	Time (24 hr)				
		Res CI (mg/L				on Ci Imali i		
							li li	
Temp (oC) oi	r (oF)	Static Water Level		DO (mg/L)	т	urb. (NTU)		
Flow (MGD) or	(CFS)	or (g/min)						
Relinquished by: (Signature)	Received by: (Sign	Received by: (Signature)			Date (mm/dd/yy) Time (24 hr)			
Jan A.	17	W 80			06/26/23 12/4			
- O MA Chick			<u>ے ب</u>		06/26	1 6 3		

PACE- Check here if trip charge applied to associated COC

Chain of Custody

Scheduled for: 06/05/2023

Page 13 of 15

Printed: 6/21/2023 2:32:55PM

Client: Big Rivers Electric Reid/Green Station	: Corporation		stric Corporation Reid/Gree		Invoice To: Big Rivers Electric Corporation Reid/Green Station		
	•	Station Greg Dick		Greg Dick	Greg Dick		
Project: Green Surface In	poundment	PO Box 24		PO Box 24	•		
		Henderson, KY	42419	Henderson,	KY 42419		
		Phone: <u>(270) 8</u> PWS ID#:	<u>44-5736</u>	PO#:			
Please Print Legibly	. (State:	<u> </u>	Quote#	-		
Collected by (Signature):	The Co	guired information		Compliance Monitoring? Yes No			
*For composite samples ple	ase indicate begi	n time, end time and temp(oC)	at end time below:	Sampi	es Chlorinated? Yes No		
Influent: Start Date	Start time	End Date End Date	End Time	Temp (oC)	-		
Effluent: Start Date	Start time _	End balle	End Time	Temp (oC)	\		
Workorder# Date	ed information* Collection y): Time (24 hr):	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested		
3061148-01 A 06/25/2	3 0755	Plastic 500mL pH<2	1 MW11	g/c	Calcium Tot 6010B Boron Tot 6010B		
		w/HNO3 Preservation Check: pH : _	<u></u>				
3061148-01 B 06/25/2	3 0755	Plastic 500mL pH<2 w/HNO3	1 MW11	g/c	Calcium Tot 6010B Boron Tot 6010B		
\ ,		Preservation Check: pH:_	<u></u>				
3061148-01 C 06 25 23	0755		1 MW11	g/c	TDS Sulfate 9056 pH (Lab) Fluoride 9056 Chloride 9056		
3061148-02 A Ob 25 2	3 1120	Plastic 500mL pH<2 w/HNO3	1 MW12	g/c	Calcium Tot 6010B Boron Tot 6010B		
د. دخس		Preservation Check: pH:_	<u> </u>				
3061148-02 B 66/15/23	1120	. Plastic 500mL pH<2 w/HNO3	1 MW12	g/c	Calcium Tot 6010B Boron Tot 6010B		
		Preservation Check: pH:_	<u> </u>				
3061148-02 C 06 25 23	1/20	. Plastic 1L	1 MW12	g/c	TDS Sulfate 9056 pH (Lab) Fluoride 9056 Chloride 9056		
•			•				
Preservation Check Perfo	rmed by: KS	-0					
rieservation oneck reno			<u>~.</u>	MW=11 /MW=1	2		
Field data collected by:	W (ora	Dick Date (mm/dd/vv)	06 25/23 Time (24 hr)				
MW-11 MW-12 pH 6.87 6.90	Cond (umho) 56	10 919 Res CI (mg/L)	Tot CI (mg/L)	1	1		
Temp (oC) 17,49 21.55	or (oF)	Static Water Level _	DO (mg/L)		Turb. (NTU)		
Flow (MGD)	or (CFS)	or (g/min) _					
Relinquished by: (Signature)	Received by: (Signa	ture)	Date (mm	/dd/yy) Time (24 hr)		
May Ouie		V- E	<u></u>	06/21	06/26/23 1214		
. 00				T			
		- <u></u>					

PACE- Check here if trip charge applied to associated COC

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 06/05/2023

Client: Big Rivers Electric Corporation Reid/Green Station Project: Green Surface Impoundment	Report To: Big Rivers Electory Station Greg Dick PO Box 24 Henderson, KY	tric Corporation Reid/Greer	Big Rivers E Greg Dick PO Box 24	-			
	Phone: (270) 8 PWS ID#:	<u>44-5736</u>	PO#:	·			
Please Print Legibly	State:	<u> </u>	Quote#				
Collected by (Signature):	ed information*		•		ng? Yes No		
For composite samples please indicate begin tin	ne, end time and temp(oC)	at end time below:	Sample	es Chlorinated	1? Yes No		
nfluent: Start Date Start time	End Date	End Time	Temp (oC)				
Effluent: Start DateStart time	End Date	End Time	Temp (oC)	·····			
LAB USE ONLY *required information* Workorder # Date Collection 3061148 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative	Sample Description	n Composite	Sample	Analysis Requested		
3061148-03 A 06 LS L3 0930	Plastic 500mL pH<2 w/HNO3	1 MW13	g/c	Calcium Tot	6010B Boron Tot 6010B		
P	w/nivos reservation Check: pH : _	<u>~</u>					
3061148-03 B 06/25/13 0930	Plastic 500mL pH<2 w/HNO3 reservation Check: pH:_	1 MW13	g/c	Calcium Tot	6010B Boron Tot 6010B		
3061148-03 C 06/25/23 0930		1 MW13	g/c		9056 pH (Lab) Fluoride		
3061148-04 A 66/25/13 0845	Plastic 500mL pH<2 w/HNO3	1 MW14	g/c	9056 Chłoric Calcium Tot	6010B Boron Tot 6010B		
Pi	reservation Check: pH : _						
3061148-04 B 06/25/13 0845	Plastic 500mL pH<2 w/HNO3	1 MW14	g/c	Calcium Tot	6010B Boron Tot 6010B		
Pi	reservation Check: pH : _	<u> </u>					
3061148-04 C 06 25 23 0845	Plastic 1L	1 MW14	g/c		9056 pH (Lab) Fluoride		
061148-05 A 06/25/23 0900	Plastic 500mL pH<2 w/HNO3	1 DUPLICATE	g/c	9056 Chloric Calcium Tot	6010B Boron Tot 6010B		
Pi	reservation Check: pH : _	<u> </u>					
Preservation Check Performed by:	<u> </u>						
Field data collected by: Gree Dilk 91	Date (mm/dd/w)	01/25/23 Time (24 hr)	930 0845				
Field data collected by: Gres Dick 91 1 Mw-13 Interity rew-13 DH 6.65 6.69 Cond (umho) 1160	pare-ty-	•	,				
Temp (oC) 21.70 (18.90 or (oF)	Static Water Level _	DO (mg/L) _	т	urb. (NTU)			
Flow (MGD) or (CFS)	or (g/min) _						
Refinquished by: (Signature)	Received by: (Signa	lure)	Date (mm/	/dd/yy)	Time (24 hr)		
Mry Qiet	<u> </u>	<u>a</u>	06/26	123	1214		
PACE- Check here if trip charge applie	ed to associated COC	Printed:	6/21/2023 2:32:	:55PM	Page 14 of 15		

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 06/05/2023

Page 15 of 15

Printed: 6/21/2023 2:32:55PM

			<u>. </u>			J		
Reid/Green St	vers Electric C ation n Surface Impo	·	Report To: Big Rivers Ele Station Greg Dick PO Box 24 Henderson, K		orporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,	Electric Corpo	ration Reid/Green Station
			Phone: <u>(270)</u> PWS ID#:	844-57	36	PO#:		***
Please Print	Legibly		State:	KY		Quote#		
Collected by (S	ignature):	المنيل كهيها	cuired information*			Compl	iance Monitor	ing? Yes No
*For composite	samples pleas	•	time, end time and temp(oC) at en	d time below:	Sample	es Chlorinate	d? Yes No 🗹
		_	End Date			Temp (oC)		,
			End Date					
LAB USE ONL Workorder # 3061148 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample	e Analysis Requested
3061148-05 B	06/25/23	0900	Plastic 500mL pH<2	1	DUPLICATE	g/c	· · · · · · · · · · · · · · · · · · ·	t 6010B Boron Tot 6010B
			w/HNO3 Preservation Check: pH:					
3061148-05 C	06 25 23	0900	Plastic 1L	1	DUPLICATE	g/c		e 9056 pH (Lab) Fluoride
3061148-06 A	06/25/23	1145	Plastic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c	9056 Chlori Calcium Tot	de 9056 t 6010B Boron Tot 6010B
			Preservation Check: pH:					
3061148-06 B	06/25/2)	1145	Plastic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c	Calcium Tot	t 6010B Boron Tot 6010B
			Preservation Check: pH:					
3061148-06 C	06/25/23	1145	Plastic 1L	1	FIELD BLANK	g/c	TDS Sulfate 9056 Chlori	e 9056 pH (Lab) Fluoride ide 9056
Preservation (Check Perform	ed by: KG	<u>D</u>					
Field data colle	cted by:		Date (mm/dd/yy)	Time (24 hr) _			
pH	Co	ond (umho)	Res CI (mg/L)		Tot CI (mg/L) _	Fre	ee Cl (mg/L)	
Temp (oC)	or	(oF)	Static Water Level		DO (mg/L) _	Т	urb. (NTU) _	
Flow (MGD)	Of	(CFS)	or (g/min)		·			
Relinquished by: (Signature)			Received by: (Sign	Received by: (Signature)				Time (24 hr)
								

PACE- Check here if trip charge applied to associated COC

Certificate of Analysis 3111623

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 11/20/2023 15:52

Project Name:

Green Surface Impoundment

Workorder:

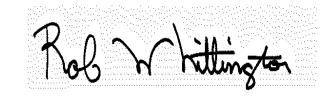
3111623

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/08/2023 14:20.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:


- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3111623-01	MW11/		Groundwater	11/06/2023 16:15	11/08/2023 14:20	Eric Brown
3111623-02	MW12/		Groundwater	11/06/2023 15:25	11/08/2023 14:20	Eric Brown
3111623-03	MW13/		Groundwater	11/06/2023 12:30	11/08/2023 14:20	Eric Brown
3111623-04	MW14/		Groundwater	11/06/2023 13:30	11/08/2023 14:20	Eric Brown
3111623-05	DUPLICATE/		Groundwater	11/06/2023 13:45	11/08/2023 14:20	Eric Brown
3111623-06	FIELD BLANK/		Water	11/06/2023 15:35	11/08/2023 14:20	Eric Brown
<u>LabNumber</u>	Measurement	<u>Value</u>				
3111623-01	Field Conductance	4230				
	Field pH	6.81				
	Field Temp (C)	18.04				
3111623-02	Field Conductance	609				
	Field pH	7.33				
	Field Temp (C)	18.47				
3111623-03	Field Conductance	843				
	Field pH	6.58				
	Field Temp (C)	18.34				
3111623-04	Field Conductance	1010				
	Field pH	6.70				
	Field Temp (C)	18.47				

ANALYTICAL RESULTS

Lab Sample ID: 3111623-01

Description: MW11

Sample Collection Date Time: 11/06/2023 16:15 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.44	M2	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:07	MRWD
Calcium	221	D1, M3	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:23	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.60	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	4340		mg/L	250	250	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	2060	D	mg/L	25.0	18.0	SW846 9056	11/11/2023 04:07	11/11/2023 04:07	CSC
Fluoride	0.2		mg/L	0.2	0.2	SW846 9056	11/11/2023 03:12	11/11/2023 03:12	CSC
Sulfate	855	D	mg/L	50	25	SW846 9056	11/11/2023 04:07	11/11/2023 04:07	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111623-02**

Description: MW12

Sample Collection Date Time: 11/06/2023 15:25 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.24	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:26	MRWD
Calcium	77.2 D1	mg/L	4.00	1.30	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:29	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.06	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	568		mg/L	100	100	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	20.3	mg/L	0.5	0.4	SW846 9056	11/11/2023 04:35	11/11/2023 04:35	CSC
Fluoride	0.5	mg/L	0.2	0.2	SW846 9056	11/11/2023 04:35	11/11/2023 04:35	CSC
Sulfate	64	mg/L	1	0.5	SW846 9056	11/11/2023 04:35	11/11/2023 04:35	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111623-03**Description: **MW13**Sample Collection Date Time: 11/06/2023 12:30
Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:36	MRWD
Calcium	95.6	D1	mg/L	4.00	1.30	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:39	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.37	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	752		mg/L	100	100	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	27.1	mg/L	0.5	0.4	SW846 9056	11/11/2023 05:02	11/11/2023 05:02	CSC
Fluoride	0.2	mg/L	0.2	0.2	SW846 9056	11/11/2023 05:02	11/11/2023 05:02	CSC
Sulfate	100	mg/L	1	0.5	SW846 9056	11/11/2023 05:02	11/11/2023 05:02	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111623-04**

Description: MW14

Sample Collection Date Time: 11/06/2023 13:30 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag l		MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.13	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 14:45	MRWD
Calcium	155 🗅	D1 mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:01	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.57	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	940		mg/L	100	100	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	104	mg/L	0.5	0.4	SW846 9056	11/11/2023 05:30	11/11/2023 05:30	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	11/11/2023 05:30	11/11/2023 05:30	CSC
Sulfate	176	mg/L	1	0.5	SW846 9056	11/11/2023 05:30	11/11/2023 05:30	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111623-05** Description: **DUPLICATE**

Sample Collection Date Time: 11/06/2023 13:45 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result Flag		MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	0.13	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:04	MRWD
Calcium	158 D1	mg/L	40.0	13.0	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:10	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.42	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	988		mg/L	100	100	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	105	mg/L	0.5	0.4	SW846 9056	11/11/2023 06:24	11/11/2023 06:24	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	11/11/2023 06:24	11/11/2023 06:24	CSC
Sulfate	178	mg/L	1	0.5	SW846 9056	11/11/2023 06:24	11/11/2023 06:24	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3111623-06** Description: **FIELD BLANK**

Sample Collection Date Time: 11/06/2023 15:35 Sample Received Date Time: 11/08/2023 14:20

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:14	MRWD
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	11/10/2023 09:07	11/15/2023 15:14	MRWD

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	5.76	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/09/2023 08:55	11/09/2023 15:38	AED
Total Dissolved Solids	88		mg/L	50	50	2540 C-2015	11/09/2023 15:44	11/09/2023 15:44	HAG

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	ND	U	mg/L	0.5	0.4	SW846 9056	11/11/2023 07:19	11/11/2023 07:19	CSC
Fluoride	ND	U	mg/L	0.2	0.2	SW846 9056	11/11/2023 07:19	11/11/2023 07:19	CSC
Sulfate	0.7	J	mg/L	1	0.5	SW846 9056	11/11/2023 07:19	11/11/2023 07:19	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3111623

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra.
 Concentrations reported are estimated values.

Qualifiers

U

D	Results reported	from dilution.
---	------------------	----------------

D1 Sample required dilution due to high concentration of target analyte.

D2 Sample required dilution due to matrix interference.

H3 Sample received and analyzed past holding time.

J Estimated value.

M2 Matrix spike recovery was low; the method control sample recovery was acceptable.

M3 The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is

disproportionate to spike level. The method control sample recovery was acceptable.

Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the

laboratory method detection limit in our LIMS system).

Standard Qualifiers/Acronyms

MDL Method Detection Limit
MRL Minimum Reporting Limit

ND Not Detected

LCS Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate
DUP Sample Duplicate
% Rec Percent Recovery

RPD Relative Percent Difference

> Greater than
< Less than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK0852 - EPA 200.2										
Blank (BCK0852-BLK2)										
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 14:01									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
LCS (BCK0852-BS2)										
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 14:04									
Boron	0.11	0.10	mg/L	0.125		88.9	85-115			
Calcium	5.71	0.40	mg/L	6.25		91.4	85-115			
Matrix Spike (BCK0852-MS3)	Source: 3111623-01									
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 17:33									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, U, M2
Calcium	226	4.00	mg/L	6.25	221	81.5	80-120			D2
Matrix Spike (BCK0852-MS4)	Source: 3111624-06									
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 17:39									
Boron	ND	1.00	mg/L	0.125	ND		80-120			U, D2, M2
Calcium	377	4.00	mg/L	6.25	375	24.5	80-120			D2, M3
Matrix Spike Dup (BCK0852-MSD3)	Source: 3111623-01									
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 17:36									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	220	4.00	mg/L	6.25	221	NR	80-120	2.58	20	D2, M3
Matrix Spike Dup (BCK0852-MSD4)	Source: 3111624-06									
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 17:43									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	374	4.00	mg/L	6.25	375	NR	80-120	0.676	20	D2, M3
Post Spike (BCK0852-PS2)	Source: 3111623-01									
Prepared: 11/10/2023 9:07, Analyzed: 11	/15/2023 17:46									
Boron	ND	1.00	mg/L	0.125	ND		75-125			M2, D2, U
Calcium	230	4.00	mg/L	6.25	221	149	75-125			D2

Conventional Chemistry Analyses Madisonville - Quality Control

		Dti		0	0		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	LIIIIII	UTIILS	Level	Result	70NEC	LIIIIIIS	RFD	LIIIIII	Notes
Batch BCK0601 - Default Prep Micro										
LCS (BCK0601-BS1)										
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:3	88									
pH (Lab)	4.95		Std. Units	5.00		99.0	98.8-101.2			
LCS (BCK0601-BS2)										
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:3	38									
pH (Lab)	5.09		Std. Units	5.00		102	98.8-101.2			Н3
Duplicate (BCK0601-DUP1) Source	ce: 3111624-06									
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:3	38									
pH (Lab)	7.42	0.10	Std. Units		7.42			0.00	10	Н3
Duplicate (BCK0601-DUP2) Source	ce: 3111623-01									
Prepared: 11/9/2023 8:55, Analyzed: 11/9/2023 15:3	38									
pH (Lab)	7.62	0.10	Std. Units		7.60			0.263	10	НЗ
Batch BCK0870 - Default Prep Wet Chem										
Blank (BCK0870-BLK1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 15:4	44									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCK0870-BS1)										
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 15:4	44									
Total Dissolved Solids	1480	25	mg/L	1500		98.5	80-120			
Duplicate (BCK0870-DUP1) Source	ce: 3111623-01									
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 15:4	44									
Total Dissolved Solids	4460	250	mg/L		4340			2.73	10	
Duplicate (BCK0870-DUP2) Source	ce: 3111625-01									
Prepared: 11/9/2023 15:44, Analyzed: 11/9/2023 15:4	44									
Total Dissolved Solids	5740	250	mg/L		5770			0.521	10	

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1030 - Default Prep IC										
Blank (BCK1030-BLK1)										
Prepared: 11/11/2023 11:36, Analyzed: 11	/11/2023 11:36									
Chloride	ND	0.5	mg/L							U
Fluoride	ND	0.2	mg/L							U
Sulfate	ND	1	mg/L							U
LCS (BCK1030-BS1)										
Prepared: 11/11/2023 11:09, Analyzed: 11	/11/2023 11:09									
Fluoride	5.2		mg/L	5.00		104	90-110			
Chloride	12.6		mg/L	12.5		100	90-110			
Sulfate	25		mg/L	25.0		101	90-110			
Matrix Spike (BCK1030-MS1)	Source: 3111624-06									
Prepared: 11/11/2023 8:52, Analyzed: 11/	/11/2023 8:52									
						04.0				140
Fluoride	1.5		mg/L	5.00	0.4	21.3	75-125			M2
Fluoride Chloride	1.5 140		mg/L mg/L	5.00 12.5	0.4 173	21.3 NR	75-125 75-125			M3
			-							
Chloride	140		mg/L	12.5	173	NR	75-125			М3
Chloride Sulfate	140 2200 Source: 3111625-01		mg/L	12.5	173	NR	75-125			М3
Chloride Sulfate Matrix Spike (BCK1030-MS2)	140 2200 Source: 3111625-01		mg/L	12.5	173	NR	75-125			М3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/	140 2200 Source: 3111625-01 /11/2023 9:47		mg/L mg/L	12.5 25.0	173 7630	NR NR	75-125 75-125			M3 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride	140 2200 Source: 3111625-01 /11/2023 9:47 1520		mg/L mg/L mg/L	12.5 25.0	173 7630 2240	NR NR	75-125 75-125 75-125			M3 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3		mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00	173 7630 2240 0.3	NR NR NR	75-125 75-125 75-125 75-125			M3 M3 M3 M2
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06		mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00	173 7630 2240 0.3	NR NR NR	75-125 75-125 75-125 75-125			M3 M3 M3 M2
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1)	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06		mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00	173 7630 2240 0.3	NR NR NR	75-125 75-125 75-125 75-125	9.09	15	M3 M3 M3 M2
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0	173 7630 2240 0.3 3770	NR NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125	9.09 1.87	15 15	M3 M3 M3 M2 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/ Fluoride	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19 1.7		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0	173 7630 2240 0.3 3770	NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125			M3 M3 M3 M2 M3 M2 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/ Fluoride Chloride	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19 1.7 138		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0 5.00 12.5	173 7630 2240 0.3 3770 0.4 173	NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125 75-125 75-125	1.87	15	M3 M3 M3 M2 M3 M2 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/ Fluoride Chloride Sulfate	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19 1.7 138 2160 Source: 3111625-01		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0 5.00 12.5	173 7630 2240 0.3 3770 0.4 173	NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125 75-125 75-125	1.87	15	M3 M3 M3 M2 M3 M2 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/ Fluoride Chloride Sulfate Matrix Spike Dup (BCK1030-MSD2)	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19 1.7 138 2160 Source: 3111625-01		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0 5.00 12.5	173 7630 2240 0.3 3770 0.4 173	NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125 75-125 75-125	1.87	15	M3 M3 M3 M2 M3 M2 M3
Chloride Sulfate Matrix Spike (BCK1030-MS2) Prepared: 11/11/2023 9:47, Analyzed: 11/ Chloride Fluoride Sulfate Matrix Spike Dup (BCK1030-MSD1) Prepared: 11/11/2023 9:19, Analyzed: 11/ Fluoride Chloride Sulfate Matrix Spike Dup (BCK1030-MSD2) Prepared: 11/11/2023 10:14, Analyzed: 11/	140 2200 Source: 3111625-01 /11/2023 9:47 1520 1.3 2090 Source: 3111624-06 /11/2023 9:19 1.7 138 2160 Source: 3111625-01		mg/L mg/L mg/L mg/L mg/L	12.5 25.0 12.5 5.00 25.0 5.00 12.5 25.0	173 7630 2240 0.3 3770 0.4 173 7630	NR NR 19.3 NR	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	1.87 1.51	15 15	M3 M3 M2 M3 M2 M3 M3

• • •

Analyte Certifications

2540 C-2015 in WaterTotal Dissolved Solids

KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water (02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

SM 4500-H+ B-2011 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3111623
Shipped By: Client	Temperature: 3.00° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	☑
Check if Collector Signature Present	$oxed{artheta}$
Check if bottles are intact	oxdot
Check if bottles are correct	
Check if bottles have sufficient volume	☑
Check if samples received on ice	$oxed{artheta}$
Check if VOA headspace is acceptable	
Check if samples received in holding time.	☑
Check if samples are preserved properly	

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

Client: Big Rivers Electric Corporation Report To: Invoice To: Reid/Green Station Big Rivers Electric Corporation Reid/Green Big Rivers Electric Corporation Reid/Green Station Station Mark Bertram Mark Bertram Project: Green Surface Impoundment 9000 Highway 2096 9000 Highway 2096 Robards, KY 42452 Robards, KY 42452 Phone: (270) 844-6000 PO#: PWS ID#: State: Quote# Please Print Legibly Compliance Monitoring? Yes ____ Collected by (Signature): equired information Samples Chlorinated? Yes ____ *For composite samples please indicate begin time, end time and temp(oC) at end time below: Influent: Start Date End Time ___ Effluent: Start Date ____Start time End Date _ LAB USE ONLY *required information* Workorder # Date Collection (mm/dd/yy): Time (24 hr): 3111623 Bottle and Preservative Sample Description Composite Sample Analysis Requested Sample ID# Calcium Tot 6010B Boron Tot 6010B 3111623-01 A Plastic 500mL pH<2 MW11 g/c w/HNO3 Preservation Check: pH: 3111623-01 B Plastic 500mL pH<2 MW11 Calcium Tot 6010B Boron Tot 6010B g/c w/HNO3 Preservation Check: pH: 3111623-01 C Plastic 1L MW11 TDS Sulfate 9056 pH (Lab) Fluoride g/c 9056 Chloride 9056 Plastic 500mL pH<2 MW12 g/c Calcium Tot 6010B Boron Tot 6010B w/HNO3 Preservation Check: pH: Plastic 500mL pH<2 MW12 Calcium Tot 6010B Boron Tot 6010B g/c Preservation Check: pH: 3111623-02 C 11/6/23 1525 Plastic 1L MW12 TDS Sulfate 9056 pH (Lab) Fluoride g/c 9056 Chloride 9056 Preservation Check Performed by: Brown Date (mm/dd/yy) 11/6/23 Time (24 hr) 1615 Field data collected by: MW-11 MW-12 P-609 Res CI (mg/L) _____ Tot CI (mg/L) ____ Free Cl (mg/L) Temp (oC) 18.94 Static Water Level DO (mg/L) (g/min) Received by: #Signature) Relinquished by: (Signature) Date (mm/dd/yy) Time (24 hr) 1420

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody Scheduled for: 11/13/2023

	Scheuble	2 101. 11/13/2023	ļ	51 M 69 96 61 M \$(14M 0) 10 10 3 M 4 M 10 M 15	
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Ele Station Mark Bertram	ctric Corporation Reid/Green	Involce To: Big Rivers Electric Corporation Reid/Green Static Mark Bertram		
Project: Green Surface impoundment	9000 Highway Robards, KY 4		9000 Highway 2096 Robards, KY 42452		
	Phone: (270) 8	44-6000	PO#:		
Please Print Legibly	PWS ID#: State: K	<u>, Y</u>	Quote#		
Collected by (Signature):	Jired information		Compli	ance Monitoring? Yes No	<u>×</u>
For composite samples please indicate begin	time, end time and temp(oC)		Sample	s Chlorinated? Yes No	· <u></u>
Influent: Start Date Start time	End Date	N/A End Time	Temp (oC)		
Effluent: Start Date Start time	End Date	End Time	Temp (oC)		
LAB USE ONLY *required information* Workorder # Date Collection 3111623 (mm/dd/yy): Time (24 hr):	Bottle and Preservative	stancia et Sample Description	Q in-		
Sample ID#		<u> </u>		Sample Analysis Reques	
3111623-03 A WG 23 1250	Plastic 500mL pH<2 w/HNO3 Preservation Check: pH :	1 MW13	g/c	Calcium Tot 6010B Boron Tot	6010B
3111623-03 B 11/6/23 1230	Plastic 500mL pH<2 w/HNO3	1 MW13	g/c	Calcium Tot 6010B Boron Tot	6010B
, <i>t</i>	Preservation Check: pH :	\neq			
3111623-03 C 11/4/23 1230	Plastic 1L	1 MW13	g/c	TDS Sulfate 9056 pH (Lab) F 9056 Chloride 9056	luoride
3111623-04 A 11/6/23 1330	Plastic 500mL pH<2 w/HNO3	1 MW14	g/c	Calcium Tot 6010B Boron Tot	6010 B
1.1.4 1000	Preservation Check: pH : _			-	
3111023-04 B (1) 1 T	Plastic 500mL pH<2 w/HNO3 Preservation Check: pH : _	1 MW14	g/c	Calcium Tot 6010B Boron Tot	60108
3111623-04 C 116 23 1330	Plastic 1L	1 MW14	g/c	TDS Sulfate 9056 pH (Lab) F	luoride
3111623-05 A 116 23 1345	Plastic 500mL pH<2	1 DUPLICATE	g/c	9056 Chloride 9056 Calcium Tot 6010B Boron Tot	
ų ·	w/HNO3 Preservation Check: pH:)			
•		•			
Preservation Check Performed by:	SN/				
Field data collected by: Eric Brown	Date (mm/dd/yy)	11/6/23 Time (24 hr)	230	MW-13	-
oH <u>6.58</u> Cond (Matric) 0.	oui 2	Tot Cl (mg/L)		e CI (mg/L)	
Temp (oC) 18.34 or (oF)	Static Water Level _	DO (mg/L)	Ti	ırb. (NTU)	
Flow (MGD) or (CFS)	or (g/min) _	· ·			
Relinquished by: (Signature)	Received by: (Signa	tury)	Date (mm/	dd/yy) Time (24 hr)	
60 Bru	_ Shry			23 1420	

PACE- Check here if trip charge applied to associated COC

*rinted: 10/27/2023 3:19:19PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/13/2023

		00044		1111012020				-
Client: Big Rivers Electric Corporati Reid/Green Station	on	Report To:	ectric Ca	orporation Reid/Green	Involce To: Bia Rivers F		ration Reid/Gr	een Statio
		Station	Station			·		
Project: Green Surface Impoundmen	nt [±]	Mark Bertram 9000 Highway			Mark Bertra 9000 Highw			
		Robards, KY	-		Robards, K	•		
•		Phone: (270)		ስሰ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		PWS ID#:	1	<u>00</u>	PO#:			
Please Print Legibly	Ω	State:	FT.		Quote#		_	
Collected by (Signature):	Sen-				Compl	iance Monitor	ing? Yes	No X
	*required in				Sampl	es Chlorinated	i? Yes	No ⊀
*For composite samples please indicate	_	• •	•	time below:	- · · ·			_
Influent: Start DateStart t	lime	_ End Date	 ► E	ind Time Te	emp (oC)		4	
Effluent: Start Date Start	time	End Date	E	nd fanc	етр (оС)	·····		
LAB USE ONLY "required information worker # Date Collection Collec			hers	•				
3111623 (mm/dd/yy): Time (2 Sample ID#		and Preservative	Containers	Sample Description	Composite	Sample	Analysis Req	uested
3111623-05 B 11/6/23 13	Plas	tic 500mL pH<2 w/HNO3	1	DUPLICATE	g/c	Calcium Tot	6010B Boron	Tot 60108
1.1		vation Check: pH :	<u></u>					
3111623-05 C 11 6 13 134		Plastic 1L	1	DUPLICATE	g/c	TDS Sulfate 9056 Chloric	9056 pH (Lai	o) Fluoride
3111623-06 A 11/6/23 153	35 Plas	itic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c		6010В Вогоп	Tot 6010E
* /	Presen	vation Check: pH :	_					
3111623-06 B 11/6/23 15:	95 Plas	itic 500mL pH<2 w/HNO3	1	FIELD BLANK	g/c	Calcium Tot	6010B Boron	Tot 6010E
		vation Check: pH :						
3111623-06 C 11/6/23 153	<u> </u>	Plastic 1L	1	FIELD BLANK	g/c	TDS Sulfate 9056 Chloric	: 9056 pH (Lat de 9056	o) Fluoride
				The				
				inermo	² meter Se - ¹ 8139(ria L.		
				農山 乙	181390	Jan Manig	er	
					181460	J287		
				1	181460 emp3	1057		
•					20	ru _{kil}		
Preservation Check Performed by: _	<u> </u>	<u> </u>						
Field data collected by:	grewn	_ Date (mm/dd/yy	11/6/	/23 Time (24 hr) _/	330		MW-1	4
pH <u>6.70</u> Cond (umh	1.01		٠,	Tot Ci (mg/L)		ee Cl (ma/L)		
				DO (mg/L)				
					······································	u.b. (u) _		
Flow (MGD) or (CFS		or (g/min)						
Relinquished by (Signature)		Received by: (Sign	ature)		Date (mm.	/dd/yy)	Time (24 hr)	
to be		Qh	رم	1	11/8/	/23	1420	i
- UOUP					· - 11 / 0/	<u>*~</u>	. 1013	
			//					
								

PACE- Check here if trip charge applied to associated COC

rinted: 10/27/2023 3:19:19PM

Memorandum

Date: October 30, 2023

To: Christopher Hoglund

From: Omkar Parab

Re: Quality Assurance/Quality Control (QA/QC) Review of Analytical Data

Big Rivers Electric Company (BREC) - Sebree Station, Green Landfill Site,

Webster County, Kentucky

Project No. 159154

Groundwater samples were collected at the BREC Sebree Green Landfill Site in Webster County, Kentucky from June 22 to 24, 2023. The samples were analyzed by Pace Analytical Services of Madisonville, Kentucky (Pace Madisonville) for one or more of the following parameters:

Parameter	Analytical Method	Laboratory	
Metals	SW846 6010 B		
ivietais	SW846 6020 A		
Total Organic Carbon (TOC)	5310 C-2014		
pН	4500-H+ B-2000	Pace - Madisonville	
Chemical Oxygen Demand (COD)	HACH Method 8000	Pace - Madisonville	
Total Dissolved Solids (TDS)	2540 C-2015		
Anions	SW846 9056		
chloride, fluoride, sulfate	3 W 840 9030		
Radium-226	EPA 903.1		
Radium-228	EPA 904.0	Pace – Greensburg*	
*total calculated from radium-226 +	Total Radium by	*sister lab due to analytical capabilities	
radium-228 analyses.	calculation	anary treat capabilities	

The following data sets were reviewed in support of this investigation:

Lab	SDG	Dates Collected	Matrix
Pace Analytical	3061146	06/22/2023 to	Cassa divistor
Services, LLC	3061147	06/24/2023	Groundwater

SDG = sample delivery group

The QA/QC results in association with the samples collected were examined for any method-specific requirements. Data qualifiers, when appropriate, were added to the data as recommended in United States Environmental Protection Agency's (USEPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (NFGI, 2020). The QA/QC review results are discussed below, and qualifiers added during this review are summarized in Table 1.

- 1. <u>Chain-of-Custody (COC)</u> –The relinquished and received signatures, times, and dates were present on the COCs for all samples.
- 2. <u>Requested Analyses Completed</u> All analyses were completed as requested.

October 5, 2023 Page 2

- 3. <u>Holding Times</u> The pH for all of the samples was analyzed outside the 24-hour holding time, and therefore, these results were qualified as estimated (J). The TDS for samples MW4, MW5, and MW6, was analyzed one day past the 7-day holding time. As such, these results were qualified as estimated (J). All other samples analyses were completed within their recommended holding time.
- 4. <u>Sample Preservation</u> All samples were received by Pace-Madisonville within the preservation temperature range of 4 degrees Celsius (°C) +/- 2°C. Thermal preservation was not required for the radium samples.
- 5. <u>Field Blank</u> Field blanks assess the potential for cross-contamination during the sample activities and/or transport. For this review, sample FIELD BLANK was associated with any samples collected on 06/24/2023, which included MW2 in SDG 3061146.

The following field blank detections were noted during this review:

- Copper, lead, and thallium were detected in this field blank. The associated sample was nondetect for these analytes, and no qualifiers were necessary.
- Specific conductance was detected in this field blank. The associated sample was greater than five times the blank detection. As such, no qualifier was necessary.
- TOC was detected in this field blank. Associated sample MW2 exhibited a detection over the reporting limit, but less than five times the field blank. Therefore, this result was qualified as estimated potential high bias (J+).
- Radium 226, radium 228 and total radium exhibited detections in this field blank. The associated sample was qualified as estimated (J) for each of these analytes.
- 6. <u>Method Blanks</u> Method blanks assess the potential for cross-contamination during the sample preparation and/or analyses.
 - Radium: Radium-226 and radium-228 were detected in all method blanks. Because of the uncertainty associated with radium results, the review criteria were slightly altered to account for this. For any associated radium-226 or radium-228 detection less than five times the corresponding method blank concentration, the respective result was qualified as estimated (J). Additionally, because this result was used in the calculation to report total radium, the total radium result for said sample was also qualified as estimated (J). Based on this, all samples (except the field blank) were qualified and estimated (J) for the radium fractions.

Note, blanks are not typically qualified based on other blanks. Therefore, the field blank was excluded from this qualification.

October 5, 2023 Page 3

- 7. <u>Laboratory Control Samples (LCS)</u> The LCS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The LCS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine percent recovery (REC). The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference.

 All LCS results were within QC limits.
- 8. Matrix Spike/Matrix Spike Duplicates (MS/MSD) MS/MSDs are typically run for organic and inorganic analyses. A sample is split into three portions (original, MS and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results of these two portions are compared with each other for reproducibility using the relative percent difference (RPD). They are also compared against the unspiked portion of the sample for REC of the spike. For one or more MS/MSDs, the lab could not calculate a REC and no result was reported. Only site-specific MS/MSD results were evaluated during this review. The following site-specific MS/MSD results were outside their respective control limits:

• SDG 3061146:

- o MS/MSD performed on sample MW1 (Lab ID 3061146-01): The MS/MSD RECs for boron and sodium were not reported, while the MSD REC for calcium was below its QC limit. Upon further review, it was found that the lab spike amounts for these metals were less than ½ the respective concentration of the parent sample. Therefore, the MS/MSD results for these analytes were inconclusive. The corresponding post digestive spike performed on this same sample also yielded the same inconclusive results due to not meeting the ½ spiking criteria. No data qualifiers were added.
- MS/MSD performed on sample MW5 (Lab ID 3061146-05):
 The MS REC for TOC was below its QC limit. TOC was detected in the noted spiked sample, and was qualified as estimated biased low (J-).
- MS/MSD performed on sample MW3 (Lab ID 3061146-03): The MS/MSD RECs for chloride and sulfate were not reported. Upon further review, it was noted the spike amounts were less than ¼ the concentration of the parent sample for these analytes making the MS/MSD results inconclusive. No data qualifiers were added.
- MS/MSD performed on sample FIELD BLANK (Lab ID 3061146-08):
 The MSD REC for fluoride was above its QC limit. Fluoride was non-detect in the noted spiked sample, and no qualifiers were added.

October 5, 2023 Page 4

MS/MSD performed on sample FIELD BLANK (Lab ID 3061146-08):
 The MSD REC for radium-226 was below its QC limit. Radium-226 was detected in the noted spiked sample and was qualified as estimated (J).
 Additionally, because this result was used in the calculation to report total radium, the total radium result for said sample was also qualified as estimated (J).

• SDG 3061147:

- All site-specific MS/MSD results in this SDG were within QC limits
- 9. <u>Laboratory Duplicates</u> Laboratory duplicates were performed to evaluate analytical precision between samples when an MS/MSD may not be appropriate. Only project-specific laboratory duplicates were compared and used for qualification.

 All the site-specific laboratory duplicates were within QC limits.
- 10. <u>Field Duplicate Results</u> Field duplicate results provide information on the ability to reproduce field results and account for error introduced from handling, shipping, storage, preparation, and analysis of field samples. There are no specific USEPA criteria for qualifying data from field duplicate results. Depending upon the sample concentration, one of the following criteria based upon NFGI is applicable:
 - Is the compound detected in both portions?
 - If the sample concentrations are greater than 5 times the detection limit, then the maximum allowable RPD is 20 percent for water samples.
 - If the sample concentrations are less than 5 times the detection limit, then a sensitivity test is applied. For the sensitivity test, the sample concentrations must agree within \pm the lower detection limit for water samples.
 - If the radium results are reported above their minimum detectable concentration (MDC), the normalized difference (also called the relative error ratio) between the duplicate pair was calculated. The maximum normalized difference is 1.50 for the radium samples.

The following field duplicate pair was included in this review.

MW3A // DUPLICATE: The field duplicate results for chloride were analyzed at different dilution factors. Therefore, no conclusions could be made regarding the reproducibility of the results and no qualifiers were added. A sensitivity test was applied to the boron results, and passed said test, and no qualifiers were necessary. COD did not meet the duplication criteria since it yielded an elevated RPD. As such, the parent/duplicate pair was qualified as estimated (J) for this analyte.

October 5, 2023 Page 5

The field duplicate pair exhibited variable differences in the radium results due to their associated uncertainty. As noted previously, all radium results were qualified estimated (J) for one or more reasons. As such, no further qualifiers were added for these results based solely on the field duplicate review.

All the other field duplicate data were adequately replicated.

- 11. <u>Detection and Quantitation Limits</u> Dilutions were required to account for high concentrations of target analytes and/or matrix interferences in one or more samples (flagged D or D1 by the laboratory). RLs were adjusted accordingly, and no data qualifiers were added based on these dilutions.
- 12. <u>Conclusion</u> The data were reviewed for achievement of any method-specified QA/QC criteria. The data are valid for use, as qualified, in reporting the results of this groundwater monitoring event.

Attachments

Table 1 – Data Qualifier Table

Table 2 – Field Duplicate Comparison

Table 1 Data Qualifier Table BREC Sebree Green Landfill - June 2023 Sampling Event Webster County, Kentucky

Analytical Method	Analyte(s)	Sample Identification	Laboratory Number	Data Validation Qualifier	Reason(s) for Qualification
		SDG: 30611	146		
4500-H+ B-2000	pН			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW1	3061146-01	J	Method blank detection
4500-H+ B-2001	pН			J	Holding time exceedance
5310 C-2014	TOC	7			Field blank detection
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW2	3061146-02	J	Field/Method blank detection
4500-H+ B-2003	pН			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW3A	3061146-03	J	Method blank detection
HACH 8000	COD			J	Parent/Field Duplicate Failed RPD tes
4500-H+ B-2003	pH			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW4	3061146-04	J	Method blank detection
2540 C-2015	TDS	7		J	Holding time exceedance
4500-H+ B-2004	pН			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW5	3061146-05	J	Method blank detection
5310 C-2014	TOC	7		J-	MS REC < QC limit
2540 C-2015	TDS	7		J	Holding time exceedance
4500-H+ B-2005	pН			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW6	3061146-06	J	Method blank detection
2540 C-2015	TDS	7		J	Holding time exceedance
4500-H+ B-2006	pН			J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	DUPLICATE	3061146-07	J	Method blank detection
HACH 8000	COD	7		J	Parent/Field Duplicate Failed RPD te
4500-H+ B-2005	pH			J	Holding time exceedance
EPA 903.1 Total Radium	Radium 226 Total Radium	FIELD BLANK	3061146-08	J	MSD REC < QC limit
		SDG: 30611	147		1
4500-H+ B-2000	pH	320,000		J	Holding time exceedance
EPA 903.1 EPA 904.0 Total Radium	Radium 226 Radium 228 Total Radium	MW-104	3061147-01	J	Method blank detection

Notes:

COD = Chemical oxygen demand

J = Qualified as estimated during data review

J- = Qualified as estimated biased low during data review

J+ = Qualified as estimated biased high during data review

MS/MSD = Matrix spike/Matrix spike duplicate

MW = Monitoring Well

QC = Quality Control

REC = Percent recovery

RPD = Relative percent difference

SDG = sample delivery group

TDS = Total Dissolved Solids

TOC = Total organic carbon

Table 2 Field Duplicate Comparison BREC Sebree Green Landfill- June 2023 Sampling Event Webster County, Kentucky

Sample ID: Lab ID: Date Sampled:	MW3A 3061146-03 6/23/2023	DUPLICATE 3061146-07 6/23/2023	Units	Meets QC
Donitions .	0.005	0.000		V
Barium	0.035	0.038	mg/L	Yes
Boron	0.30	0.32	mg/L	Yes
Calcium	531	515	mg/L	Yes
Chloride	1,820	4,460	mg/L	Dilution
Chemical Oxygen Demand	113 J	78 J	mg/L	No, (RPD 37%)
Specific Conductance (Lab)	8,260	8,340	umhos/cm	Yes
Fluoride	0.5	0.5	mg/L	Yes
Lithium	0.64	0.58	mg/L	Yes
pH (Lab)	7.82 J	7.87 J	Std. Unit	Yes
Sodium	354	334	mg/L	Yes
Sulfate	1,140	1,180	mg/L	Yes
Total Dissolved Solids	5,090	4,860	mg/L	Yes
Total Organic Carbon	0.6	0.7	mg/L	Yes
Radium 226				
See Attached Subcontract Report	0.379 J	0.278 J	pCi/L	See Text
Radium 228				
See Attached Subcontract Report	1.05 J	1.37 J	pCi/L	See Text
Total Radium See Attached Subcontract Report	4.40	4.05	C: //	Con Tout
See Attached Subcontract Report	1.43 J	1.65 J	pCi/L	See Text

Notes:

Dilution - differing dilutions, no conclusions can be made

ID - Identification

J = Qualified as estimated during data review

mg/L - milligram per liter

MW = Monitoring Well

pCi/L = picoCurie per liter

QC = Quality Control

RPD = Relative percent difference

Std. Unit = standard unit

umhos/cm =micromhos per centimeter

Memorandum

Date: December 13, 2023

To: Christopher Hoglund

From: Omkar Parab

Re: Quality Assurance/Quality Control (QA/QC) Review of Analytical Data

Big Rivers Electric Company (BREC) - Sebree Station, Landfill Site,

Webster County, Kentucky

Project No. 159154

Groundwater samples were collected at the BREC Sebree Landfill Site in Webster County, Kentucky on November 7 and 8, 2023. The samples were analyzed by Pace Analytical Services of Madisonville, Kentucky (Pace Madisonville) or Pace Analytical of Greensburg, Pennsylvania (Pace Greensburg) for one or more of the following parameters::

Parameter	Analytical Method	Laboratory
Metals	SW846 6010 B	
	SW846 6020 A	
Specific Conductance	2510 B-2011	
Total Dissolved Solids (TDS)	2540 C-2015	Pace - Madisonville
Total Organic Carbon (TOC)	5310 C-2014	
Chemical Oxygen Demand (COD)	HACH Method 8000	
рН	SM 4500-H+B-2011	
Radium-226	EPA 903.1	
Radium-228	EPA 904	
*total calculated from radium-226 +	Total Radium by	Pace - Greensburg
radium-228 analyses	calculation	

The QA/QC results in association with the samples collected were examined for any method-specific requirements. Data qualifiers, when appropriate, were added to the data as recommended in United States Environmental Protection Agency's (USEPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (NFGI, 2020). The QA/QC review results are discussed below, and qualifiers added during this review are summarized in Table 1.

- 1. <u>Chain-of-Custody (COC)</u> The relinquished and received signatures, times, and dates were present on the COCs for all samples.
- 2. Requested Analyses Completed All analyses were completed as requested.
- 3. <u>Holding Times</u> The pH for all the samples was analyzed outside the 24-hour holding time, and therefore, these results were qualified as estimated (J). All the other samples/analyses were completed within their recommended holding time.
- 4. <u>Sample Preservation</u> All samples were received by Pace-Madisonville within the preservation temperature range of 4 degrees Celsius (°C) +/- 2°C. The radium samples sent to Pace Greensburg did not require thermal preservation.

December 13, 2023 Page 2

- 5. <u>Field Blank</u> Field blanks assess the potential for cross-contamination during the sample activities and/or transport. For this review, the field blank was associated with samples collected on 11/08/2023, which included MW3A, MW6, and DUPLICATE. The following field blank detections were noted during this review:
 - Specific conductance was detected in the field blank (Lab ID: 3111624-08). All the associated sample detections for specific conductance were greater than five times the blank detection. No qualifiers were added.
 - Chloride and sulfate were detected in the field blank. All the associated sample detections for noted analytes were greater than five times the blank detection. No qualifiers were added.
 - Radium-226 and radium-228 were detected in the field blank (Lab ID: 3111624-08). Because of the uncertainty associated with radium results, the review criteria were slightly altered to account for this. The associated radium-226 or radium-228 detections were less than five times the field blank concentration plus/minus its uncertainty, and the respective result was qualified as estimated (J). Additionally, because this result was used in the calculation to report total radium, the total radium result for said samples were also qualified as estimated (J).
- 6. <u>Method Blanks</u> Method blanks assess the potential for cross-contamination during the sample preparation and/or analyses. The following method blank detections were noted during this review:
 - Iron was detected in two method blanks reported for QC batch BCK0852. Samples MW1 and MW3A exhibited detections greater than the reporting limit (RL) but less than five times the blank concentrations. The noted analyte sample results were qualified as estimated potential high bias (J+). All other associated samples were either nondetect or greater than five times the blank detection.
 - Radium: Radium-226 and radium-228 were detected in all method blanks. Because of the uncertainty associated with radium results, the review criteria were slightly altered to account for this. For any associated radium-226 or radium-228 detection less than five times the corresponding method blank concentration plus its uncertainty, the respective result was qualified as estimated (J). Additionally, because this result was used in the calculation to report total radium, the total radium result for said sample was also qualified as estimated (J).

Based on this, all samples (except the field blank) were qualified and estimated (J) for the radium fractions. Note, several samples were previously qualified estimated (J) for the field blank detections. Note, blanks are not typically qualified based on other blanks. Therefore, the field blank was excluded from this qualification.

December 13, 2023 Page 3

- 7. <u>Laboratory Control Samples (LCS)</u> The LCS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The LCS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine percent recovery (REC). The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference.

 All LCS RECs were within their respective QC limits, except for two LCS RECs of sodium in QC batch BCK0852. The LCS RECs were below the QC limit for sodium. Sodium was detected in all of the associated samples, and was qualified as estimated potential low bias (J-).
- 8. Matrix Spike/Matrix Spike Duplicates (MS/MSD) MS/MSDs are typically run for organic and inorganic analyses. A sample is split into three portions (original, MS and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results of these two portions are compared with each other for reproducibility using the relative percent difference (RPD). They are also compared against the unspiked portion of the sample for REC of the spike. For one or more MS/MSDs, the lab did not calculate a REC and no result was reported and accuracy and precision were assessed by review of LCS results. Only site-specific MS/MSD results were evaluated during this review. The following site-specific MS/MSD results were outside their respective control limits:
 - MS/MSD RECs performed on sample MW1 (Lab ID 3111624-01[noted RE1]):
 - The MS/MSD results for several metals were reported at a dilution, while the parent sample was not reported at a dilution. Therefore, no conclusions could be made regarding the accuracy of the MS/MSD results. No qualifiers were added.
 - The lab also performed a post-digestive spike (PDS) on the same sample. The RECs for sodium and calcium were reported as 'NR'. The lab spike was less than ½ the concentration of the parent sample for these analytes, and the PDS results were inconclusive.
 - MS/MSD REC performed on sample MW6 (Lab ID 3111624-06):
 - The MS/MSD results for several metals were reported at a dilution, while the parent sample was not reported at a dilution. Therefore, no conclusions could be made regarding the accuracy of the MS/MSD results. No qualifiers were added.
 - The MS/MSD RECs for fluoride were below the control limits, as well as below the 30% NFGI QC limit. Because fluoride was detected in the parent spiked sample and it was qualified as estimated potential low bias (J-), rather than rejected (R)

December 13, 2023 Page 4

- The MS/MSD RECs for chloride and sulfate were reported as 'NR'. The lab spike was less than 1/4 the concentration of the parent sample for calcium and sodium, and MS/MSD results were inconclusive.
- MS/MSD REC performed on sample MW-104 (Lab ID 3111625-01):
 - The MS/MSD RECs for fluoride were below the control limits, as well as below the 30% NFGI QC limit. Because fluoride was detected in the parent spiked sample, it was qualified as estimated potential low bias (J-), rather than rejected (R)
 - The MS/MSD RECs for chloride and sulfate were reported as 'NR'. The lab spike was less than 1/4 the concentration of the parent sample for calcium and sodium, and MS/MSD results were inconclusive.
- 9. <u>Laboratory Duplicates</u> Laboratory duplicates were performed to evaluate analytical precision between samples when an MS/MSD may not be appropriate. Only project-specific laboratory duplicates were compared and used for qualification.
 - For the laboratory duplicate analysis performed on site-specific sample MW5, TOC exhibited an elevated RPD. The noted analyte was detected at a concentration less than 5x the reporting limit, therefore, it was instead tested for a sensitivity test. It passed the test, and no qualifier was required.
- 10. <u>Field Duplicate Results</u> Field duplicate results provide information on the ability to reproduce field results and account for error introduced from handling, shipping, storage, preparation, and analysis of field samples. There are no specific USEPA criteria for qualifying data from field duplicate results. Depending upon the sample concentration, one of the following criteria based upon NFGI is applicable:
 - Is the compound detected in both portions?
 - If the sample concentrations are greater than 5 times the detection limit, then the maximum allowable RPD is 20 percent for water samples.
 - If the sample concentrations are less than 5 times the detection limit, then a sensitivity test is applied. For the sensitivity test, the sample concentrations must agree within ± the lower detection limit for water samples.

The following field duplicate pair was included in this review.

• MW3A // DUPLICATE: Chloride, sulfate and TDS did not meet the duplication criteria since they yielded elevated RPDs. As such, the parent/duplicate pair was qualified as estimated (J) for these analytes.

December 13, 2023 Page 5

- General: The field duplicate pair exhibited variable differences in the radium results due to their associated uncertainty. As noted previously, all radium results were qualified estimated (J) for one or more reasons. As such, no further qualifiers were added for these results based solely on the field duplicate review.
- 11. <u>Detection and Quantitation Limits</u> Dilutions were required to account for high concentrations of target analytes and/or matrix interferences in one or more samples. RLs were adjusted accordingly, and no data qualifiers were added based on these dilutions.
- 12. <u>Conclusion</u> The data were reviewed for achievement of any method-specified QA/QC criteria. The data are valid for use, as qualified, in reporting the results of this groundwater monitoring event.

Attachments

Table 1 – Data Qualifier Table

Table 2 – Field Duplicate Comparison

Table 1
Data Qualifier Table
BREC Sebree Green Landfill - November 2023 Sampling Event
Webster County, Kentucky

Analytical Method	Analyte(s)	Sample Identification	Laboratory Number	Data Validation Qualifier	Reason(s) for Qualification	
SW846 6010 B	Iron			J+	Method blank detection	
EPA 903.1	Radium 226					
EPA 904.0	Radium 228	MW1	3111624-01	J	Method blank detection	
Total Radium	Total Radium	10100 1	3111024-01			
SW846 6010 B	Sodium			J-	LCS REC < QC limit	
SM 4500-H+B-2011	рН			J	Holding time exceedance	
EPA 903.1	Radium 226					
EPA 904.0	Radium 228			J	Method blank detection	
Total Radium	Total Radium	MW2	3111624-02			
SW846 6010 B	Sodium			J-	LCS REC < QC limit	
SM 4500-H+B-2011	рН			J	Holding time exceedance	
SW846 6010 B	Iron			J+	Method blank detection	
EPA 903.1	Radium 226			J		
EPA 904.0	Radium 228				Field/Method blank detection	
Total Radium	Total Radium	MW3A				
SW846 6010 B	Sodium		3111624-03	J-	LCS REC < QC limit	
SW846 9056	Chloride			J		
SW846 9056	Sulfate			J	Parent/ Duplicate failed RPD test	
2540 C-2015	TDS			J		
SM 4500-H+B-2011	рН			J	Holding time exceedance	
EPA 903.1	Radium 226					
EPA 904.0	Radium 228			J	Method blank detection	
Total Radium	Total Radium	MW4	3111624-04			
SW846 6010 B	Sodium			J-	LCS REC < QC limit	
SM 4500-H+B-2011	рН			J	Holding time exceedance	
EPA 903.1	Radium 226					
EPA 904.0	Radium 228			J	Method blank detection	
Total Radium	Total Radium	MW5	3111624-05			
SW846 6010 B	Sodium			J-	LCS REC < QC limit	
SM 4500-H+B-2011	рН			J	Holding time exceedance	
EPA 903.1	Radium 226					
EPA 904.0	Radium 228			J	Field/Method blank detection	
Total Radium	Total Radium	MANG	0444004.00			
SW846 6010 B	Sodium	MW6	3111624-06	J-	LCS REC < QC limit	
SM 4500-H+B-2011	рН			J	Holding time exceedance	
SW846 9056	Fluoride			J-	MS/MSD RECs < QC limits	
SM 4500-H+B-2011	рН	FIELD BLANK	3111624-08	J	Holding time exceedance	

Table 1 Data Qualifier Table BREC Sebree Green Landfill - November 2023 Sampling Event Webster County, Kentucky

Analytical Method	Analyte(s)	Sample Identification	Laboratory Number	Data Validation Qualifier	Reason(s) for Qualification
EPA 903.1	Radium 226				
EPA 904.0	Radium 228	DUPLICATE		J	Field/Method blank detection
Total Radium	Total Radium				
SW846 6010 B	Sodium			J-	LCS REC < QC limit
SW846 9056	Chloride		3111624-07	J	
SW846 9056	Sulfate			J	Parent/ Duplicate failed RPD test
2540 C-2015	TDS			J	
SM 4500-H+B-2011	pН			J	Holding time exceedance
EPA 903.1	Radium 226				
EPA 904.0	Radium 228			J	Method blank detection
Total Radium	Total Radium				
SM 4500-H+B-2011	pН	MW-104	3111625-01	J	Holding time exceedance
SW846 6010 B	Sodium			J-	LCS REC < QC limit
SW846 9056	Fluoride			J-	MS/MSD RECs < QC limits

Notes:

J = Qualified as estimated

J- = Qualified as estimated potential low bias

J+ = Qualified as estimated potential high bias

LCS = Laboratory control sample

MS = Matrix spike

MW = Monitoring well

QC = Qualitiy control

REC = Percent recovery

RPD = Relative percent difference

TDS = Total dissolved solids

Table 2
Field Duplicate Comparison
BREC Sebree Green Landfill - November 2023 Sampling Event
Webster County, Kentucky

Sample ID:	MW3A	DUPLICATE		
Lab ID:	3111624-03	3111624-07	Units	Meets QC
Date Sampled:	11/8/2023	11/8/2023		
Barium	0.038	0.039	mg/L	Yes
Boron	0.31	0.3	mg/L	Yes
Calcium	475	471	mg/L	Yes
Lithium	0.71	0.74	mg/L	Yes
Sodium	301	331	mg/L	Yes
Chemical Oxygen Demand	105	110	mg/L	Yes
Chloride	1190 J	3090 J	mg/L	No, (RPD 89%)
Fluoride	0.4	0.4	mg/L	Yes
Iron	0.185 J+	0.1 U	mg/L	Yes
pH (Lab)	7.37 J	7.25 J	std. units	Yes
Radium 226 (sub)	1.00 J	-0.0683 J	pCi/L	See Text
Radium 228 (sub)	1.45 J	0.477 J	pCi/L	See Text
Radium Total (sub)	2.45 J	0.477 J	pCi/L	See Text
Specific Conductance (Lab)	6700	7440	umhos/cm	Yes
Sulfate	2530 J	1490 J	mg/L	No, (RPD 52%)
Total Dissolved Solids	3630 J	5290 J	mg/L	No, (RPD 37%)
Total Organic Carbon	0.6	0.7	mg/L	Yes

Notes:

ID - Identification

J = Qualified as estimated

J+ = Qualified as estimated potential high bias

mg/L - milligram per liter

MW = Monitoring Well

pCi/L = picoCurie per liter

QC = Quality Control

RPD = Relative percent difference

std. unit = standard unit

U = non-detect

umhos/cm = microsiemens per centimeter

Memorandum

Date: May 18, 2023

To: Christopher Hoglund

From: Omkar Parab

Re: Quality Assurance/Quality Control (QA/QC) Review of Analytical Data

BREC Sebree, Webster County, Kentucky.

Project No. 156465

Soil samples were collected at the BREC Sebree Landfill Site in Webster County, Kentucky on April 25, 26, and 27 2023. The samples were analyzed by Pace Analytical Services of Indianapolis, Indiana (Pace Indianapolis) for one or more of the following parameters:

Parameter	Analytical Method		
Metals ICP Iron	EPA 6010		
Metals SPLP	Samples are prepped for SPLP by EPA 3010,		
Arsenic, Iron	then analyzed by EPA 6010		
Metals ICPMS	EPA 6020		
Arsenic	E1 A 0020		
Percent Moisture	SM 2540G		
(used to determine dry weight reporting)			

^{*}Notes: EPA – Environmental Protection Agency; ICP – inductively coupled plasma; ICPMS – inductively coupled plasma/mass spectrometry; SPLP - Synthetic Precipitation Leaching Procedure

The QA/QC results in association with the samples collected were examined for any method-specific requirements. Data qualifiers, when appropriate, were added to the data as recommended in United States Environmental Protection Agency's (USEPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (NFGI, 2020). The QA/QC review results are discussed below, and no qualifiers were added during this review.

- 1. <u>Chain-of-Custody (COC)</u> –The relinquished and received signatures, times, and dates were present on the COC for all samples.
- 2. Requested Analyses Completed All analyses were completed as requested.
- 3. <u>Holding Times</u> All samples/analyses were completed within their recommended holding time.
- 4. <u>Sample Preservation</u> All samples were received within the preservation temperature range of 4 degrees Celsius (°C) +/- 2°C.
- 5. <u>Method Blanks</u> Method blanks assess the potential for cross-contamination during the sample preparation and/or analyses. No detections of target analytes were reported in the method blanks.
- 6. <u>Laboratory Control Samples (LCS)</u> The LCS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The LCS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine percent recovery (REC). The purpose of the LCS is to determine the performance of the laboratory with respect to

May 18, 2023 Page 2

analyte recovery, independent of field sample matrix interference. In some instances, the lab also performed laboratory control sample duplicates. All LCS RECs were within QC limits.

- 7. Matrix Spike/Matrix Spike Duplicates (MS/MSD) MS/MSDs are typically run for organic and inorganic analyses. A sample is split into three portions (original, MS and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results of these two portions are compared with each other for reproducibility using the relative percent difference (RPD). They are also compared against the unspiked portion of the sample for REC of the spike. For one or more MS/MSDs, the lab could not calculate a REC and no result was reported. The corresponding LCS information was used to evaluate these analytes, and no qualifiers were added based on these omissions. Note, only site-specific samples were evaluated during the MS/MSD review. The following site-specific MS/MSD results were outside their respective control limits, and qualified as noted.
 - The MS/MSD performed on sample MW-105-31-32 (Lab ID- 50343859001) yielded SPLP MS/MSD RECs outside the QC limit for iron. Upon further review, it was observed that the lab spike amounts were less than ½ the concentration in the parent sample. As such, these MS/MSD results were inconclusive. No qualifiers were added.

Also on this same parent sample, the total arsenic MS/MSD results were outside control reasons for the same issue. No conclusion could be made, and no qualifiers were added.

The associated LCS results for each of these metals were within control limits, and no further review was necessary.

- 8. <u>Field Duplicate Results</u> Field duplicate results provide information on the ability to reproduce field results and account for error introduced from handling, shipping, storage, preparation, and analysis of field samples. There are no specific USEPA criteria for qualifying data from field duplicate results. Depending upon the sample concentration, one of the following criteria based upon NFGI is applicable:
 - Is the compound detected in both portions?
 - If the sample concentrations are greater than 5 times the detection limit, then the maximum allowable RPD is 50 percent for soil samples.
 - If the sample concentrations are less than 5 times the detection limit, then a sensitivity test is applied. For the sensitivity test, the sample concentrations must agree within two times ± the lower detection limit for soil samples.

Note: Although the SPLP results are reported in aqueous units, they were collected as soil samples. Therefore, the soil field duplicate criteria were used for the field duplicate review.

May 18, 2023 Page 3

The following field duplicate pair was included in this review, and detections are presented on Table 2:

- MW-106S-22-24// Dup-1 (collected 04/26/2023): All results were adequately replicated.
- 9. <u>Detection and Quantitation Limits</u> Dilutions were required to account for high concentrations of target analytes and/or matrix interferences in one or more samples. RLs were adjusted accordingly, and no data qualifiers were added based on these dilutions.
- 10. <u>Conclusion</u> The data were reviewed for achievement of any method-specified QA/QC criteria. The data are valid for use, as reported, in reporting the results of this investigation.

Attachment(s)

Table 1 – Field Duplicate Comparison – Detections Only

Table 1

Field Duplicate Comparison - Detections Only BREC Sebree - April 2023 Sampling Event Webster County, Kentucky

Sample ID:	MW-106S-22-24	Dup-1	Units	Meets QC
Lab ID:	50343859005	50343859007		
Date:	4/26/2023	4/26/2023		
Compound				
6010 MET ICP				
Iron	17,800	15,500	mg/kg	Yes
6010 MET ICP, SPLP				
Arsenic	0.046	0.058	mg/L	Yes
Iron	152	189	mg/L	Yes
6020 MET ICPMS				
Arsenic	2.4	3.6	mg/kg	Yes
Percent Moisture				
Percent Moisture	19.6	20.2	%	Yes

Notes:

ID - identification

mg/L - milligrams per liter

MW = monitoring well

mg/kg = miligram per kilogram

QC = quality control

% = percentage

ICP =inductively coupled plasma

SPLP = synthetic precipitation leaching procedure

ICPMS = inductively coupled plasma mass spectrometry

Memorandum

Date: September 14, 2023

To: Christopher Hoglund

From: Omkar Parab

Re: Quality Assurance/Quality Control (QA/QC) Review of Analytical Data

Big Rivers Electric Company (BREC) - Sebree Station, Surface Impoundment Site,

Webster County, Kentucky

Project No. 159154

Groundwater samples were collected at the BREC Sebree Green Surface Impoundment Site in Webster County, Kentucky on June 25, 2023. The samples were analyzed by Pace Analytical Services of Madisonville, Kentucky (Pace Madisonville) for one or more of the following parameters:

Parameter	Analytical Method	Laboratory			
Calcium	SW846 6010 B				
Boron	S W 840 0010 B				
pН	4500-H+ B-2000	Pace - Madisonville			
Total Dissolved Solids (TDS)	2540 C-2015				
Anions chloride, fluoride, sulfate	SW846 9056				

The QA/QC results in association with the samples collected were examined for any method-specific requirements. Data qualifiers, when appropriate, were added to the data as recommended in United States Environmental Protection Agency's (USEPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (NFGI, 2020). The QA/QC review results are discussed below, and qualifiers added during this review are summarized in Table 1.

- 1. <u>Chain-of-Custody (COC)</u> –The relinquished and received signatures, times, and dates were present on the COCs for all samples.
- 2. Requested Analyses Completed All analyses were completed as requested.
- 3. <u>Holding Times</u> The pH for all the samples was analyzed outside the 24-hour holding time, and therefore, these results were qualified as estimated (J). All the other samples/analyses were completed within their recommended holding time.
- 4. <u>Sample Preservation</u> All samples were received by Pace-Madisonville within the preservation temperature range of 4 degrees Celsius (°C) +/- 2°C.
- 5. <u>Field Blank</u> Field blanks assess the potential for cross-contamination during the sample activities and/or transport.

No detections of target analytes were noted in the field blank.

Memorandum (continued)

September 14, 2023 Page 2

6. <u>Method Blanks</u> – Method blanks assess the potential for cross-contamination during the sample preparation and/or analyses.

No detections of target analytes were noted in the method blank.

7. <u>Laboratory Control Samples (LCS)</u> – The LCS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The LCS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine percent recovery (REC). The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference.

All LCS results were within QC limits.

- 8. Matrix Spike/Matrix Spike Duplicates (MS/MSD) MS/MSDs are typically run for organic and inorganic analyses. A sample is split into three portions (original, MS and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results of these two portions are compared with each other for reproducibility using the relative percent difference (RPD). They are also compared against the unspiked portion of the sample for REC of the spike. For one or more MS/MSDs, the lab did not calculate a REC and no result was reported and accuracy and precision were assessed by review of LCS results. Only site-specific MS/MSD results were evaluated during this review. The following site-specific MS/MSD results were outside their respective control limits:
 - MS/MSD REC performed on sample field blank (Lab ID 3061148-06):
 - The MS REC for fluoride was above the control limits. The fluoride was nondetect in the parent sample and no qualifiers were added.
- 9. <u>Laboratory Duplicates</u> Laboratory duplicates were performed to evaluate analytical precision between samples when an MS/MSD may not be appropriate. Only project-specific laboratory duplicates were compared and used for qualification.

All the site-specific laboratory duplicates were within QC limits.

- 10. <u>Field Duplicate Results</u> Field duplicate results provide information on the ability to reproduce field results and account for error introduced from handling, shipping, storage, preparation, and analysis of field samples. There are no specific USEPA criteria for qualifying data from field duplicate results. Depending upon the sample concentration, one of the following criteria based upon NFGI is applicable:
 - Is the compound detected in both portions?

Memorandum (continued)

September 14, 2023 Page 3

- If the sample concentrations are greater than 5 times the detection limit, then the maximum allowable RPD is 20 percent for water samples.
- If the sample concentrations are less than 5 times the detection limit, then a sensitivity test is applied. For the sensitivity test, the sample concentrations must agree within \pm the lower detection limit for water samples.

The following field duplicate pair was included in this review.

- MW14 // DUPLICATE: The field duplicate results for calcium were analyzed at different
 dilution factors. Therefore, no conclusions could be made regarding the reproducibility of
 the results and no qualifiers were added. A sensitivity test was applied to the fluoride and
 boron results, which they passed said test, and no qualifiers were necessary. All the other
 field duplicate data were adequately replicated.
- 11. <u>Detection and Quantitation Limits</u> Dilutions were required to account for high concentrations of target analytes and/or matrix interferences in one or more samples. RLs were adjusted accordingly, and no data qualifiers were added based on these dilutions.
- 12. <u>Conclusion</u> The data were reviewed for achievement of any method-specified QA/QC criteria. The data are valid for use, as qualified, in reporting the results of this groundwater monitoring event.

Attachments

Table 1 – Data Qualifier Table

Table 2 – Field Duplicate Comparison

Table 1 Data Qualifier Table BREC Sebree Green Surface Impoundment - June 2023 Sampling Event Webster County, Kentucky

Analytical Method	Analyte(s)	Sample Identification	Laboratory Number	Data Validation Qualifier	Reason(s) for Qualification
		MW11	3061148-01		
4500-H+ B-2000	рН	MW12	3061148-02		Lading time everedones
		MW13	3061148-03		
4300-H+ B-2000		MW14	3061148-04	J	Holding time exceedance
		DUPLICATE	3061148-05		
		FIELD BLANK	3061148-06		

Notes:

J = Qualified as estimated during data review

MW = Monitoring Well

Table 2
Field Duplicate Comparison
BREC Sebree Green Surface Impoundment - June 2023 Sampling Event
Webster County, Kentucky

Sample ID: Lab ID: Date Sampled:	MW14 3061148-04 6/25/2023	DUPLICATE 3061148-05 6/25/2023	Units	Meets QC
Boron	0.1 U	0.15	mg/L	Yes
Calcium	0.4 U	189	mg/L	Dilution
Total Dissolved Solids	992	896	mg/L	Yes
Chloride	107	101	mg/L	Yes
Fluoride	0.3	0.3	mg/L	Yes
Sulfate	184	173	mg/L	Yes
pН	7.24	7.36	Std. Units	Yes

Notes:

Dilution - differing dilutions, no conclusions can be made

ID - Identification

U = nondetect

mg/L - milligram per liter

MW = Monitoring Well

QC = Quality Assurance/Quality Control

Memorandum

Date: December 20, 2023

To: Christopher Hoglund

From: Jacque Reilly

Re: Quality Assurance/Quality Control (QA/QC) Review of Analytical Data

Big Rivers Electric Company (BREC) - Sebree Station, Surface Impoundment Site,

Webster County, Kentucky

Project No. 159154

Groundwater samples were collected at the BREC Sebree Green Surface Impoundment Site in Webster County, Kentucky on November 6, 2023 through November 8, 2023. The samples were analyzed by Pace Analytical Services of Madisonville, Kentucky (Pace Madisonville) for one or more of the following parameters:

Parameter(s)	Analytical Method	Laboratory
Metals	SW-846 6010B/	
arsenic, boron, and calcium	SW-846 6020A	
pН	4500-H+ B-2011	Pace - Madisonville
Total Dissolved Solids (TDS)	2540 C-2015	r acc - waadson vinc
Anions chloride, fluoride, and sulfate	SW-846 9056	

The quality assurance (QA)/quality control (QC) results in association with the groundwater samples collected were examined for any method-specific requirements. Data qualifiers, when appropriate, were added to the data in accordance with recommendations in United States Environmental Protection Agency's (USEPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (NFGI, 2020). The QA/QC review results are discussed below, and any data qualifiers added during the course of this review are summarized in Table 1.

- 1. <u>Chain-of-Custody (COC)</u> The relinquished and received signatures, times, and dates were present on the COCs for all samples.
- 2. Requested Analyses Completed All analyses were completed as requested.
- 3. <u>Holding Times</u> The pH for all the samples in the sample delivery group (SDG) 3111623 was analyzed outside the 24-hour holding time, and therefore, these results were qualified as estimated (J). All the other samples/analyses were completed within their recommended holding time.
- 4. <u>Sample Preservation</u> The preservation temperature(s) noted by Pace-Madisonville were within the preservation temperature range of 4 degrees Celsius (°C) +/- 2°C. No qualifiers were necessary.
- 5. <u>Field Blank</u> One field blank was collected in the field to assess potential cross-contamination during the sample activities and/or transport. The following detections of target analytes were noted in the field blank:

Memorandum (continued)

December 20, 2023 Page 2

- SDG 3111623: A detection of TDS and a trace detection (J-flagged) of sulfate were noted in the field blank sample. All associated detections were five times greater than the field blank detections, and therefore, no qualifiers were necessary.
- 6. <u>Method Blanks</u> Method blanks were reviewed to assess possible cross-contamination or carryover in sample preparation or analysis. No target analytes were detected in the method blanks.
- 7. <u>Laboratory Control Samples (LCS)</u> The LCS contains a matrix similar to that of the sample that has been spiked with known concentrations of target analytes. The LCS is prepared and analyzed by the same method as the samples. As a measure of analytical accuracy, the results of the LCS are compared against the known analyte concentrations in the spike to determine the REC. The purpose of the LCS is to determine the performance of the laboratory with respect to analyte recovery, independent of field sample matrix interference. All LCS results were within QC limits, except for:
 - SDG 3111623: The LCS REC for pH in batch BCK0601 exceeded the QC limits. All associated pH results were already qualified for holding time exceedances (see section 3) thus, these results were qualified as estimated (J) and no bias indicators were added.
- 8. <u>Matrix Spike/Matrix Spike Duplicates (MS/MSD)</u> MS/MSDs are typically run for organic and inorganic analyses. A sample is split into three portions (original, MS and MSD), and a known amount of a target analyte is added (spiked) to two portions (MS and MSD) of the sample. The results of these two portions are compared with each other for reproducibility using the RPD. They are also compared against the unspiked portion of the sample for REC of the spike. Note that only site-specific MS/MSD results were evaluated during this QA/QC review. All site-specific MS/MSD results were within their respective QC limits except for the following:

SDG 3111623; MS/MSD performed on MW-11 (3111623-01): The MS REC for calcium recovered above the QC Limit. Upon further review, the laboratory spike amount for calcium was less than ¼ the concentration of the spiked sample. Additionally, this analysis for the spiked parent sample was performed at a dilution. As such, no conclusion could be made regarding this MS/MSD and no qualifiers were added. Note: The corresponding post spike was also performed on this same sample and also did not meet the ¼ requirement. Accuracy was assessed by review of the LCS, which was within its QC limits.

On this same spiked sample, it is noted that boron was spiked, but no MS/MSD results were provided.

Memorandum (continued)

December 20, 2023 Page 3

- 9. <u>Laboratory Duplicates</u> Laboratory duplicates were performed to evaluate analytical precision between samples when an MS/MSD may not be appropriate. Only project-specific laboratory duplicates were compared and used for qualification. All the site-specific laboratory duplicates were within QC limits and no qualifiers were necessary.
- 10. <u>Field Duplicate Results</u> Field duplicate results provide information on the ability to reproduce field results and account for error introduced from handling, shipping, storage, preparation, and analysis of field samples. There are no specific USEPA criteria for qualifying data from field duplicate results. Depending upon the sample concentration, one of the following criteria based upon NFGI is applicable:
 - Is the compound detected in both portions?
 - If the sample concentrations are greater than 5 times the detection limit, then the maximum allowable RPD is 20 percent for water samples.
 - If the sample concentrations are less than 5 times the detection limit, then a sensitivity test is applied. For the sensitivity test, the sample concentrations must agree within ± the lower detection limit for water samples.

The following field duplicate pair was included in this review.

- MW-14 // DUPLICATE (3111623-04 // 3111623-05): All results were adequately replicated.
- 11. <u>Detection and Quantitation Limits</u> Dilutions were required to account for high concentrations of target analytes and/or matrix interferences in one or more samples. Reporting limits (RLs) were adjusted accordingly, and no data qualifiers were added based on these dilutions.
- 12. <u>Conclusion</u> The data were reviewed for achievement of any method-specified QA/QC criteria. The data are valid for use, as qualified, in reporting the results of this groundwater monitoring event.

Attachments

Table 1 – Data Qualifier Table

Table 2 – Field Duplicate Comparison

Table 1 Data Qualifier Table BREC Sebree Green Surface Impoundment - November 2023 Sampling Event Webster County, Kentucky

SDG	Sample Identification	Laboratory Number	Analytical Method	Analyte(s)	Data Validation Qualifier	Reason(s) for Qualification
	MW11	3111623-01	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits
	MW12	3111623-02	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits
3111623		3111623-03	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits
3111023	MW14	3111623-04	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits
	DUPLICATE	3111623-05	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits
	FIELD BLANK	3111623-06	4500-H+ B-2000	рН	J	Holding time exceedance LCS REC > QC Limits

Notes:

J = Qualified as estimated during data review

LCS = Laboratory Conrol Sample

MW = Monitoring Well

REC = Percent Recovery

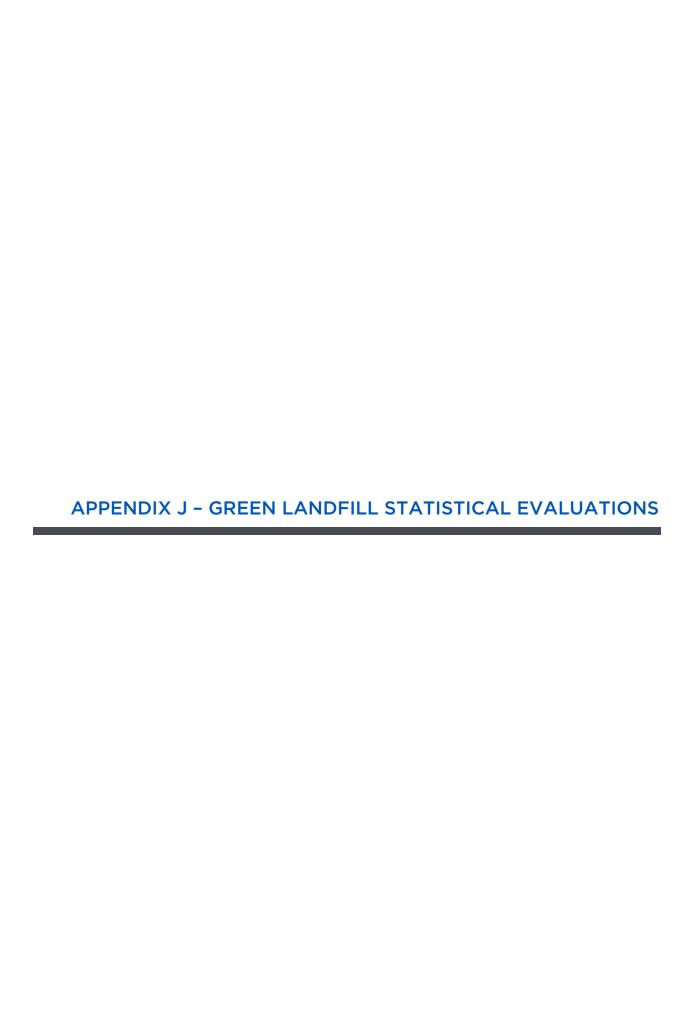
SDG = Sample Delivery Group

Table 2 Field Duplicate Comparison BREC Sebree Green Surface Impoundment - November 2023 Sampling Event Webster County, Kentucky

Sample ID: Lab ID: Date Sampled:	MW14 3111623-04 11/6/2023	DUPLICATE 3111623-05 11/6/2023	Units	Meets QC
Boron	0.13	0.13	mg/L	Yes
Calcium	155	158	mg/L	Yes
рН	7.57 J	7.42 J	std. unit	Yes
Total Dissolved Solids (TDS)	940	988	mg/L	Yes
Chloride	104	105	mg/L	Yes
Fluoride	0.3	0.3	mg/L	Yes
Sulfate	176	178	mg/L	Yes

Notes:

ID - Identification


J - Estimated

mg/L - milligram per Liter

MW = Monitoring Well

QC = Quality Assurance/Quality Control

std. unit = standard unit

November 3, 2023

Mr. Mark Bertram Big Rivers Electric Corporation 9000 Highway 2096 Robards, KY 42452

Re: Statistical Evaluation of June 2023 Assessment Monitoring Groundwater Data Sebree Generating Station Green Landfill in Robards, Kentucky Agency Interest ID #: 4196

Dear Mr. Bertram:

This letter presents the results of the statistical evaluation of analytical data from the June 2023 assessment monitoring event performed at the Sebree Generating Station's Green Landfill in Webster County, Robarbs, Kentucky in accordance with the requirements of U.S. Environmental Protection Agency's *Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments (40 Code of Federal Regulations [CFR] Part 257, Subpart D).* This letter also presents a comparison of the June 2023 sampling results to calculated groundwater protection standards (GWPSs). The GWPSs for the groundwater monitoring network were reviewed and updated as part of the statistical evaluation completed for the June 2023 sampling event and are presented on Table 1. These GWPSs will continue to be reviewed and updated as additional data are collected. A comparison of the June 2023 data to the updated GWPSs is presented on Table 2. The statistical evaluation presented herein was performed in accordance with the *Groundwater Monitoring System and Statistical Methods* document prepared by Associated Engineers, Inc. and dated June 28, 2016.

In June 2023, the Green Landfill groundwater monitoring well network was sampled for Appendix III and Appendix IV parameters per the requirements of 40 CFR §257.95(d)(1). Interwell prediction limit statistical analyses were performed for these well/constituent pairs and are discussed subsequently. GWPSs were also developed in accordance with 40 CFR §257.95(h) which describes a GWPS as the higher value between a determined background concentration for the CCR unit and the established maximum concentration limit (MCL) or the GWPS criteria for select Appendix IV parameters without an MCL presented in 40 CFR §257.95(h)(2). This letter presents the results of the statistical evaluation of the June 2023 assessment monitoring event for inclusion in the Sebree Generating Station Operating Record.

<u>Statistical Evaluation of Sebree Green Landfill Compliance Monitoring Well Network</u> Evaluation

An interwell prediction limit evaluation was performed to compare the concentrations of Appendix III and Appendix IV parameters observed in June 2023 compliance (downgradient) monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 to calculated prediction limits (i.e., background limits) that were established using data collected from March of 2016 through June

Mr. Mark Bertram Big Rivers Electric Corporation November 3, 2023 Page 2

of 2023 from upgradient monitoring well MW-1. Certain Appendix III and Appendix IV parameters were detected in Jun 2023 at concentrations with statistically significant increases (SSI) above the calculated background limits (equivalent to the MW-1 prediction limits), and a summary of the statistical evaluation is included in Attachment 1. This included the following well/constituent pairs for downgradient compliance monitoring wells with SSIs above calculated background limits:

Appendix III Parameters:

- Calcium (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Chloride (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Sulfate (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Total Dissolved Solids (TDS) (MW-2, MW-3A, MW-4, MW-5, and MW-6)

Appendix IV Parameters:

- Arsenic (MW-2)
- Barium (MW-2)
- Lithium (MW-3A, MW-4, MW-5, and MW-6)
- Mercury (MW-4)
- Molybdenum (MW-2)
- Selenium (MW-4)

Results of SSIs above background were generally consistent with the 2016 through December 2022 statistical results. The Appendix III SSIs for calcium, chloride, sulfate, and TDS continue to occur at downgradient compliance monitoring wells. All above-noted Appendix IV SSIs for this event are consistent with the previous December 2022 event.

The Appendix IV constituents with SSIs (arsenic, barium, lithium, mercury, molybdenum, and selenium) were further evaluated to determine whether they are present at statistically significant levels (SSLs) over the GWPS by calculating the lower confidence limit (LCL) at 95% confidence for each well and constituent using all the baseline, detection, and assessment monitoring results collected to date from each monitoring well. For a constituent to be present at an SSL over the GWPS, its LCL must be greater than the GWPS. The comparison of the calculated LCLs with the GWPSs for arsenic, barium, lithium, mercury, molybdenum, and selenium at downgradient compliance monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 resulted in the following well/constituent pairs with SSLs above the GWPS:

Arsenic (MW-2)

Mr. Mark Bertram Big Rivers Electric Corporation November 3, 2023 Page 3

• Lithium (MW-3A, MW-4, MW-5, and MW-6)

The LCLs for the remaining well/constituent pairs for arsenic, barium, lithium, mercury, molybdenum, and selenium are less than the GWPS and thus are not considered SSLs. Attachment 1 provides a summary of the calculated LCLs in comparison with the GWPSs. Results of SSLs above the GWPSs were consistent with the December 2022 results.

Given that certain Appendix III and IV constituents were observed at the Green Landfill groundwater monitoring network at concentrations above their respective calculated background limit and the LCL for certain Appendix IV constituents was greater than the corresponding GWPSs, these results do not warrant a transition to detection monitoring per the requirements of 40 CFR §257.95(f) and assessment monitoring will continue for the next semiannual monitoring event in 2023.

Sincerely,

Burns & McDonnell Engineering Company, Inc.

Chris Hoglund, PG

Project Manager

Attachments:

Table 1 – Summary of Groundwater Protection Standards

Table 2 – Summary of December 2022 Analytical Results

Attachment 1 – Sanitas™ Statistical Outputs

cc: Greg Dick, BREC Sebree Station

TABLES

TABLE 1 Calculated Background and Groundwater Protection Standards for Groundwater Sebree Generating Station Green Landfill in Robards, Kentucky

Detection Constituents (Appendix III)	Units	Background*	MCL	40 CFR §257.95(h)(2) Criteria	Groundwater Protection Standard
Boron	mg/L	2.216			
Calcium	mg/L	36.08			
Chloride	mg/L	13.9			
Fluoride	mg/L	0.888	4		
pH (field)	SU	4.86 - 7.63			
Sulfate	mg/L	48.92			
TDS	mg/L	692.6			
Assessment Constituents (Appendix IV)	Units	Background*	MCL	40 CFR §257.95(h)(2) Criteria	Groundwater Protection Standard
Antimony	mg/L	0.00297	0.006		0.006
Arsenic	mg/L	0.003712	0.01		0.01
Barium	mg/L	0.1013	2		2
Beryllium	mg/L	0.000533	0.004		0.004
Cadmium	mg/L	0.000299	0.005		0.005
Chromium	mg/L	0.00354	0.1		0.1
Cobalt	mg/L	0.002		0.006	0.006
Fluoride	mg/L	0.888	4		4
Lead	mg/L	0.000279		0.015	0.015
Lithium	mg/L	0.0396		0.04	0.04
Mercury	mg/L	0.0002	0.002		0.002
Molybdenum	mg/L	0.002		0.1	0.1
Combined Radium 226 and 228**	pCi/L	2.48	5		5
Selenium	mg/L	0.00105	0.05		0.05
Thallium	mg/L	0.000498	0.002		0.002

Notes:

CFR - Code of Federal Regulations

mg/L - milligrams per Liter

pCi/L - picocuries per Liter

MCL - Maximum Contaminant Level

SU - standard units

TDS - Total Dissolved Solids

^{*}Groundwater Protection Standards were developed in accordance with §257.95(h). Background concentrations were determined utilizing interwell prediction limits (see Attachment 1). Upgradient Monitoring Well MW-1 was used to calculate background concentrations. This included background data ranging from March 2016 through June 2023

^{**}Combined radium is reported with an uncertainty range. However, this range cannot be incorporated into statistical calculations as it varies per result and is not a standard value. Therefore, to maintain consistency in reporting these results, the reported laboratory concentration was used for the statistical analyses.

TABLE 2 Green Landfill - June 2023 Analytical Summary Sebree Generating Station

					1814.0				
	2023	0000		MW-1	MW-2	MW-3A	MW-4	MW-5	MW-6
4 DDE NDIV III 00 NOTITUENTO	Calculated	2023		Background Well			owngradient Complian	ce well	
APPENDIX III CONSTITUENTS	Background	GWPS	Units			Î	n Monitoring	T	1
Boron	2.216		mg/L	1.93	0.10 U	0.30	1.20 D1	0.24	0.19
Calcium	36.08		mg/L	28.6 D1, M1, M2	192 D1	531 D1	725 D1	485 D1	408 D1
Chloride	13.9		mg/L	5.7	218 D	1820 D	1130 D	1020 D	144 D
Fluoride	0.888	4	mg/L	0.5	0.2	0.5	0.2	0.3	0.5
pH (Field Measurement)	4.86 - 7.63		s.u.	7.15	6.33	6.94	6.52	6.47	6.60
Sulfate	48.92		mg/L	31	156	1140 D,M2	1650 D	1900 D	2360 D
Total Dissolved Solids	692.6		mg/L	520	1610	5090	4660 H2, J	4220 H2, J	4760 H2, J
APPENDIX IV CONSTIUENTS									
Antimony	0.00297	0.006	mg/L	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Arsenic	0.003712	0.01	mg/L	0.0005 J	0.0323	0.0004 U	0.0004 U	0.0004 U	0.0004 U
Barium	0.1013	2	mg/L	0.071	0.340	0.035	0.023	0.012	0.011
Beryllium	0.000533	0.004	mg/L	0.0010 U	0.0010 U	0.0010 U	0.0010 U	0.0010 U	0.0010 U
Cadmium	0.000299	0.005	mg/L	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U
Chromium	0.00354	0.1	mg/L	0.0006 U	0.0006 U	0.0006 U	0.0018 J	0.0006 U	0.0008 J
Cobalt	0.002	0.006	mg/L	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U
Fluoride	0.888	4	mg/L	0.5	0.2	0.5	0.2	0.3	0.5
Lead	0.000279	0.015	mg/L	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Lithium	0.0396	0.04	mg/L	0.03	0.006 J	0.64	1.2 D1	0.33	0.04
Mercury	0.0002	0.002	mg/L	0.0002 U	0.0002 U	0.0002 U	0.0004 J	0.0002 U	0.0002 U
Molybdenum	0.002	0.1	mg/L	0.002 U	0.005 J	0.002 U	0.002 U	0.002 U	0.002 J
Radium 226	2.48	5	pCi/L	0.805 J	1.50 J	1.43 J	2.09 J	1.69 J/J-	1.40 J
Radium 228	2.40	5	ρΟ//L	0.000 J	1.00 J	1.43 J	2.09 J	1.09 J/J-	1.40 J
Selenium	0.00105	0.05	mg/L	0.001 U	0.001 U	0.001 U	0.003	0.001 U	0.001 U
Thallium	0.000498	0.002	mg/L	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 J	0.0001 U

GWPS = Groundwater Protection Standard

Bold - Analyte detected above calculated background concentration.

Parameter was detected in well located downgradient of the CCR Landfill at a statistically significant level above its GWPS

mg/L = milligrams per liter

pCi/L = picoCuries per Liter

s.u. = standard units

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is qualified as estimated.

U = Target analyte was analyzed for, but was below detection limit

D = Results reported from dilution

D1 = Sample required dilution due to high concentration of target analysis

H2 = Initial analysis within holding time. Reanalysis was past holding time.

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

Prediction Limit

Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 8:13 AM Constituent Well Upper Lim. Lower Lim. Transform Method Date Observ. Siq. <u>Bg N</u> %NDs Alpha Antimony (mg/L) MW-2 0.00297 n/a 6/24/2023 0.001ND No 19 57.89 n/a 0.04565 NP Inter (NDs) MW-3A 0.00297 6/23/2023 0.001ND No 19 0.04565 NP Inter (NDs) Antimony (mg/L) n/a 57.89 n/a Antimony (mg/L) MW-4 0.00297 n/a 6/22/2023 0.001ND No 19 57.89 n/a 0.04565 NP Inter (NDs) Antimony (mg/L) MW-5 0.00297 n/a 6/22/2023 0.001ND No 19 57.89 n/a 0.04565 NP Inter (NDs) MW-6 0.00297 6/22/2023 0.001ND 19 57.89 0.04565 NP Inter (NDs) Antimony (mg/L) n/a No n/a MW-2 0.003712 6/24/2023 0.0323 20 10 0.01 Arsenic (mg/L) n/a Yes In(x) Param Inter MW-3A 0.003712 6/23/2023 Arsenic (mg/L) n/a 0.0002ND 20 10 In(x) 0.01 Param Inter No MW-4 0.003712 6/22/2023 0.0002ND 20 10 0.01 Arsenic (mg/L) n/a No In(x) Param Inter Arsenic (mg/L) MW-5 0.003712 n/a 6/22/2023 0.0002ND No 20 10 0.01 Param Inter In(x) Arsenic (mg/L) MW-6 0.003712 n/a 6/22/2023 0.0002ND No 20 10 0.01 Param Inter In(x) Barium (mg/L) MW-2 0.1013 n/a 6/24/2023 0.34 Yes 20 0 No 0.01 Param Inter Barium (mg/L) MW-3A 0.1013 n/a 6/23/2023 0.035 No 20 0 No 0.01 Param Inter Barium (mg/L) MW-4 0.1013 n/a 6/22/2023 0.023 No 20 0 No 0.01 Param Inter Barium (mg/L) MW-5 0.1013 n/a 6/22/2023 0.012 No 20 0 No 0.01 Param Inter MW-6 0.1013 6/22/2023 20 0 0.01 Barium (mg/L) n/a 0.011 No No Param Inter MW-2 0.000533 6/24/2023 19 94.74 0.04565 Beryllium (mg/L) n/a 0.0005ND No n/a NP Inter (NDs) MW-3A Beryllium (mg/L) 0.000533 n/a 6/23/2023 0.0005ND 19 94.74 0.04565 NP Inter (NDs) No n/a Beryllium (mg/L) MW-4 0.000533 6/22/2023 0.0005ND No 19 94.74 0.04565 NP Inter (NDs) n/a n/a Beryllium (mg/L) MW-5 0.000533 6/22/2023 0.0005ND 19 94.74 0.04565 NP Inter (NDs) n/a No n/a 19 Beryllium (mg/L) MW-6 0.000533 n/a 6/22/2023 0.0005ND 94.74 0.04565 NP Inter (NDs) No n/a 21 Boron (mg/L) MW-2 2.216 n/a 6/24/2023 0.05ND No 0 No 0.01 Param Inter MW-3A 2.216 6/23/2023 0.3 21 0 0.01 Param Inter Boron (mg/L) n/a No No Boron (mg/L) MW-4 2.216 n/a 6/22/2023 1.2 No 21 0 No 0.01 Param Inter 2.216 Boron (mg/L) MW-5 n/a 6/22/2023 0.24 No 21 0 No 0.01 Param Inter MW-6 6/22/2023 21 0 0.01 Boron (mg/L) 2.216 n/a 0.19 No No Param Inter Cadmium (mg/L) MW-2 0.000299 n/a 6/24/2023 0.00005ND No 19 89.47 n/a 0.04565 NP Inter (NDs) Cadmium (mg/L) MW-3A 0.000299 n/a 6/23/2023 0.00005ND No 19 89.47 n/a 0.04565 NP Inter (NDs) Cadmium (mg/L) MW-4 0.000299 n/a 6/22/2023 0.00005ND No 19 89.47 n/a 0.04565 NP Inter (NDs) Cadmium (mg/L) MW-5 0.000299 n/a 6/22/2023 0.00005ND No 19 89.47 n/a 0.04565 NP Inter (NDs) Cadmium (mg/L) MW-6 0.000299 n/a 6/22/2023 0.00005ND No 19 89.47 n/a 0.04565 NP Inter (NDs) 6/24/2023 Calcium (mg/L) MW-2 36.08 n/a 192 Yes 21 0 No 0.01 Param Inter Calcium (mg/L) MW-3A 36.08 6/23/2023 531 21 0 0.01 n/a Yes No Param Inter Calcium (mg/L) MW-4 36.08 n/a 6/22/2023 725 21 No 0.01 Param Inter Yes Calcium (mg/L) MW-5 36.08 6/22/2023 485 21 0 0.01 n/a Yes No Param Inter Calcium (mg/L) MW-6 36.08 6/22/2023 408 21 0 0.01 n/a Yes No Param Inter Chloride (mg/L) MW-2 13.9 n/a 6/24/2023 218 Yes 21 0 n/a 0.04182 NP Inter (normality) Chloride (mg/L) MW-3A 13.9 n/a 6/23/2023 1820 Yes 21 0 n/a 0.04182 NP Inter (normality) Chloride (mg/L) MW-4 13.9 n/a 6/22/2023 1130 Yes 21 0 n/a 0.04182 NP Inter (normality) Chloride (mg/L) MW-5 13.9 6/22/2023 1020 21 0 n/a Yes n/a 0.04182 NP Inter (normality) Chloride (mg/L) MW-6 6/22/2023 144 21 0 13.9 n/a Yes n/a 0.04182 NP Inter (normality) Chromium (mg/L) MW-2 0.00354 n/a 6/24/2023 0.0003ND No 19 73.68 n/a 0.04565 NP Inter (NDs) Chromium (mg/L) MW-3A 0.00354 6/23/2023 0.0003ND 19 73.68 0.04565 NP Inter (NDs) n/a No n/a Chromium (mg/L) MW-4 0.00354 6/22/2023 0.0018J 19 73.68 0.04565 NP Inter (NDs) n/a No n/a Chromium (mg/L) MW-5 0.00354 n/a 6/22/2023 0.0003ND 19 73.68 0.04565 NP Inter (NDs) No n/a Chromium (mg/L) MW-6 0.00354 n/a 6/22/2023 0.0008J No 19 73.68 n/a 0.04565 NP Inter (NDs) Cobalt (mg/L) MW-2 0.002 n/a 6/24/2023 0.002ND Nο 19 42.11 n/a 0.04565 NP Inter (normality) Cobalt (mg/L) MW-3A 0.002 n/a 6/23/2023 0.002ND No 19 42.11 n/a 0.04565 NP Inter (normality) Cobalt (mg/L) MW-4 0.002 n/a 6/22/2023 0.002ND No 19 42.11 n/a 0.04565 NP Inter (normality)

6/22/2023

6/22/2023

0.002ND

0.002ND

19

19

Nο

No

42.11

42.11

n/a

n/a

0.04565

0.04565

NP Inter (normality)

NP Inter (normality)

Cobalt (mg/L)

Cobalt (mg/L)

MW-5

MW-6

0.002

0.002

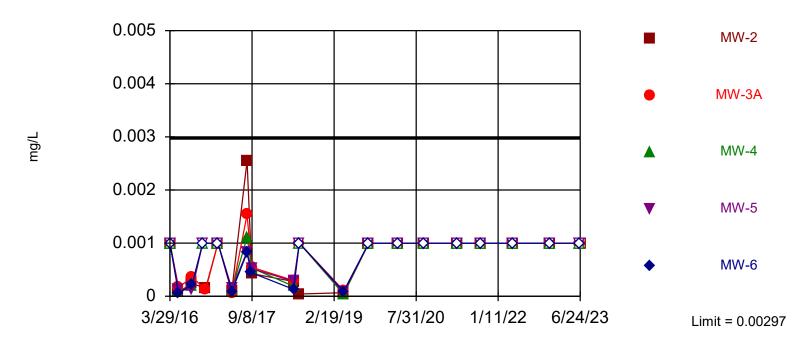
n/a

n/a

Prediction Limit

Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 8:13 AM

0 111 1	147 11			D 1	01	٥.	D N	0/ND	T (A	N (1)
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	Alpha	Method
Fluoride (mg/L)	MW-2	0.888	n/a	6/24/2023	0.2	No	21	0	n/a	0.04182	NP Inter (normality)
Fluoride (mg/L)	MW-3A	0.888	n/a	6/23/2023	0.5	No	21	0	n/a	0.04182	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.888	n/a	6/22/2023	0.2	No	21	0	n/a	0.04182	NP Inter (normality)
Fluoride (mg/L)	MW-5	0.888	n/a	6/22/2023	0.3	No	21	0	n/a	0.04182	NP Inter (normality)
Fluoride (mg/L)	MW-6	0.888	n/a	6/22/2023	0.5	No	21	0	n/a	0.04182	NP Inter (normality)
Lead (mg/L)	MW-2	0.000279	n/a	6/24/2023	0.00025ND	No	19	68.42	n/a	0.04565	NP Inter (NDs)
Lead (mg/L)	MW-3A	0.000279	n/a	6/23/2023	0.00025ND	No	19	68.42	n/a	0.04565	NP Inter (NDs)
Lead (mg/L)	MW-4	0.000279	n/a	6/22/2023	0.00025ND	No	19	68.42	n/a	0.04565	NP Inter (NDs)
Lead (mg/L)	MW-5	0.000279	n/a	6/22/2023	0.00025ND	No	19	68.42	n/a	0.04565	NP Inter (NDs)
Lead (mg/L)	MW-6	0.000279	n/a	6/22/2023	0.00025ND	No	19	68.42	n/a	0.04565	NP Inter (NDs)
Lithium (mg/L)	MW-2	0.0396	n/a	6/24/2023	0.006J	No	20	10	n/a	0.04365	NP Inter (normality)
Lithium (mg/L)	MW-3A	0.0396	n/a	6/23/2023	0.64	Yes	20	10	n/a	0.04365	NP Inter (normality)
Lithium (mg/L)	MW-4	0.0396	n/a	6/22/2023	1.2	Yes	20	10	n/a	0.04365	NP Inter (normality)
Lithium (mg/L)	MW-5	0.0396	n/a	6/22/2023	0.33	Yes	20	10	n/a	0.04365	NP Inter (normality)
Lithium (mg/L)	MW-6	0.0396	n/a	6/22/2023	0.04	Yes	20	10	n/a	0.04365	NP Inter (normality)
Mercury (ug/L)	MW-2	0.2	n/a	6/24/2023	0.1ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Mercury (ug/L)	MW-3A	0.2	n/a	6/23/2023	0.1ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Mercury (ug/L)	MW-4	0.2	n/a	6/22/2023	0.4	Yes	20	95	n/a	0.04365	NP Inter (NDs)
Mercury (ug/L)	MW-5	0.2	n/a	6/22/2023	0.1ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Mercury (ug/L)	MW-6	0.2	n/a	6/22/2023	0.1ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Molybdenum (mg/L)	MW-2	0.002	n/a	6/24/2023	0.005	Yes	19	47.37	n/a	0.04565	NP Inter (normality)
Molybdenum (mg/L)	MW-3A	0.002	n/a	6/23/2023	0.001ND	No	19	47.37	n/a	0.04565	NP Inter (normality)
Molybdenum (mg/L)	MW-4	0.002	n/a	6/22/2023	0.001ND	No	19	47.37	n/a	0.04565	NP Inter (normality)
Molybdenum (mg/L)	MW-5	0.002	n/a	6/22/2023	0.001ND	No	19	47.37	n/a	0.04565	NP Inter (normality)
Molybdenum (mg/L)	MW-6	0.002	n/a	6/22/2023	0.002J	No	19	47.37	n/a	0.04565	NP Inter (normality)
pH [Field] (SU)	MW-2	7.63	4.86	6/24/2023	6.33	No	21	0	n/a	0.08363	NP Inter (normality)
pH [Field] (SU)	MW-3A	7.63	4.86	6/23/2023	6.94	No	21	0	n/a	0.08363	NP Inter (normality)
pH [Field] (SU)	MW-4	7.63	4.86	6/22/2023	6.52	No	21	0	n/a	0.08363	NP Inter (normality)
pH [Field] (SU)	MW-5	7.63	4.86	6/22/2023	6.47	No	21	0	n/a	0.08363	NP Inter (normality)
pH [Field] (SU)	MW-6	7.63	4.86	6/22/2023	6.6	No	21	0	n/a	0.08363	NP Inter (normality)
Radium 226 + 228 (pCi/L)	MW-2	2.48	n/a	6/24/2023	1.5	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-3A	2.48	n/a	6/23/2023	1.43	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-4	2.48	n/a	6/22/2023	2.09	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-5	2.48	n/a	6/22/2023	1.69	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-6	2.48	n/a	6/22/2023	1.4	No	19	0	sqrt(x)	0.01	Param Inter
Selenium (mg/L)	MW-2	0.00105	n/a	6/24/2023	0.0005ND	No	19	89.47	n/a	0.04565	NP Inter (NDs)
Selenium (mg/L)	MW-3A	0.00105	n/a	6/23/2023	0.0005ND	No	19	89.47	n/a	0.04565	NP Inter (NDs)
Selenium (mg/L)	MW-4	0.00105	n/a	6/22/2023	0.003	Yes	19	89.47	n/a	0.04565	NP Inter (NDs)
Selenium (mg/L)	MW-5	0.00105	n/a	6/22/2023	0.0005ND	No	19	89.47	n/a	0.04565	NP Inter (NDs)
Selenium (mg/L)	MW-6	0.00105	n/a	6/22/2023	0.0005ND	No	19	89.47	n/a	0.04565	NP Inter (NDs)
Sulfate (mg/L)	MW-2	48.92	n/a	6/24/2023	156	Yes	21	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-3A	48.92	n/a	6/23/2023	1140	Yes	21	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-4	48.92	n/a	6/22/2023	1650	Yes	21	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-5	48.92	n/a	6/22/2023	1900	Yes	21	0	In(x)	0.01	Param Inter
Sulfate (mg/L)	MW-6	48.92	n/a	6/22/2023	2360	Yes	21	0	In(x)	0.01	Param Inter
Thallium (mg/L)	MW-2	0.000498	n/a	6/24/2023	0.00005ND	No	19	63.16	n/a	0.04565	NP Inter (NDs)
Thallium (mg/L)	MW-3A	0.000498	n/a	6/23/2023	0.00005ND	No	19	63.16	n/a	0.04565	NP Inter (NDs)
Thallium (mg/L)	MW-4	0.000498	n/a	6/22/2023	0.00005ND	No	19	63.16	n/a	0.04565	NP Inter (NDs)
Thallium (mg/L)	MW-5	0.000498	n/a	6/22/2023	0.0001J	No	19	63.16	n/a	0.04565	NP Inter (NDs)
Thallium (mg/L)	MW-6	0.000498	n/a	6/22/2023	0.00005ND	No	19	63.16	n/a	0.04565	NP Inter (NDs)
· = ·											• •


Prediction Limit Page 3

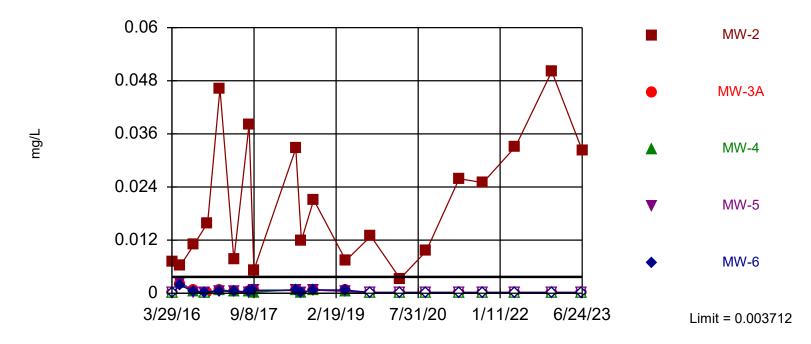
Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 8:13 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Total Dissolved Solids (mg/L)	MW-2	692.6	n/a	6/24/2023	1610	Yes	21	0	x^4	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-3A	692.6	n/a	6/23/2023	5090	Yes	21	0	x^4	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-4	692.6	n/a	6/22/2023	4660	Yes	21	0	x^4	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-5	692.6	n/a	6/22/2023	4220	Yes	21	0	x^4	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-6	692.6	n/a	6/22/2023	4760	Yes	21	0	x^4	0.01	Param Inter

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 57.89% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

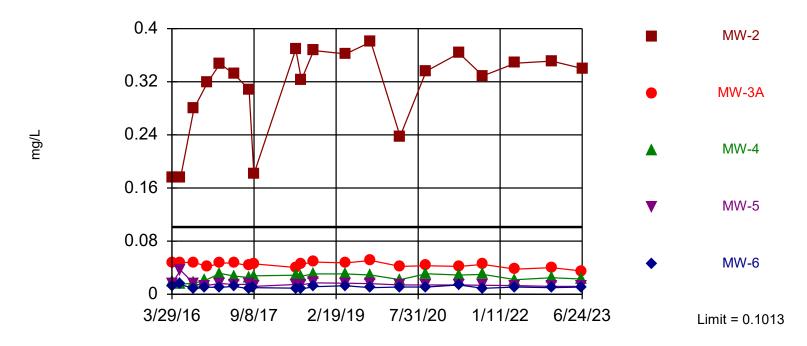

Constituent: Antimony Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Parametric

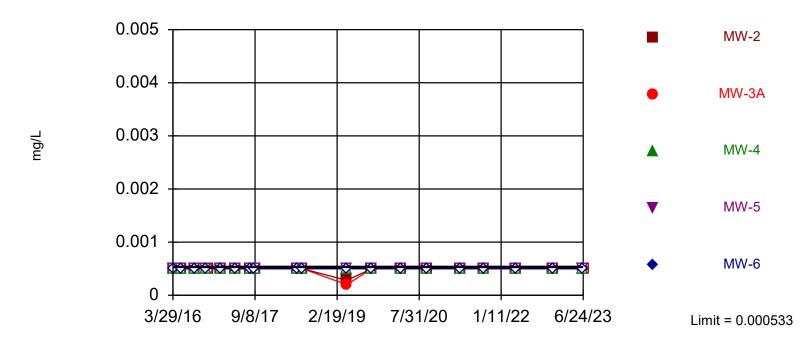

Background Data Summary (based on natural log transformation): Mean=-7.333, Std. Dev.=0.6676, n=20, 10% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9137, critical = 0.905. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Arsenic Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Parametric

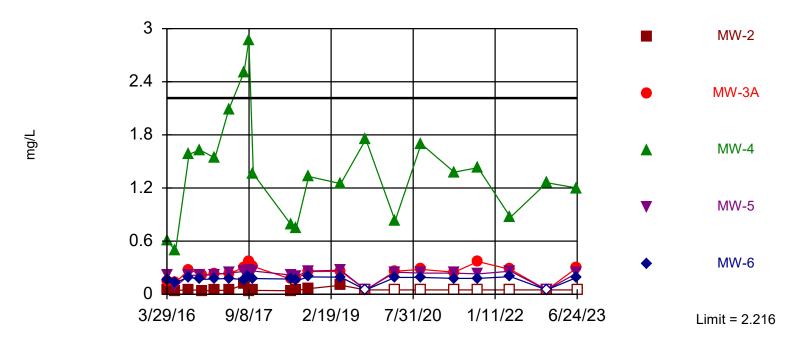


Background Data Summary: Mean=0.08125, Std. Dev.=0.0077, n=20. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9657, critical = 0.905. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Barium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

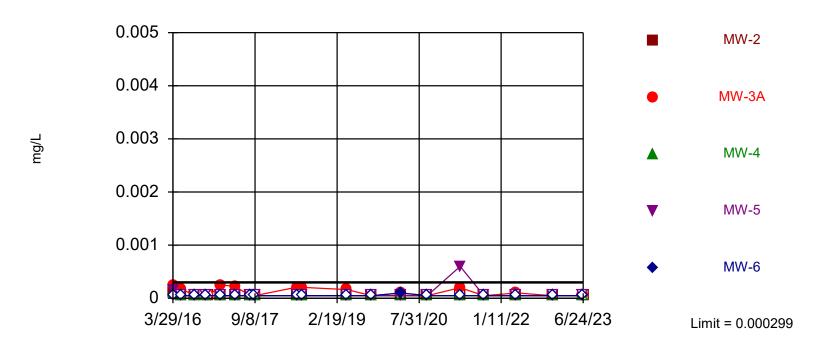


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 94.74% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Beryllium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Parametric

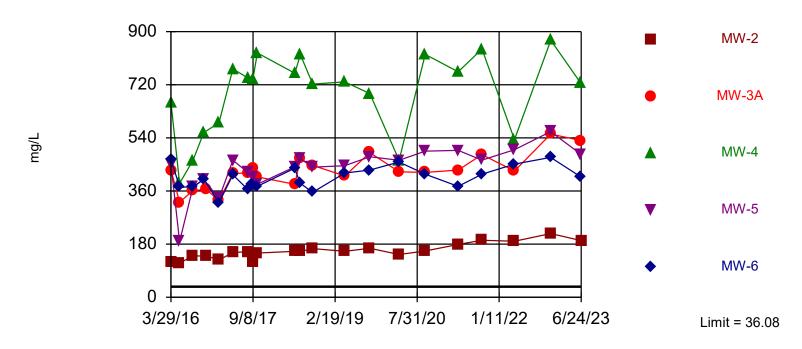


Background Data Summary: Mean=1.741, Std. Dev.=0.1836, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9214, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Boron Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

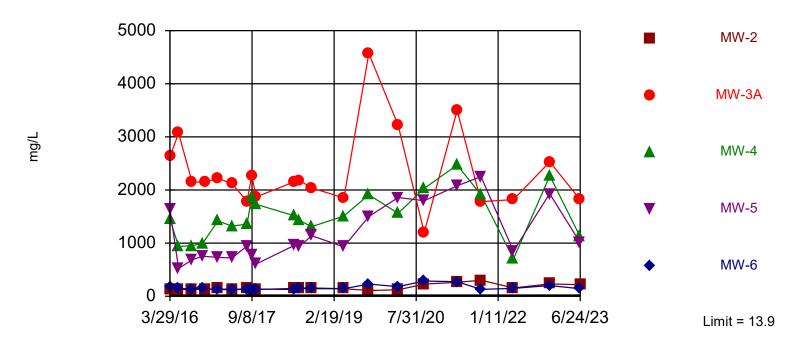

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 89.47% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cadmium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric

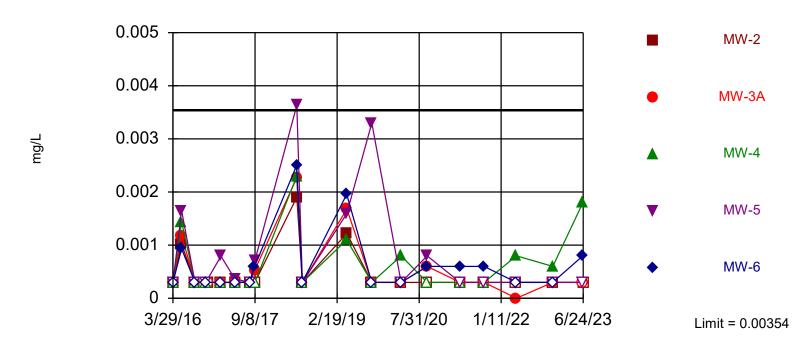

Background Data Summary: Mean=28.88, Std. Dev.=2.783, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9205, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. At least one background value was a statistical outlier but was below the user-set cutoff of 3 times the median. No background outliers were found.

Constituent: Calcium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Non-parametric

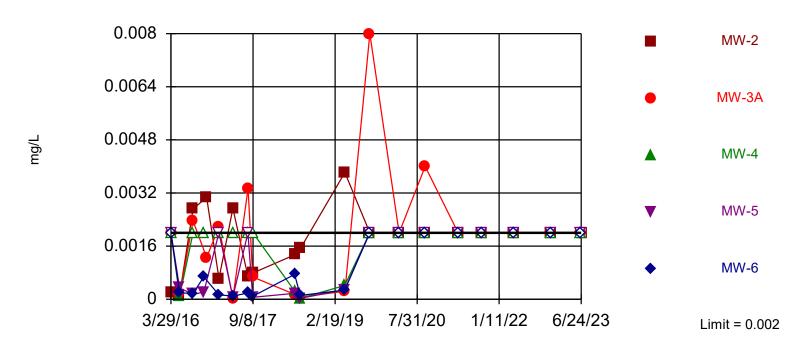


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 21 background values. Report alpha = 0.1923. Individual comparison alpha = 0.04182. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chloride Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

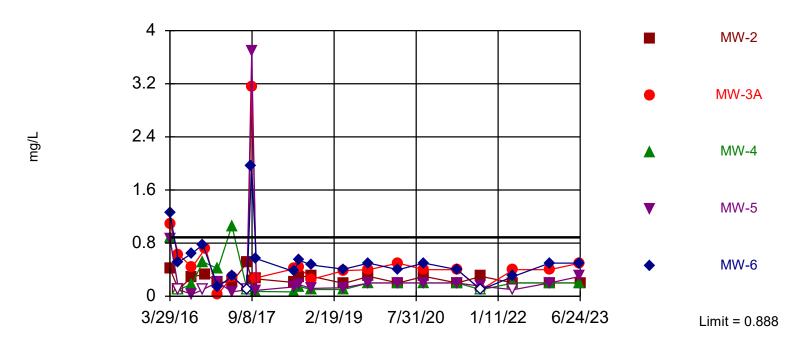


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 73.68% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chromium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

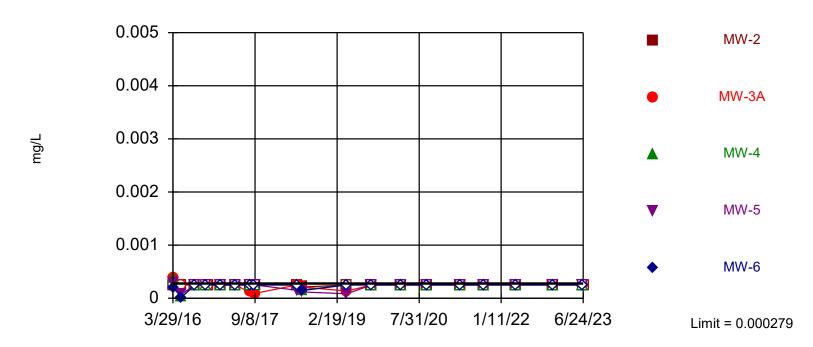


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 19 background values. 42.11% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cobalt Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 21 background values. Report alpha = 0.1923. Individual comparison alpha = 0.04182. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

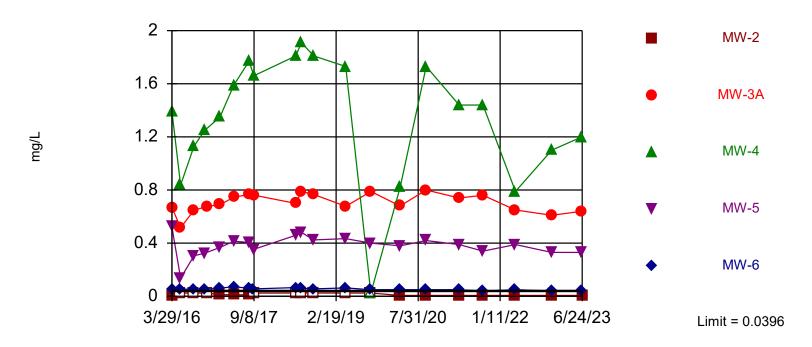
Constituent: Fluoride Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 68.42% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

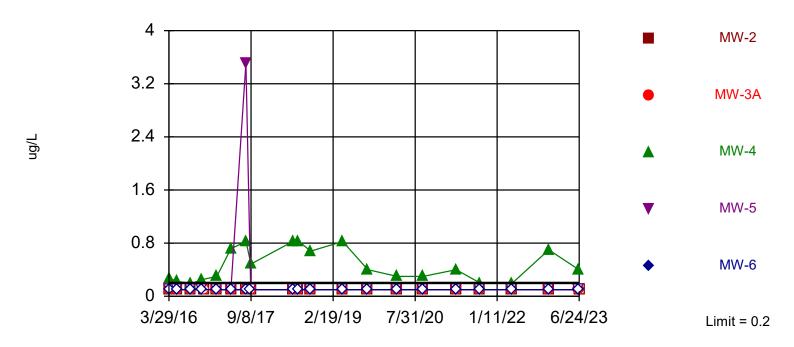

Constituent: Lead Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 20 background values. 10% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

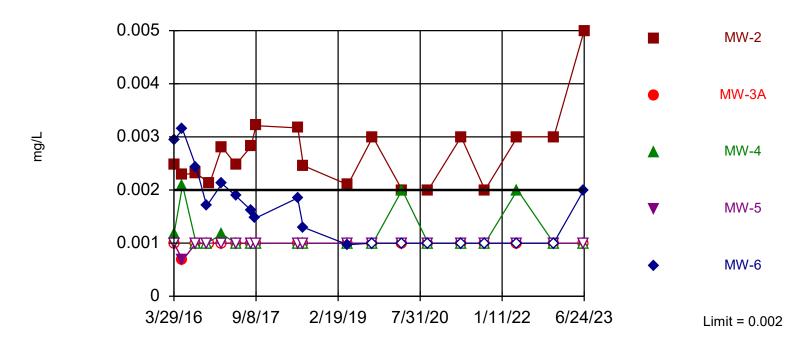
Constituent: Lithium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-4

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 95% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

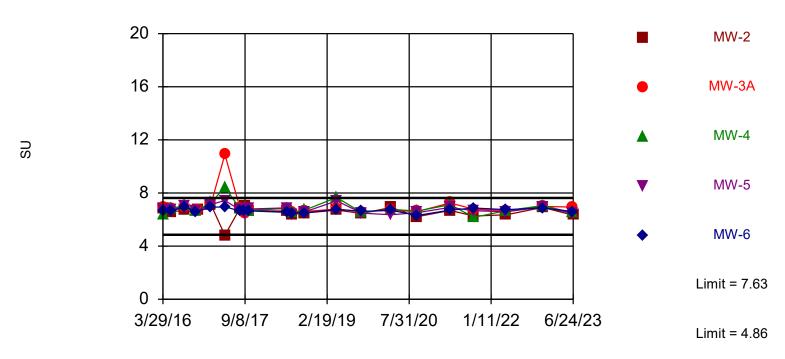

Constituent: Mercury Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 19 background values. 47.37% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Molybdenum Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric



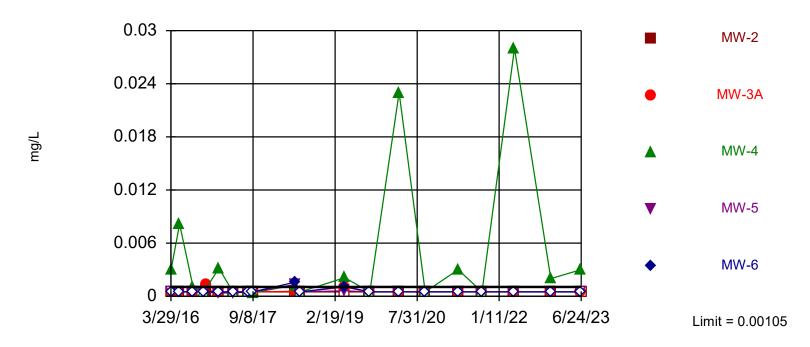
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 21 background values. Report alpha = 0.3846. Individual comparison alpha = 0.08363. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: pH [Field] Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.9615, Std. Dev.=0.2343, n=19. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9105, critical = 0.901. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

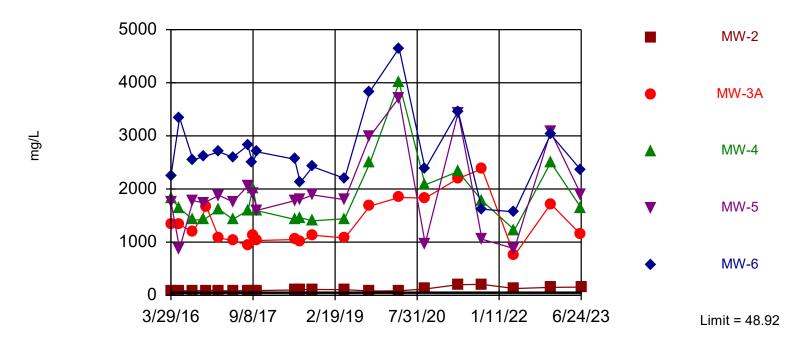

Constituent: Radium 226 + 228 Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-4

Prediction Limit

Interwell Non-parametric

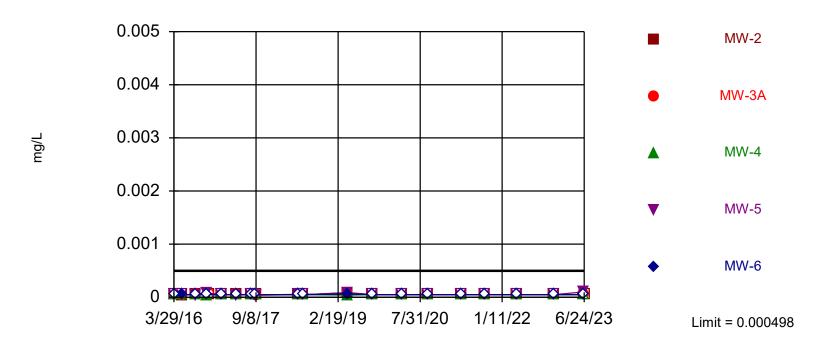

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 89.47% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Selenium Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric



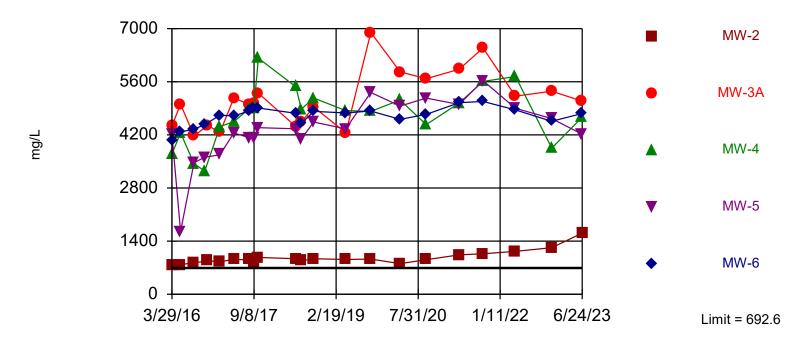
Background Data Summary (based on natural log transformation): Mean=3.283, Std. Dev.=0.2345, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9159, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Sulfate Analysis Run 1/8/2024 8:12 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 19 background values. 63.16% NDs. Report alpha = 0.2083. Individual comparison alpha = 0.04565. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.


Constituent: Thallium Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric

Background Data Summary (based on x^4 transformation): Mean=1.2e11, Std. Dev.=4.3e10, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9327, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified.

Constituent: Total Dissolved Solids Analysis Run 1/8/2024 8:12 AM

Big Rivers Electric Corp. Data: Green LF All Data

Confidence Interval

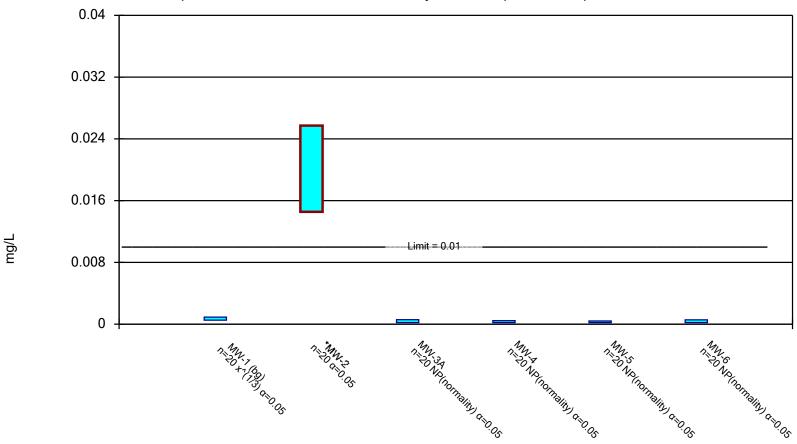
Constituent
Arsenic (mg/L)
Arsenic (mg/L)
Arsenic (mg/L)

Arsenic (mg/L) Arsenic (mg/L)

Arsenic (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L) Lithium (mg/L) Lithium (mg/L) Lithium (mg/L) Lithium (mg/L) Lithium (mg/L) Lithium (mg/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Mercury (ug/L) Molybdenum (mg/L)

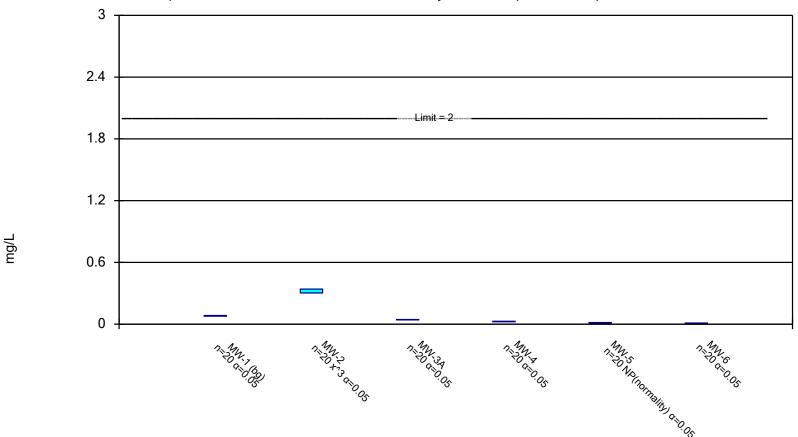
Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)

Selenium (mg/L) Selenium (mg/L) Selenium (mg/L) Selenium (mg/L)

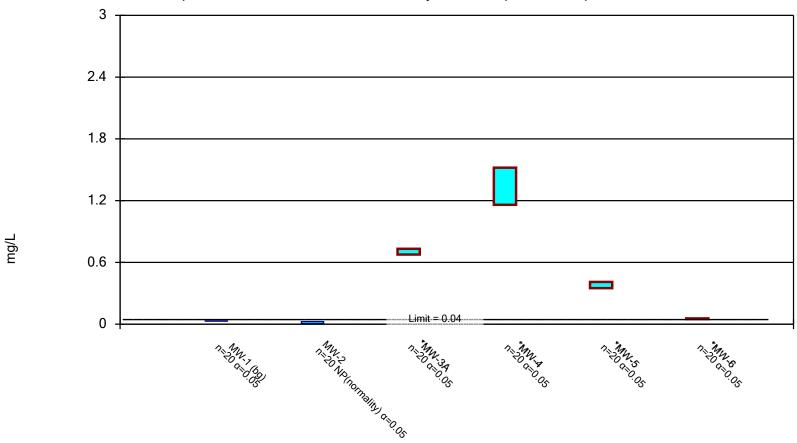

Selenium (mg/L) Selenium (mg/L)

	Big Rive	ers Electric Corp.	Data: Green LF	All Data	Printe	d 1/8/2024, 8	:25 AM		
Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
MW-1 (bg)	0.0009104	0.0005289	0.01	No	20	10	x^(1/3)	0.05	Param.
MW-2	0.02571	0.01455	0.01	Yes	20	0	No	0.05	Param.
MW-3A	0.000574	0.0002	0.01	No	20	45	No	0.05	NP (normality)
MW-4	0.000449	0.0002	0.01	No	20	50	No	0.05	NP (normality)
MW-5	0.000424	0.0002	0.01	No	20	45	No	0.05	NP (normality)
MW-6	0.000553	0.0002	0.01	No	20	45	No	0.05	NP (normality)
MW-1 (bg)	0.08423	0.07827	2	No	20	0	No	0.05	Param.
MW-2	0.3412	0.3025	2	No	20	0	x^3	0.05	Param.
MW-3A	0.04588	0.04274	2	No	20	0	No	0.05	Param.
MW-4	0.02749	0.02366	2	No	20	0	No	0.05	Param.
MW-5	0.016	0.0135	2	No	20	0	No	0.05	NP (normality)
MW-6	0.01151	0.01006	2	No	20	0	No	0.05	Param.
MW-1 (bg)	0.03159	0.02921	0.04	No	20	10	No	0.05	Param.
MW-2	0.025	0.007	0.04	No	20	45	No	0.05	NP (normality)
MW-3A	0.7318	0.6759	0.04	Yes	20	0	No	0.05	Param.
MW-4	1.519	1.159	0.04	Yes	20	5	No	0.05	Param.
MW-5	0.4112	0.3495	0.04	Yes	20	0	No	0.05	Param.
MW-6	0.05671	0.05017	0.04	Yes	20	0	No	0.05	Param.
MW-1 (bg)	0.1	0.1	2	No	20	95	No	0.05	NP (NDs)
MW-2	0.1	0.1	2	No	20	100	No	0.05	NP (NDs)
MW-3A	0.1	0.1	2	No	20	100	No	0.05	NP (NDs)
MW-4	0.5317	0.3496	2	No	20	0	sqrt(x)	0.05	Param.
MW-5	0.1	0.1	2	No	20	95	No	0.05	NP (NDs)
MW-6	0.1	0.1	2	No	20	100	No	0.05	NP (NDs)
MW-1 (bg)	0.00133	0.001	0.1	No	19	47.37	No	0.05	NP (normality)
MW-2	0.003	0.00229	0.1	No	19	0	No	0.05	NP (normality)
MW-3A	0.001	0.001	0.1	No	19	94.74	No	0.05	NP (NDs)
MW-4	0.00117	0.001	0.1	No	19	73.68	No	0.05	NP (NDs)
MW-5	0.001	0.001	0.1	No	19	94.74	No	0.05	NP (NDs)
MW-6	0.00189	0.001	0.1	No	19	36.84	No	0.05	NP (normality)
MW-1 (bg)	0.000652	0.0005	0.05	No	19	89.47	No	0.05	NP (NDs)
MW-2	0.0005	0.0005	0.05	No	19	89.47	No	0.05	NP (NDs)
MW-3A	0.000501	0.0005	0.05	No	19	78.95	No	0.05	NP (NDs)
MW-4	0.003	0.0005	0.05	No	19	36.84	No	0.05	NP (normality)
MW-5	0.000624	0.000384	0.05	No	19	78.95	No	0.05	NP (NDs)
MW-6	0.0011	0.0005	0.05	No	19	89.47	No	0.05	NP (NDs)

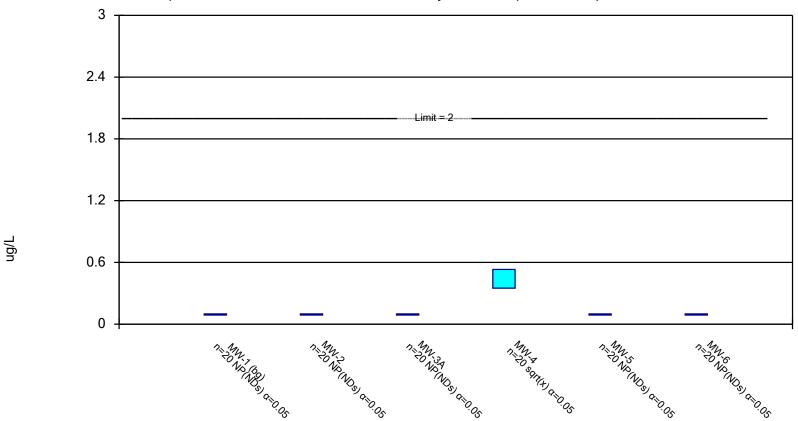
Confidence Interval


		Big Riv	vers Electric Corp.	Data: Green LF	All Data	8:25 AM				
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	MW-2	0.02571	0.01455	0.01	Yes	20	0	No	0.05	Param.
Lithium (mg/L)	MW-3A	0.7318	0.6759	0.04	Yes	20	0	No	0.05	Param.
Lithium (mg/L)	MW-4	1.519	1.159	0.04	Yes	20	5	No	0.05	Param.
Lithium (mg/L)	MW-5	0.4112	0.3495	0.04	Yes	20	0	No	0.05	Param.
Lithium (mg/L)	MW-6	0.05671	0.05017	0.04	Yes	20	0	No	0.05	Param.

Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.

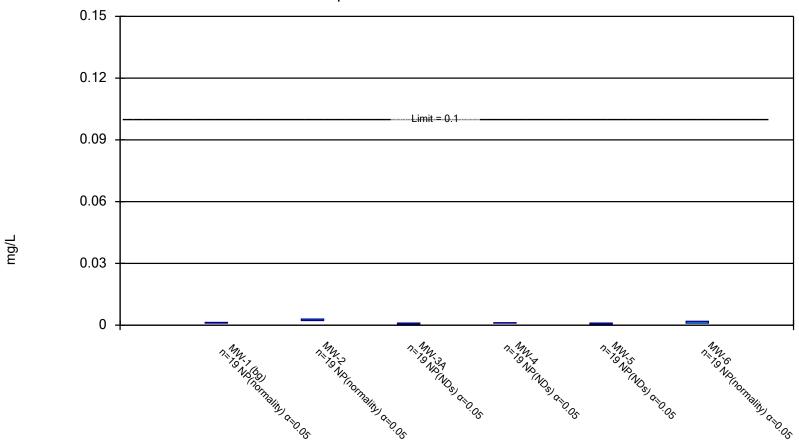

Constituent: Arsenic Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Barium Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data

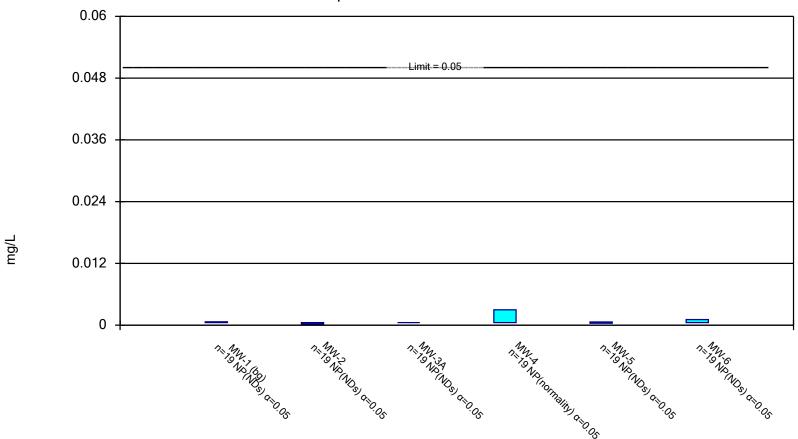
Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Mercury Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: Molybdenum Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Constituent: Selenium Analysis Run 1/8/2024 8:24 AM Big Rivers Electric Corp. Data: Green LF All Data

January 26, 2023

Mr. Mark Bertram Big Rivers Electric Corporation 9000 Highway 2096 Robards, KY 42452

Re: Statistical Evaluation of November 2023 Assessment Monitoring Groundwater Data Sebree Generating Station Green Landfill in Robards, Kentucky Agency Interest ID #: 4196

Dear Mr. Bertram:

This letter presents the results of the statistical evaluation of analytical data from the November 2023 assessment monitoring event performed at the Sebree Generating Station's Green Landfill in Webster County, Robarbs, Kentucky in accordance with the requirements of U.S. Environmental Protection Agency's *Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments (40 Code of Federal Regulations [CFR] Part 257, Subpart D)*. This letter also presents a comparison of the November 2023 sampling results to calculated groundwater protection standards (GWPSs). The GWPSs for the groundwater monitoring network were reviewed and updated as part of the statistical evaluation completed for the November 2023 sampling event and are presented on Table 1. These GWPSs will continue to be reviewed and updated as additional data are collected. A comparison of the November 2023 data to the updated GWPSs is presented on Table 2. The statistical evaluation presented herein was performed in accordance with the *Groundwater Monitoring System and Statistical Methods* document prepared by Associated Engineers, Inc. and dated June 28, 2016.

In November 2023, the Sebree Generating Station's Green Landfill groundwater monitoring well network was sampled for Appendix III and Appendix IV parameters per the requirements of 40 CFR §257.95(d)(1). Interwell prediction limit statistical analyses were performed for these well/constituent pairs and are discussed subsequently. GWPSs were also developed in accordance with 40 CFR §257.95(h) which describes a GWPS as the higher value between a determined background concentration for the Green Landfill and the established maximum concentration limit (MCL) or the GWPS criteria presented in 40 CFR §257.95(h)(2) for select Appendix IV parameters without an MCL. This letter presents the results of the statistical evaluation of the November 2023 assessment monitoring event for inclusion in the Sebree Generating Station Operating Record.

<u>Statistical Evaluation of Sebree Generating Station's Green Landfill Compliance</u> Monitoring Well Network Evaluation

An interwell prediction limit evaluation was performed to compare the concentrations of Appendix III and Appendix IV parameters observed in November 2023 compliance (downgradient) monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 to calculated

Mr. Mark Bertram Big Rivers Electric Corporation January 26, 2023 Page 2

prediction limits (i.e., background limits) that were established using data collected from March of 2016 through November of 2023 from upgradient monitoring well MW-1. Certain Appendix III and Appendix IV parameters were detected in November 2023 at concentrations at or above the method detection limit. One or more of these detections resulted in statistically significant increases (SSI) above the calculated background limits (equivalent to the MW-1 prediction limits), and a summary of the statistical evaluation is included in Attachment 1. This included the following well/constituent pairs for downgradient compliance monitoring wells with SSIs above calculated background limits:

Appendix III Parameters:

- Calcium (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Chloride (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Sulfate (MW-2, MW-3A, MW-4, MW-5, and MW-6)
- Total Dissolved Solids (TDS) (MW-2, MW-3A, MW-4, MW-5, and MW-6)

Appendix IV Parameters:

- Arsenic (MW-2)
- Barium (MW-2)
- Lithium (MW-3A, MW-4, MW-5, and MW-6)
- Mercury (MW-4)
- Molybdenum (MW-2)

Results of SSIs above background were generally consistent with the 2016 through June 2023 statistical results. The Appendix III SSIs for calcium, chloride, sulfate, and TDS continue to occur at downgradient compliance monitoring wells. The reported Appendix IV SSIs for arsenic, barium, lithium, mercury, and molybdenum in this event are consistent with previous events. Lastly, the reported selenium SSI (MW-4) in the June 2023 event was not present in this event.

The Appendix IV constituents with SSIs (arsenic, barium, lithium, mercury, and molybdenum) were further evaluated to determine whether they are present at statistically significant levels (SSLs) over the GWPS by calculating the lower confidence limit (LCL) at 95% confidence for each well and constituent using all the baseline, detection, and assessment monitoring results collected to date from each monitoring well. For a constituent to be present at an SSL over the GWPS, its LCL must be greater than the GWPS. The comparison of the calculated LCLs with the GWPSs for arsenic, barium, lithium, mercury, and molybdenum at downgradient compliance monitoring wells MW-2, MW-3A, MW-4, MW-5, and MW-6 resulted in the following well/constituent pairs with SSLs above the GWPS:

Mr. Mark Bertram Big Rivers Electric Corporation January 26, 2023 Page 3

- Arsenic (MW-2)
- Lithium (MW-3A, MW-4, MW-5, and MW-6)

The LCLs for the remaining well/constituent pairs for arsenic, barium, lithium, mercury, and molybdenum were either non-detect or less than the GWPS and thus are not considered SSLs. Attachment 1 provides a summary of the calculated LCLs in comparison with the GWPSs. Results of SSLs above the GWPSs for arsenic (MW-2) and lithium (MW-3A, MW-4, MW-5, and MW-6) were consistent with the June 2023 results.

Given that certain Appendix III and IV constituents were observed at the Sebree Generating Station's Green Landfill groundwater monitoring network at concentrations above their respective calculated background limit and the LCL for certain Appendix IV constituents was greater than the corresponding GWPSs, these results do not warrant a transition to detection monitoring per the requirements of 40 CFR §257.95(e) and assessment monitoring will continue for the next semiannual monitoring event in 2024.

Sincerely,

Burns & McDonnell Engineering Company, Inc.

Chris Hoglund, PG Project Manager

Attachments:

Table 1 –Calculated Background and Groundwater Protection Standards Table 2 – Green Landfill - November 2023 Analytical Results

Attachment 1 – Sanitas™ Statistical Outputs

cc: Hunter Mizell, BREC Sebree Station

TABLES

TABLE 1 Calculated Background and Groundwater Protection Standards Sebree Generating Station Green Landfill in Robards, Kentucky

Detection Constituents (Appendix III)	Units	Background*	MCL	40 CFR §257.95(h)(2) Criteria	Groundwater Protection Standard
Boron	mg/L	2.201			
Calcium	mg/L	35.99			
Chloride	mg/L	13.9			
Fluoride	mg/L	0.888	4		4
pH (field)	s.u.	4.86 - 7.63			
Sulfate	mg/L	48.49			
TDS	mg/L	714.9			
Assessment Constituents (Appendix IV)	Units	Background*	MCL	40 CFR §257.95(h)(2) Criteria	Groundwater Protection Standard
Antimony	mg/L	0.00297	0.006		0.006
Arsenic	mg/L	0.003955	0.01		0.01
Barium	mg/L	0.1006	2		2
Beryllium	mg/L	0.000533	0.004		0.004
Cadmium	mg/L	0.000299	0.005		0.005
Chromium	mg/L	0.00354	0.1		0.1
Cobalt	mg/L	0.002		0.006	0.006
Fluoride	mg/L	0.888	4		4
Lead	mg/L	0.000279		0.015	0.015
Lithium	mg/L	0.0396		0.04	0.04
Mercury	mg/L	0.0002	0.002		0.002
Molybdenum	mg/L	0.002		0.1	0.1
Combined Radium 226 and 228**	pCi/L	2.48	5		5
Selenium	mg/L	0.00105	0.05		0.05
Thallium	mg/L	0.000498	0.002		0.002

Notes:

*Groundwater Protection Standards were developed in accordance with §257.95(h). Background concentrations were determined utilizing interwell prediction limits (see Attachment 1). Upgradient Monitoring Well MW-1 was used to calculate background concentrations. This included background data ranging from March 2016 through November 2023.

CFR - Code of Federal Regulations

MCL - Maximum Contaminant Level

mg/L - milligrams per Liter

pCi/L - picocuries per Liter

s.u. - standard units

TDS - Total Dissolved Solids

^{**}Combined radium is reported with an uncertainty range. However, this range cannot be incorporated into statistical calculations as it varies per result and is not a standard value. Therefore, to maintain consistency in reporting these results, the reported laboratory concentration was used for the statistical analyses.

TABLE 2 Green Landfill - November 2023 Analytical Results Sebree Generating Station

	2H2023				MW-1	MW-2	MW-3A	MW-4	MW-5	MW-6
	Calculated	2023			Background Well		Dowi	ngradient Complia	nce Wells	
APPENDIX III CONSTITUENTS	Background	GWPS	2023 GWPS Reference	Units	<u> </u>	•	Detection I	Monitoring .		
Boron	2.201		Background	mg/L	1.65 D1	0.1 U	0.31	0.81	0.21	0.15 M2
Calcium	35.99		Background	mg/L	25.2 D1	179 D1	475 D1	702 D1	439 D1	375 D1, M3
Chloride	13.9		Background	mg/L	5.7	185 D	1190 D,J	1090 D	992 D	192 D, M3
Fluoride	0.888	4	MCL	mg/L	0.6	0.3	0.4	0.2	0.2	0.5 J-
pH (Field Measurement)	4.86 - 7.63		Background	s.u.	6.78	6.46	6.48	6.32	6.36	6.34
Sulfate	48.49		Background	mg/L	30	159	2530 D,J	1890 D	2390 D	8480 D, M3
Total Dissolved Solids	714.9		Background	mg/L	684	1060	3630 J	4080	4650	4030
APPENDIX IV CONSTIUENTS										
Antimony	0.00297	0.006	MCL	mg/L	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U	0.002 U
Arsenic	0.003955	0.01	MCL	mg/L	0.0016	0.0283	0.0004 U	0.0004 U	0.0004 U	0.0004 U
Barium	0.1006	2	MCI	mg/L	0.079	0.27	0.038	0.02	0.011	0.009
Beryllium	0.000533	0.004	MCL	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
Cadmium	0.000299	0.005	MCL	mg/L	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U
Chromium	0.00354	0.1	MCL	mg/L	0.0006 U	0.0006 U	0.0006 U	0.0008 J	0.0006 U	0.0006 U
Cobalt	0.002	0.006	40 CFR §257.95(h)(2) Criteria	mg/L	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U	0.004 U
Fluoride	0.888	4	MCL	mg/L	0.6	0.3	0.4	0.2	0.2	0.5 J-
Lead	0.000279	0.015	40 CFR §257.95(h)(2) Criteria	mg/L	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U
Lithium	0.0396	0.04	40 CFR §257.95(h)(2) Criteria	mg/L	0.03	0.005 J	0.71	0.99 D1	0.36	0.04
Mercury	0.0002	0.002	MCL	mg/L	0.0002 U	0.0002 U	0.0002 U	0.0004 J	0.0002 J	0.0002 U
Molybdenum	0.002	0.1	40 CFR §257.95(h)(2) Criteria	mg/L	0.002 U	0.003 J	0.002 U	0.002 U	0.002 U	0.002 U
Combined Radium 226+228 (calculated)	2.48	5	MCL	pCi/L	0.176 J	0.00129 J	2.45 J	1.32 J	1.12 J	0.220 J
Selenium	0.00105	0.05	MCL	mg/L	0.001 U	0.001 U	0.001 U	0.001 J	0.001 U	0.001 U
Thallium	0.000498	0.002	MCL	mg/L	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U	0.0001 U

Bold - Analyte detected above calculated background concentration.

Parameter was detected in well located downgradient of the CCR Landfill at a statistically significant level above its GWPS.

D = Results reported from dilution.

D1 = Sample required dilution due to high concentration of target analysis.

GWPS = Groundwater Protection Standard

- J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is qualified as estimated.
- J- = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is qualified as estimated potential low bias.
- M2 = Matrix spike recovery was low; the method control sample recovery was acceptable.
- M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
- MCL Maximum Contaminant Level
- mg/L = milligrams per liter
- pCi/L = picocuries per Liter
- s.u. = standard units
- U = Target analyte was analyzed, but was below detection limit.

Prediction Limit

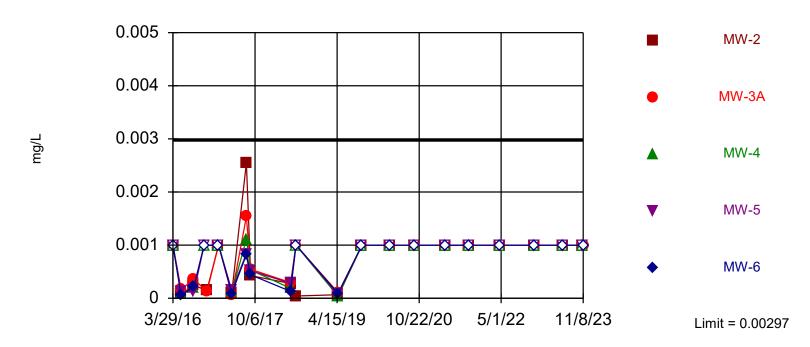
Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 7:39 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	MW-2	0.00297	n/a	11/7/2023	0.001ND	No	20	60	n/a	0.04365	NP Inter (NDs)
Antimony (mg/L)	MW-3A	0.00297	n/a	11/8/2023	0.001ND	No	20	60	n/a	0.04365	NP Inter (NDs)
Antimony (mg/L)	MW-4	0.00297	n/a	11/7/2023	0.001ND	No	20	60	n/a	0.04365	NP Inter (NDs)
Antimony (mg/L)	MW-5	0.00297	n/a	11/7/2023	0.001ND	No	20	60	n/a	0.04365	NP Inter (NDs)
Antimony (mg/L)	MW-6	0.00297	n/a	11/8/2023	0.001ND	No	20	60	n/a	0.04365	NP Inter (NDs)
Arsenic (mg/L)	MW-2	0.003955	n/a	11/7/2023	0.0283	Yes	21	9.524	ln(x)	0.01	Param Inter
Arsenic (mg/L)	MW-3A	0.003955	n/a	11/8/2023	0.0002ND	No	21	9.524	ln(x)	0.01	Param Inter
Arsenic (mg/L)	MW-4	0.003955	n/a	11/7/2023	0.0002ND	No	21	9.524	ln(x)	0.01	Param Inter
Arsenic (mg/L)	MW-5	0.003955	n/a	11/7/2023	0.0002ND	No	21	9.524	ln(x)	0.01	Param Inter
Arsenic (mg/L)	MW-6	0.003955	n/a	11/8/2023	0.0002ND	No	21	9.524	ln(x)	0.01	Param Inter
Barium (mg/L)	MW-2	0.1006	n/a	11/7/2023	0.27	Yes	21	0	No	0.01	Param Inter
Barium (mg/L)	MW-3A	0.1006	n/a	11/8/2023	0.038	No	21	0	No	0.01	Param Inter
Barium (mg/L)	MW-4	0.1006	n/a	11/7/2023	0.02	No	21	0	No	0.01	Param Inter
Barium (mg/L)	MW-5	0.1006	n/a	11/7/2023	0.011	No	21	0	No	0.01	Param Inter
Barium (mg/L)	MW-6	0.1006	n/a	11/8/2023	0.009	No	21	0	No	0.01	Param Inter
Beryllium (mg/L)	MW-2	0.000533	n/a	11/7/2023	0.0005ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Beryllium (mg/L)	MW-3A	0.000533	n/a	11/8/2023	0.0005ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Beryllium (mg/L)	MW-4	0.000533	n/a	11/7/2023	0.0005ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Beryllium (mg/L)	MW-5	0.000533	n/a	11/7/2023	0.0005ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Beryllium (mg/L)	MW-6	0.000533	n/a	11/8/2023	0.0005ND	No	20	95	n/a	0.04365	NP Inter (NDs)
Boron (mg/L)	MW-2	2.201	n/a	11/7/2023	0.05ND	No	22	0	No	0.01	Param Inter
Boron (mg/L)	MW-3A	2.201	n/a	11/8/2023	0.31	No	22	0	No	0.01	Param Inter
Boron (mg/L)	MW-4	2.201	n/a	11/7/2023	0.81	No	22	0	No	0.01	Param Inter
Boron (mg/L)	MW-5	2.201	n/a	11/7/2023	0.21	No	22	0	No	0.01	Param Inter
Boron (mg/L)	MW-6	2.201	n/a	11/8/2023	0.15	No	22	0	No	0.01	Param Inter
Cadmium (mg/L)	MW-2	0.000299	n/a	11/7/2023	0.00005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Cadmium (mg/L)	MW-3A	0.000299	n/a	11/8/2023	0.00005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Cadmium (mg/L)	MW-4	0.000299	n/a	11/7/2023	0.00005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Cadmium (mg/L)	MW-5	0.000299	n/a	11/7/2023	0.00005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Cadmium (mg/L)	MW-6	0.000299	n/a	11/8/2023	0.00005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Calcium (mg/L)	MW-2	35.99	n/a	11/7/2023	179	Yes	22	0	No	0.01	Param Inter
Calcium (mg/L)	MW-3A	35.99	n/a	11/8/2023	475	Yes	22	0	No	0.01	Param Inter
Calcium (mg/L)	MW-4	35.99	n/a	11/7/2023	702	Yes	22	0	No	0.01	Param Inter
Calcium (mg/L)	MW-5	35.99	n/a	11/7/2023	439	Yes	22	0	No	0.01	Param Inter
Calcium (mg/L)	MW-6	35.99	n/a	11/8/2023	375	Yes	22	0	No	0.01	Param Inter
Chloride (mg/L)	MW-2	13.9	n/a	11/7/2023	185	Yes	22	0	n/a	0.04013	NP Inter (normality)
Chloride (mg/L)	MW-3A	13.9	n/a	11/8/2023	1190	Yes	22	0	n/a	0.04013	NP Inter (normality)
Chloride (mg/L)	MW-4	13.9	n/a	11/7/2023	1090	Yes	22	0	n/a	0.04013	NP Inter (normality)
Chloride (mg/L)	MW-5	13.9	n/a	11/7/2023	992	Yes	22	0	n/a	0.04013	NP Inter (normality)
Chloride (mg/L)	MW-6	13.9	n/a	11/8/2023	192	Yes	22	0	n/a	0.04013	NP Inter (normality)
Chromium (mg/L)	MW-2	0.00354	n/a	11/7/2023	0.0003ND	No	20	75	n/a	0.04365	NP Inter (NDs)
Chromium (mg/L)	MW-3A	0.00354	n/a	11/8/2023	0.0003ND	No	20	75	n/a	0.04365	NP Inter (NDs)
Chromium (mg/L)	MW-4	0.00354	n/a	11/7/2023	0.0008J	No	20	75	n/a	0.04365	NP Inter (NDs)
Chromium (mg/L)	MW-5	0.00354	n/a	11/7/2023	0.0003ND	No	20	75	n/a	0.04365	NP Inter (NDs)
Chromium (mg/L)	MW-6	0.00354	n/a	11/8/2023	0.0003ND	No	20	75	n/a	0.04365	NP Inter (NDs)
Cobalt (mg/L)	MW-2	0.002	n/a	11/7/2023	0.002ND	No	20	45	n/a	0.04365	NP Inter (normality)
Cobalt (mg/L)	MW-3A	0.002	n/a	11/8/2023	0.002ND	No	20	45	n/a	0.04365	NP Inter (normality)
Cobalt (mg/L)	MW-4	0.002	n/a	11/7/2023	0.002ND	No	20	45	n/a	0.04365	NP Inter (normality)
Cobalt (mg/L)	MW-5	0.002	n/a	11/7/2023	0.002ND	No	20	45	n/a	0.04365	NP Inter (normality)
Cobalt (mg/L)	MW-6	0.002	n/a	11/8/2023	0.002ND	No	20	45	n/a	0.04365	NP Inter (normality)
							-				. 37

Prediction Limit

Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 7:39 AM

O	\A/ - II	Hanna Lina		D-4-	Oh	0:	D = N	0/ ND-	T	A I I	Made and
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u>%NDs</u>	<u>Transform</u>	Alpha	Method
Fluoride (mg/L)	MW-2	0.888	n/a	11/7/2023	0.3	No	22	0	n/a	0.04013	NP Inter (normality)
Fluoride (mg/L)	MW-3A	0.888	n/a /-	11/8/2023	0.4	No	22	0	n/a	0.04013	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.888	n/a /-	11/7/2023	0.2	No	22	0	n/a	0.04013	NP Inter (normality)
Fluoride (mg/L)	MW-5	0.888	n/a	11/7/2023	0.2	No	22 22	0	n/a	0.04013	NP Inter (normality)
Fluoride (mg/L)	MW-6	0.888	n/a /-	11/8/2023	0.5	No		0	n/a	0.04013	NP Inter (normality)
Lead (mg/L)	MW-2	0.000279	n/a /-	11/7/2023	0.00025ND	No	20	70 70	n/a	0.04365	NP Inter (NDs)
Lead (mg/L)	MW-3A	0.000279	n/a	11/8/2023	0.00025ND	No	20	70 70	n/a	0.04365	NP Inter (NDs)
Lead (mg/L)	MW-4	0.000279	n/a /-	11/7/2023	0.00025ND	No	20	70 70	n/a	0.04365	NP Inter (NDs)
Lead (mg/L)	MW-5	0.000279	n/a /-	11/7/2023	0.00025ND	No	20	70 70	n/a	0.04365	NP Inter (NDs)
Lead (mg/L)	MW-6	0.000279	n/a	11/8/2023	0.00025ND	No	20	70	n/a	0.04365	NP Inter (NDs)
Lithium (mg/L)	MW-2	0.0396	n/a	11/7/2023	0.005J	No	21	9.524	n/a	0.04182	NP Inter (normality)
Lithium (mg/L)	MW-3A	0.0396	n/a	11/8/2023	0.71	Yes	21	9.524	n/a	0.04182	NP Inter (normality)
Lithium (mg/L)	MW-4	0.0396	n/a	11/7/2023	0.99	Yes	21	9.524	n/a	0.04182	NP Inter (normality)
Lithium (mg/L)	MW-5	0.0396	n/a	11/7/2023	0.36	Yes	21	9.524	n/a	0.04182	NP Inter (normality)
Lithium (mg/L)	MW-6	0.0396	n/a	11/8/2023	0.04	Yes	21	9.524	n/a	0.04182	NP Inter (normality)
Mercury (ug/L)	MW-2	0.2	n/a	11/7/2023	0.1ND	No	21	95.24	n/a	0.04182	NP Inter (NDs)
Mercury (ug/L)	MW-3A	0.2	n/a	11/8/2023	0.1ND	No	21	95.24	n/a	0.04182	NP Inter (NDs)
Mercury (ug/L)	MW-4	0.2	n/a	11/7/2023	0.4	Yes	21	95.24	n/a	0.04182	NP Inter (NDs)
Mercury (ug/L)	MW-5	0.2	n/a	11/7/2023	0.2J	No	21	95.24	n/a	0.04182	NP Inter (NDs)
Mercury (ug/L)	MW-6	0.2	n/a	11/8/2023	0.1ND	No	21	95.24	n/a	0.04182	NP Inter (NDs)
Molybdenum (mg/L)	MW-2	0.002	n/a	11/7/2023	0.003	Yes	20	50	n/a	0.04365	NP Inter (normality)
Molybdenum (mg/L)	MW-3A	0.002	n/a	11/8/2023	0.001ND	No	20	50	n/a	0.04365	NP Inter (normality)
Molybdenum (mg/L)	MW-4	0.002	n/a	11/7/2023	0.001ND	No	20	50	n/a	0.04365	NP Inter (normality)
Molybdenum (mg/L)	MW-5	0.002	n/a	11/7/2023	0.001ND	No	20	50	n/a	0.04365	NP Inter (normality)
Molybdenum (mg/L)	MW-6	0.002	n/a	11/8/2023	0.001ND	No	20	50	n/a	0.04365	NP Inter (normality)
pH [Field] (SU)	MW-2	7.63	4.86	11/7/2023	6.46	No	22	0	n/a	0.08026	NP Inter (normality)
pH [Field] (SU)	MW-3A	7.63	4.86	11/8/2023	6.48	No	22	0	n/a	0.08026	NP Inter (normality)
pH [Field] (SU)	MW-4	7.63	4.86	11/7/2023	6.32	No	22	0	n/a	0.08026	NP Inter (normality)
pH [Field] (SU)	MW-5	7.63	4.86	11/7/2023	6.36	No	22	0	n/a	0.08026	NP Inter (normality)
pH [Field] (SU)	MW-6	7.63	4.86	11/8/2023	6.34	No	22	0	n/a	0.08026	NP Inter (normality)
Radium 226 + 228 (pCi/L)	MW-2	2.48	n/a	11/7/2023	0.001	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-3A	2.48	n/a	11/8/2023	2.45	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-4	2.48	n/a	11/7/2023	1.32	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-5	2.48	n/a	11/7/2023	1.12	No	19	0	sqrt(x)	0.01	Param Inter
Radium 226 + 228 (pCi/L)	MW-6	2.48	n/a	11/8/2023	0.22	No	19	0	sqrt(x)	0.01	Param Inter
Selenium (mg/L)	MW-2	0.00105	n/a	11/7/2023	0.0005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Selenium (mg/L)	MW-3A	0.00105	n/a	11/8/2023	0.0005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Selenium (mg/L)	MW-4	0.00105	n/a	11/7/2023	0.001J	No	20	90	n/a	0.04365	NP Inter (NDs)
Selenium (mg/L)	MW-5	0.00105	n/a	11/7/2023	0.0005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Selenium (mg/L)	MW-6	0.00105	n/a	11/8/2023	0.0005ND	No	20	90	n/a	0.04365	NP Inter (NDs)
Sulfate (mg/L)	MW-2	48.49	n/a	11/7/2023	159	Yes	22	0	In(x)	0.01	Param Inter
Sulfate (mg/L)	MW-3A	48.49	n/a	11/8/2023	2530	Yes	22	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-4	48.49	n/a	11/7/2023	1890	Yes	22	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-5	48.49	n/a	11/7/2023	2390	Yes	22	0	ln(x)	0.01	Param Inter
Sulfate (mg/L)	MW-6	48.49	n/a	11/8/2023	8480	Yes	22	0	ln(x)	0.01	Param Inter
Thallium (mg/L)	MW-2	0.000498	n/a	11/7/2023	0.00005ND	No	20	65	n/a	0.04365	NP Inter (NDs)
Thallium (mg/L)	MW-3A	0.000498	n/a	11/8/2023	0.00005ND	No	20	65	n/a	0.04365	NP Inter (NDs)
Thallium (mg/L)	MW-4	0.000498	n/a	11/7/2023	0.00005ND	No	20	65	n/a	0.04365	NP Inter (NDs)
Thallium (mg/L)	MW-5	0.000498	n/a	11/7/2023	0.00005ND	No	20	65	n/a	0.04365	NP Inter (NDs)
Thallium (mg/L)	MW-6	0.000498	n/a	11/8/2023	0.00005ND	No	20	65	n/a	0.04365	NP Inter (NDs)


Prediction Limit Page 3

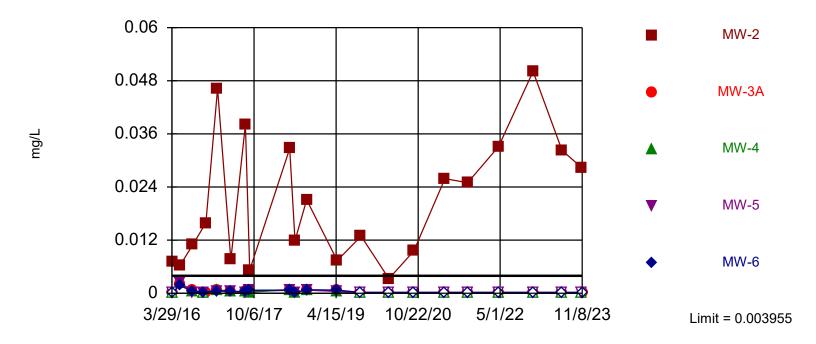
Big Rivers Electric Corp. Data: Green LF All Data Printed 1/8/2024, 7:39 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Total Dissolved Solids (mg/L)	MW-2	714.9	n/a	11/7/2023	1060	Yes	22	0	x^3	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-3A	714.9	n/a	11/8/2023	3630	Yes	22	0	x^3	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-4	714.9	n/a	11/7/2023	4080	Yes	22	0	x^3	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-5	714.9	n/a	11/7/2023	4650	Yes	22	0	x^3	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-6	714.9	n/a	11/8/2023	4030	Yes	22	0	x^3	0.01	Param Inter

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 60% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

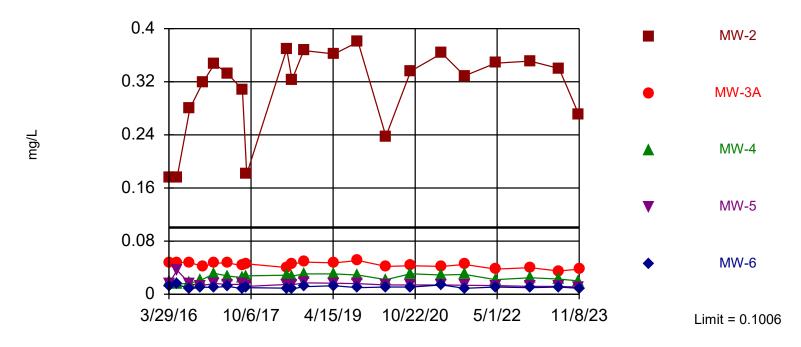

Constituent: Antimony Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Parametric

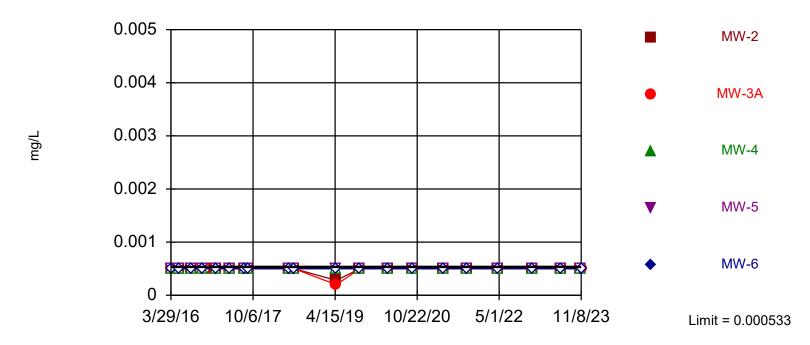

Background Data Summary (based on natural log transformation): Mean=-7.291, Std. Dev.=0.6794, n=21, 9.524% NDs. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9213, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Arsenic Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Parametric

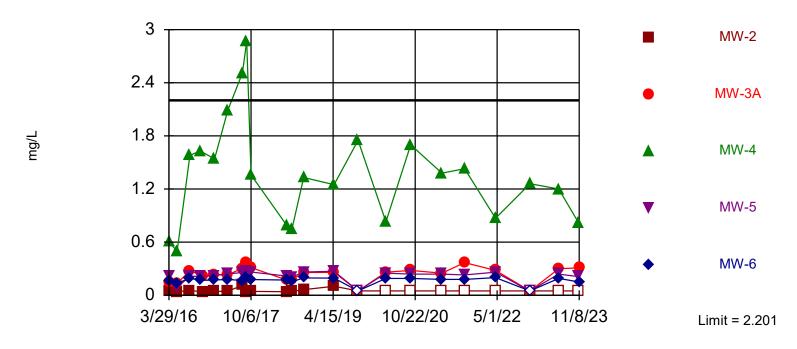


Background Data Summary: Mean=0.08114, Std. Dev.=0.007521, n=21. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9646, critical = 0.908. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Barium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

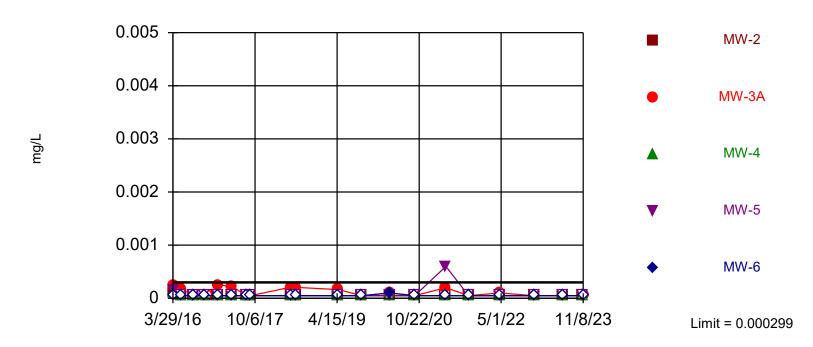


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 95% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Beryllium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Parametric

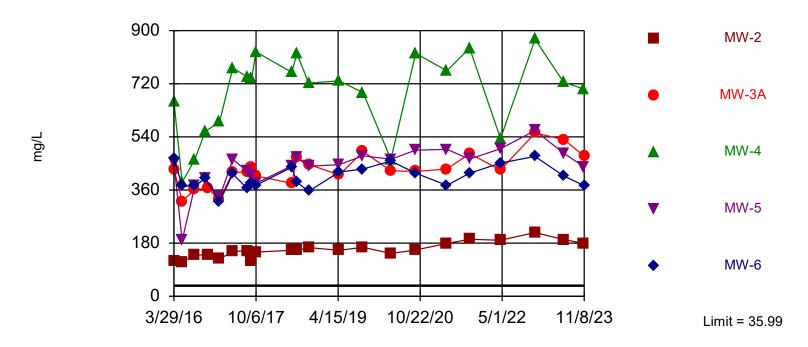


Background Data Summary: Mean=1.737, Std. Dev.=0.1802, n=22. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9194, critical = 0.911. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

Constituent: Boron Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 90% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

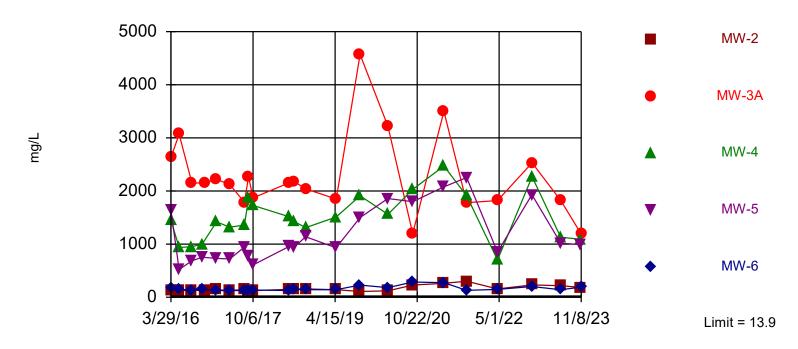
Constituent: Cadmium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=28.71, Std. Dev.=2.827, n=22. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.941, critical = 0.911. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. At least one background value was a statistical outlier but was below the user-set cutoff of 3 times the median. No background outliers were found.

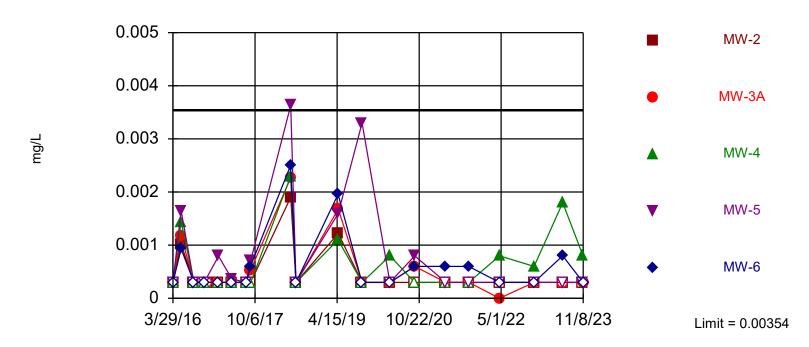

Constituent: Calcium Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Non-parametric

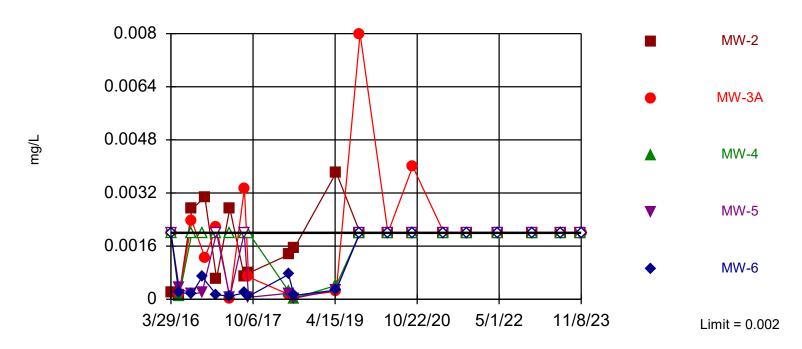


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 22 background values. Report alpha = 0.1852. Individual comparison alpha = 0.04013. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chloride Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

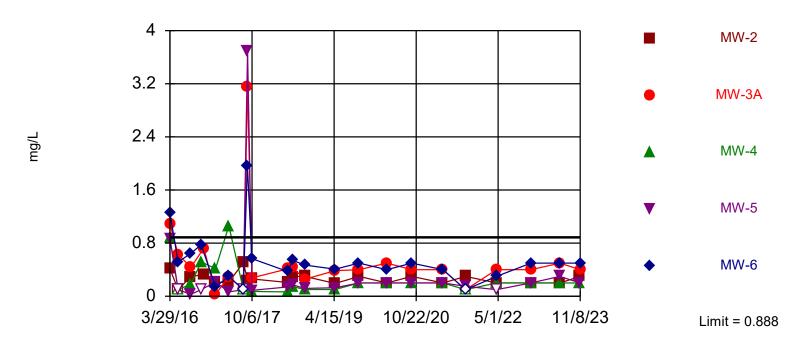


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 75% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Chromium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric



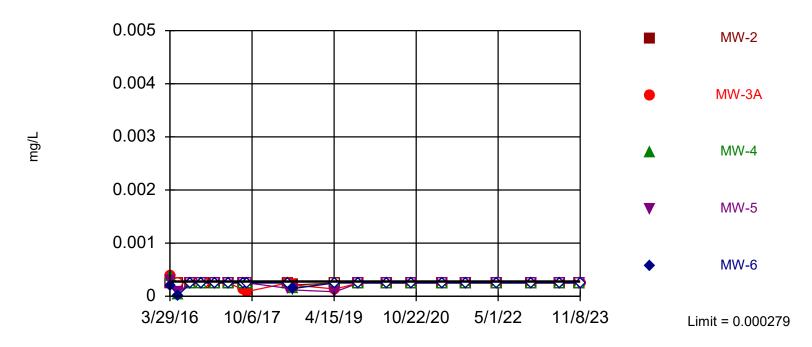
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 20 background values. 45% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Cobalt Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 22 background values. Report alpha = 0.1852. Individual comparison alpha = 0.04013. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.


Constituent: Fluoride Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

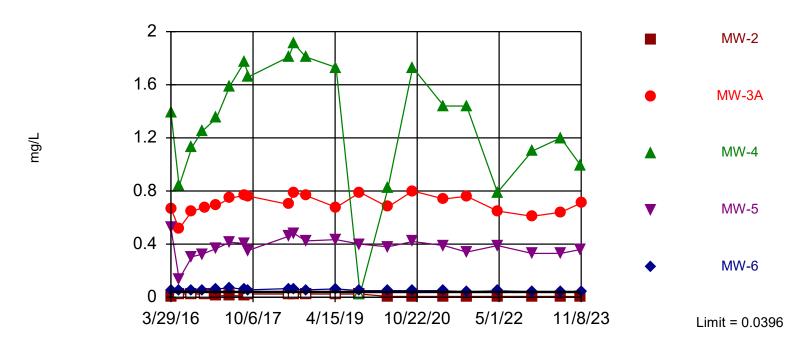
Within Limit

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 70% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Lead Analysis Run 1/8/2024 7:39 AM

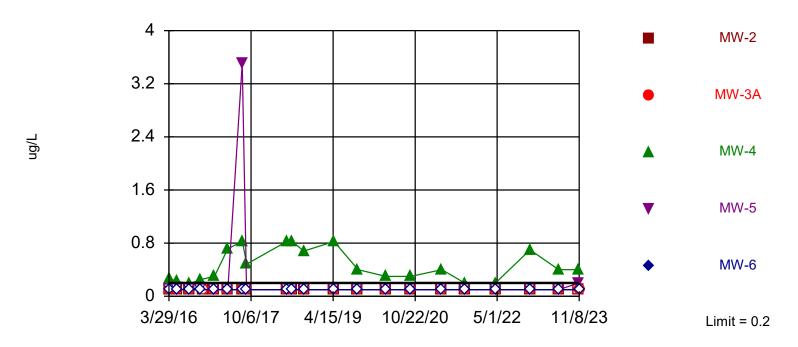

Big Rivers Electric Corp. Data: Green LF All Data

Sanitas $^{\rm m}$ v.10.0.15 Software licensed to Burns & McDonnell. EPA Hollow symbols indicate censored values.

Exceeds Limit: MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 21 background values. 9.524% NDs. Report alpha = 0.1923. Individual comparison alpha = 0.04182. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

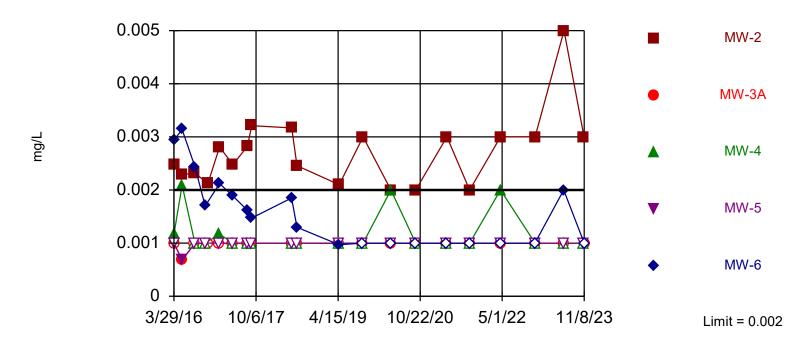
Constituent: Lithium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-4

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 21 background values. 95.24% NDs. Report alpha = 0.1923. Individual comparison alpha = 0.04182. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.


Constituent: Mercury Analysis Run 1/8/2024 7:39 AM

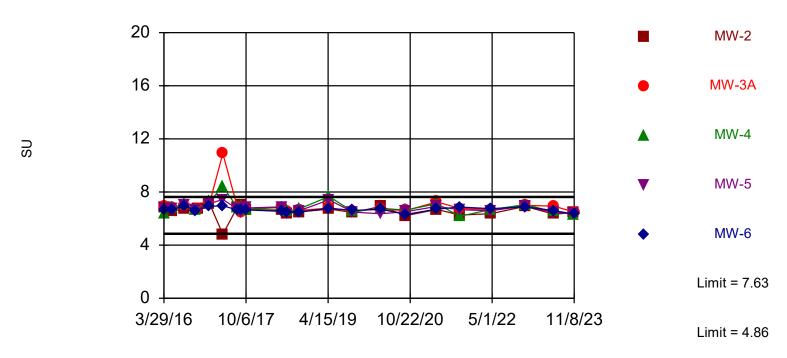
Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limit is highest of 20 background values. 50% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

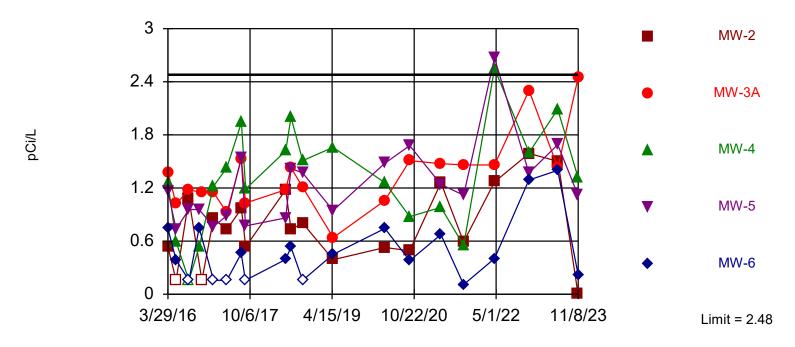

Constituent: Molybdenum Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Within Limits

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level. Limits are highest and lowest of 22 background values. Report alpha = 0.3704. Individual comparison alpha = 0.08026. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: pH [Field] Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Within Limit

Prediction Limit

Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.9615, Std. Dev.=0.2343, n=19. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9105, critical = 0.901. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. One background outlier was removed: 0.176 (11/7/2023).

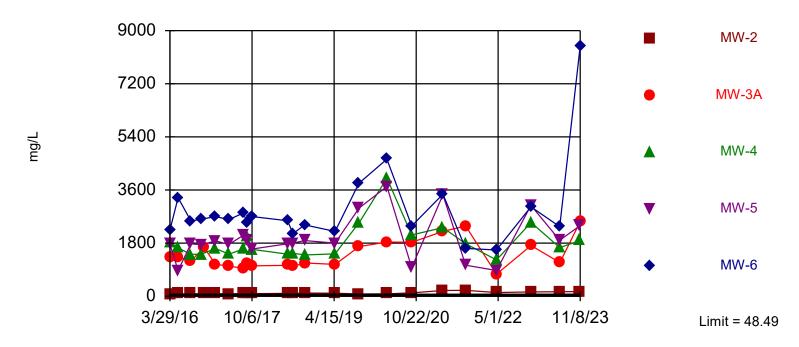
Constituent: Radium 226 + 228 Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Within Limit

Prediction Limit

Interwell Non-parametric

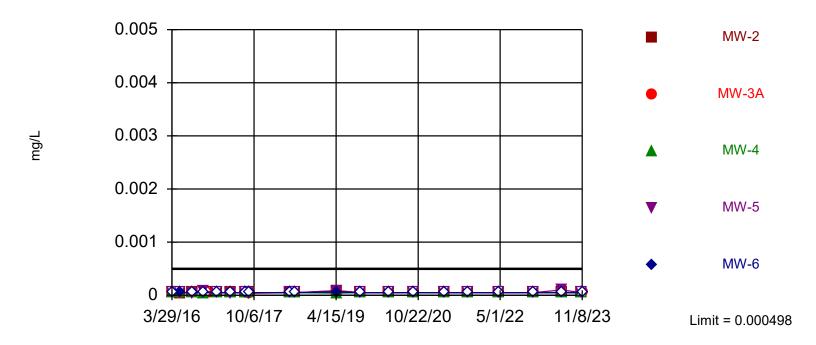

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 90% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified. Insufficient data to test for seasonality; data will not be deseasonalized.

Constituent: Selenium Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric


Background Data Summary (based on natural log transformation): Mean=3.289, Std. Dev.=0.2303, n=22. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9265, critical = 0.911. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. EPA 1989 outlier screening was performed on the background data. No background outliers were found.

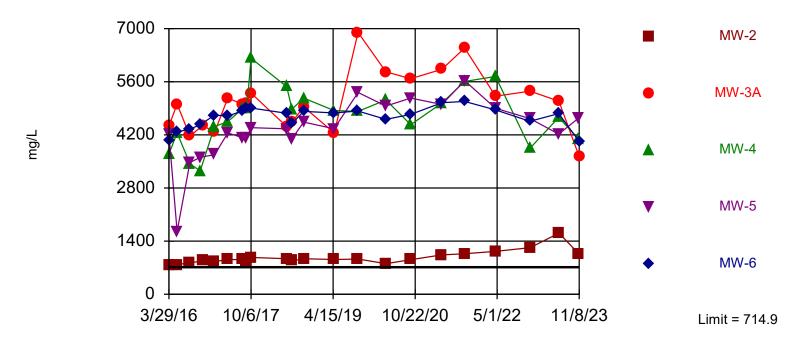
Constituent: Sulfate Analysis Run 1/8/2024 7:39 AM Big Rivers Electric Corp. Data: Green LF All Data

Within Limit

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 20 background values. 65% NDs. Report alpha = 0.2. Individual comparison alpha = 0.04365. Most recent point for each compliance well compared to limit. After outlier removal distribution was non-normal, so outlier results were invalidated. Insufficient data to test for seasonality; data will not be deseasonalized.


Constituent: Thallium Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Exceeds Limit: MW-2, MW-3A, MW-4, MW-5, MW-6

Prediction Limit

Interwell Parametric

Background Data Summary (based on cube transformation): Mean=2.1e8, Std. Dev.=6.2e7, n=22. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9314, critical = 0.911. Report alpha = 0.04901. Individual comparison alpha = 0.01. Most recent point for each compliance well compared to limit. Distribution was found to be non-normal after removal of suspect values, so outliers could not be identified.

Constituent: Total Dissolved Solids Analysis Run 1/8/2024 7:39 AM

Big Rivers Electric Corp. Data: Green LF All Data

Confidence Interval

Constituent
Arsenic (mg/L)
Arsenic (mg/L)
Arsenic (mg/L)

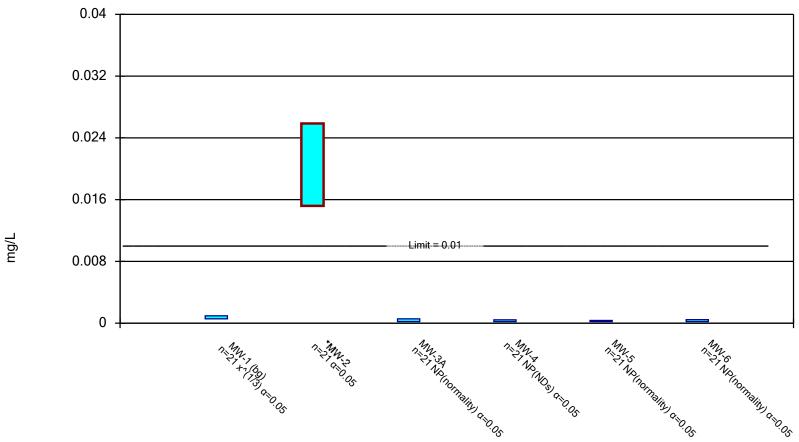
Arsenic (mg/L) Arsenic (mg/L)

Arsenic (mg/L)

Barium (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L) Barium (mg/L)

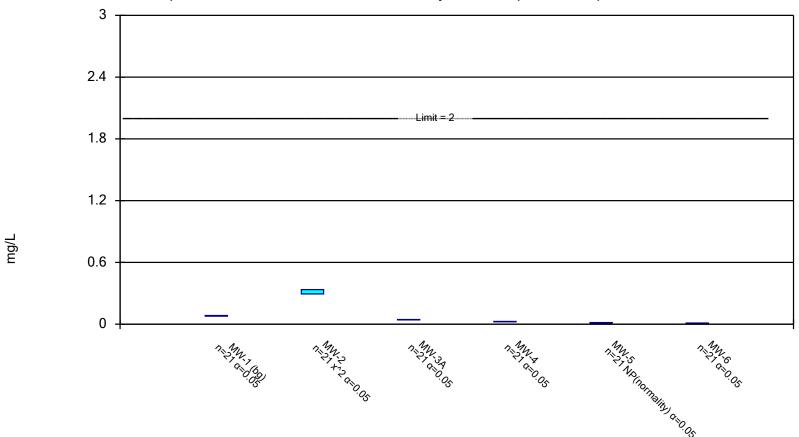
Barium (mg/L) Lithium (mg/L) Lithium (mg/L)

Lithium (mg/L)
Lithium (mg/L)
Lithium (mg/L)
Lithium (mg/L)
Mercury (ug/L)
Molybdenum (mg/L)

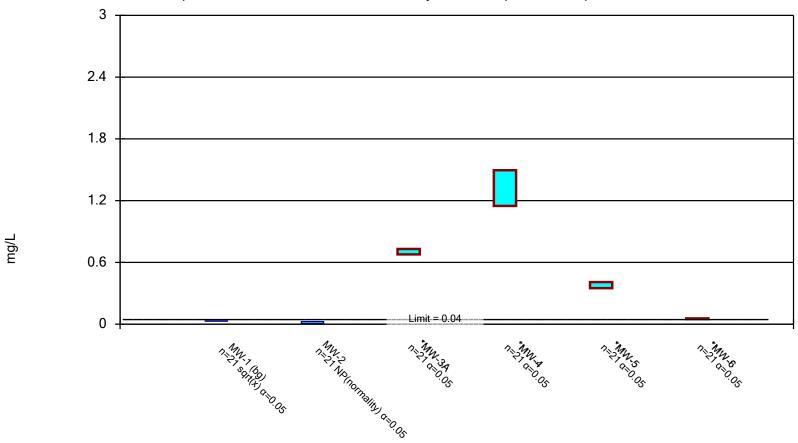

Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L) Molybdenum (mg/L)

	Big R	tivers Electric Corp.	Data: Green LF	All Dat	a Prir	nted 1/8/2024,	7:48 AM		
<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
MW-1 (bg)	0.0009465	0.000557	0.01	No	21	9.524	x^(1/3)	0.05	Param.
MW-2	0.02585	0.01518	0.01	Yes	21	0	No	0.05	Param.
MW-3A	0.000569	0.0002	0.01	No	21	47.62	No	0.05	NP (normality)
MW-4	0.000445	0.0002	0.01	No	21	52.38	No	0.05	NP (NDs)
MW-5	0.000356	0.0002	0.01	No	21	47.62	No	0.05	NP (normality)
MW-6	0.000467	0.0002	0.01	No	21	47.62	No	0.05	NP (normality)
MW-1 (bg)	0.08397	0.07831	2	No	21	0	No	0.05	Param.
MW-2	0.3364	0.2936	2	No	21	0	x^2	0.05	Param.
MW-3A	0.04559	0.04243	2	No	21	0	No	0.05	Param.
MW-4	0.02718	0.02344	2	No	21	0	No	0.05	Param.
MW-5	0.0158	0.0135	2	No	21	0	No	0.05	NP (normality)
MW-6	0.0114	0.009999	2	No	21	0	No	0.05	Param.
MW-1 (bg)	0.03144	0.02921	0.04	No	21	9.524	sqrt(x)	0.05	Param.
MW-2	0.025	0.007	0.04	No	21	42.86	No	0.05	NP (normality)
MW-3A	0.7306	0.6776	0.04	Yes	21	0	No	0.05	Param.
MW-4	1.496	1.149	0.04	Yes	21	4.762	No	0.05	Param.
MW-5	0.4087	0.3501	0.04	Yes	21	0	No	0.05	Param.
MW-6	0.05609	0.04951	0.04	Yes	21	0	No	0.05	Param.
MW-1 (bg)	0.1	0.1	2	No	21	95.24	No	0.05	NP (NDs)
MW-2	0.1	0.1	2	No	21	100	No	0.05	NP (NDs)
MW-3A	0.1	0.1	2	No	21	100	No	0.05	NP (NDs)
MW-4	0.5247	0.3522	2	No	21	0	sqrt(x)	0.05	Param.
MW-5	0.2	0.1	2	No	21	90.48	No	0.05	NP (NDs)
MW-6	0.1	0.1	2	No	21	100	No	0.05	NP (NDs)
MW-1 (bg)	0.00133	0.001	0.1	No	20	50	No	0.05	NP (normality)
MW-2	0.002884	0.002426	0.1	No	20	0	ln(x)	0.05	Param.
MW-3A	0.001	0.001	0.1	No	20	95	No	0.05	NP (NDs)
MW-4	0.00117	0.001	0.1	No	20	75	No	0.05	NP (NDs)
MW-5	0.001	0.001	0.1	No	20	95	No	0.05	NP (NDs)
MW-6	0.00189	0.001	0.1	No	20	40	No	0.05	NP (normality)

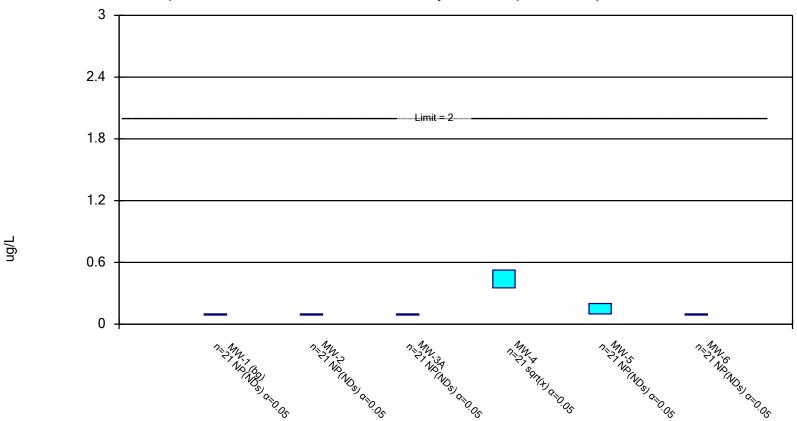
Confidence Interval


		Big Rivers Electric Corp.		Data: Green LF All Data Printed 1/8/2024, 7:48 AM						
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Arsenic (mg/L)	MW-2	0.02585	0.01518	0.01	Yes	21	0	No	0.05	Param.
Lithium (mg/L)	MW-3A	0.7306	0.6776	0.04	Yes	21	0	No	0.05	Param.
Lithium (mg/L)	MW-4	1.496	1.149	0.04	Yes	21	4.762	No	0.05	Param.
Lithium (mg/L)	MW-5	0.4087	0.3501	0.04	Yes	21	0	No	0.05	Param.
Lithium (mg/L)	MW-6	0.05609	0.04951	0.04	Yes	21	0	No	0.05	Param.

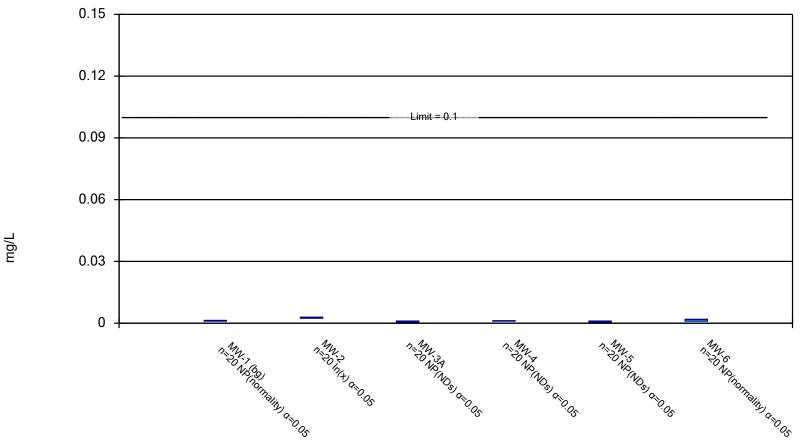
Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Arsenic Analysis Run 1/8/2024 7:47 AM Big Rivers Electric Corp. Data: Green LF All Data

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Barium Analysis Run 1/8/2024 7:47 AM Big Rivers Electric Corp. Data: Green LF All Data

Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 1/8/2024 7:47 AM Big Rivers Electric Corp. Data: Green LF All Data

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Mercury Analysis Run 1/8/2024 7:47 AM Big Rivers Electric Corp. Data: Green LF All Data

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/8/2024 7:47 AM Big Rivers Electric Corp. Data: Green LF All Data

APPENDIX K - GREEN SURFACE IMPOUNDMENT STATISTICAL EVALUATIONS

November 3, 2023

Mr. Mark Bertram Big Rivers Electric Corporation 8000 Highway 2096 Robards, KY 42452

Re: Statistical Evaluation of June 2023 Detection Monitoring Groundwater Data Sebree Generating Station Green Surface Impoundment in Robards, Kentucky Agency Interest ID #: 4196

Dear Mr. Bertram:

This letter presents the results of the statistical evaluation of analytical data from the June 2023 detection monitoring event at the Sebree Generating Station's Green Surface Impoundment in Webster County, Robarbs, Kentucky in accordance with the requirements of U.S. Environmental Protection Agency's *Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments (40 Code of Federal Regulations [CFR] Part 257, Subpart D).* No historical statistically significant increases (SSIs) are on record for this CCR Unit under the detection monitoring program, and therefore, the establishment of calculated groundwater protection standards were not required as a part of the statistical evaluation completed for previous sampling events. The statistical evaluation presented herein for the June 2023 sampling event was performed in accordance with the *Groundwater Monitoring System and Statistical Methods* document prepared by Associated Engineers, Inc. and dated June 28, 2016.

In June 2023, the Green Surface Impoundment groundwater monitoring well network was sampled for Appendix III parameters per the requirements of 40 CFR §257.94(a). Interwell prediction limit statistical analyses were performed for these well/constituent pairs and are discussed subsequently. This letter presents the results of the statistical evaluation of the June 2023 detection monitoring event for inclusion in the Sebree Generating Station Operating Record.

<u>Statistical Evaluation of Sebree Green Surface Impoundment Compliance Monitoring Well Network Evaluation</u>

An interwell prediction limit evaluation was performed to compare the concentrations of the Appendix III parameters observed in June 2023 compliance (downgradient) monitoring wells MW-12, MW-13, and MW-14 to calculated prediction limits (i.e., background limits) that were established using data collected from April of 2016 through June of 2023 from upgradient monitoring well MW-1AG1. A comparison of the June 2023 data to the updated background limits is presented on Table 1. No Appendix III parameters were detected from downgradient compliance wells in June 2023 at concentrations above the calculated background limits (equivalent to the MW-11 prediction limits), and a summary of the statistical evaluation is included in Attachment 1.

Mr. Mark Bertram Big Rivers Electric Corporation November 3, 2023 Page 2

Given that none of the Appendix III constituents exhibited concentrations above their respective calculated background limit (i.e., no SSIs identified) at the Green Surface Impoundment groundwater monitoring network, further statistical evaluation was not required and the CCR unit will continue detection monitoring per the requirements of 40 CFR §257.94 for the next 2023 sampling event.

Sincerely,

Burns & McDonnell Engineering Company, Inc.

Chris Hoglund, PG Project Manager

Attachments:

Table 1 – June 2023 Groundwater Analytical Summary

Attachment 1 – Sanitas™ Statistical Outputs

cc: Hunter Mizell, BREC Sebree Station

TABLE

TABLE 1 June 2023 Groundwater Analytical Summary

Green CCR Surface Impoundment Sebree Generating Station

			MW-11	MW-12	MW-13	MW-14						
			6/25/2023	6/25/2023	6/25/2023	6/25/2023						
	2023 Calculated		Upgradient Well	Down	gradient Compliand	e Wells						
APPENDIX III CONSTITUENTS	Background ¹	Units	Detection Monitoring									
Boron	0.9765	mg/L	0.57	0.31	0.10 U	0.10 U						
Calcium	397.6	mg/L	131 D1	94.3 D1	94 D2	0.13 U						
Chloride	4039	mg/L	1790 D	9.5	21	107						
Fluoride	0.891	mg/L	0.2	0.4	0.2	0.3						
pH (Field Measurement)	6.363 - 7.571	SU	6.87	6.9	6.65	6.69						
Sulfate	2043	mg/L	568 D	4	77	184						
Total Dissolved Solids	5130	mg/L	2960	608	656	992						

Notes:

1. Background values calculated from upgradient MW-11 data from April 2016 through June 2023.

D = Results reported from dilution

D1 = Sample required dilution due to high concentration of target analyte

D2 = Sample required dilution due to matrix interference

mg/L = miligrams per Liter

SU = Standard units

U = Nondetect

Prediction Limit

		Big Rivers Electri	ic Corp. Client:	Burns & McDor	nnell Data: 0	Green SI	All Data	Printed	8/25/2023, 8:56 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-12	0.9765	n/a	6/25/2023	0.31	No	20	15	x^3	0.01	Param Inter
Boron (mg/L)	MW-13	0.9765	n/a	6/25/2023	0.05ND	No	20	15	x^3	0.01	Param Inter
Boron (mg/L)	MW-14	0.9765	n/a	6/25/2023	0.05ND	No	20	15	x^3	0.01	Param Inter
Calcium (mg/L)	MW-12	397.6	n/a	6/25/2023	94.3	No	20	0	x^3	0.01	Param Inter
Calcium (mg/L)	MW-13	397.6	n/a	6/25/2023	94	No	20	0	x^3	0.01	Param Inter
Calcium (mg/L)	MW-14	397.6	n/a	6/25/2023	0.065ND	No	20	0	x^3	0.01	Param Inter
Chloride (mg/L)	MW-12	4039	n/a	6/25/2023	9.5	No	20	0	sqrt(x)	0.01	Param Inter
Chloride (mg/L)	MW-13	4039	n/a	6/25/2023	21	No	20	0	sqrt(x)	0.01	Param Inter
Chloride (mg/L)	MW-14	4039	n/a	6/25/2023	107	No	20	0	sqrt(x)	0.01	Param Inter
Fluoride (mg/L)	MW-12	0.891	n/a	6/25/2023	0.4	No	20	10	n/a	0.04552	NP Inter (normality)
Fluoride (mg/L)	MW-13	0.891	n/a	6/25/2023	0.2	No	20	10	n/a	0.04552	NP Inter (normality)
Fluoride (mg/L)	MW-14	0.891	n/a	6/25/2023	0.3	No	20	10	n/a	0.04552	NP Inter (normality)
pH [Field] (SU)	MW-12	7.571	6.363	6/25/2023	6.9	No	20	0	No	0.005	Param Inter
pH [Field] (SU)	MW-13	7.571	6.363	6/25/2023	6.65	No	20	0	No	0.005	Param Inter
pH [Field] (SU)	MW-14	7.571	6.363	6/25/2023	6.69	No	20	0	No	0.005	Param Inter
Sulfate (mg/L)	MW-12	2043	n/a	6/25/2023	4	No	20	0	No	0.01	Param Inter
Sulfate (mg/L)	MW-13	2043	n/a	6/25/2023	77	No	20	0	No	0.01	Param Inter
Sulfate (mg/L)	MW-14	2043	n/a	6/25/2023	184	No	20	0	No	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-12	5130	n/a	6/25/2023	608	No	20	0	n/a	0.04552	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-13	5130	n/a	6/25/2023	656	No	20	0	n/a	0.04552	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-14	5130	n/a	6/25/2023	992	No	20	0	n/a	0.04552	NP Inter (normality)

January 26, 2024

Mr. Mark Bertram Big Rivers Electric Corporation 8000 Highway 2096 Robards, KY 42452

Re: Statistical Evaluation of November 2023 Detection Monitoring Groundwater Data Sebree Generating Station Green Surface Impoundment in Robards, Kentucky Agency Interest ID #: 4196

Dear Mr. Bertram:

This letter presents the results of the statistical evaluation of analytical data from the November 2023 detection monitoring event at the Sebree Generating Station's Green Surface Impoundment in Webster County, Robarbs, Kentucky in accordance with the requirements of U.S. Environmental Protection Agency's *Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments (40 Code of Federal Regulations [CFR] Part 257, Subpart D)*. No historical statistically significant increases (SSIs) are on record for this CCR Unit under the detection monitoring program, and therefore, the establishment of calculated groundwater protection standards were not required as a part of the statistical evaluation completed for previous sampling events. The statistical evaluation presented herein for the November 2023 sampling event was performed in accordance with the *Groundwater Monitoring System and Statistical Methods* document prepared by Associated Engineers, Inc. and dated June 28, 2016.

In November 2023, the Sebree Generating Station's Green Surface Impoundment groundwater monitoring well network was sampled for Appendix III parameters per the requirements of 40 CFR §257.94(a). Interwell prediction limit statistical analyses were performed for these well/constituent pairs and are discussed subsequently. This letter presents the results of the statistical evaluation of the November 2023 detection monitoring event for inclusion in the Sebree Generating Station Operating Record.

<u>Statistical Evaluation of Sebree Generating Station's Green Surface Impoundment</u> Compliance Monitoring Well Network Evaluation

An interwell prediction limit evaluation was performed to compare the concentrations of the Appendix III parameters observed in November 2023 compliance (downgradient) monitoring wells MW-12, MW-13, and MW-14 to calculated prediction limits (i.e., background limits) that were established using data collected from April of 2016 through November of 2023 from upgradient monitoring well MW-11. A comparison of the November 2023 data to the updated background limits is presented on Table 1. No Appendix III parameters were detected from downgradient compliance wells in November 2023 at concentrations above the calculated

Mr. Mark Bertram Big Rivers Electric Corporation January 26, 2024 Page 2

background limits (equivalent to the MW-11 prediction limits), and a summary of the statistical evaluation is included in Attachment 1.

Given that none of the Appendix III constituents exhibited concentrations above their respective calculated background limit (i.e., no SSIs identified) at the Sebree Generating Station's Green Surface Impoundment groundwater monitoring network, further statistical evaluation was not required and the CCR unit will continue detection monitoring per the requirements of 40 CFR §257.94 for the next 2024 sampling event.

Sincerely,

Burns & McDonnell Engineering Company, Inc.

Chris Hoglund, PG Project Manager

Attachments:

Table 1 – November 2023 Analytical Summary

Attachment 1 – Sanitas™ Statistical Outputs

cc: Hunter Mizell, BREC Sebree Station

TABLE

Table 1
Green Surface Impoundment - November 2023 Analytical Summary
Sebree Generating Station

			MW-11	MW-12	MW-13	MW-14							
			11/6/2023	11/6/2023	11/6/2023	11/6/2023							
	2023 Calculated		Upgradient Well	Down	gradient Compliand	e Wells							
APPENDIX III CONSTITUENTS	Background ¹	Units	Detection Monitoring										
Boron	0.9744	mg/L	0.44	0.24	0.10 U	0.13							
Calcium	415	mg/L	221	77.2	95.6	155							
Chloride	3967	mg/L	2060	20.3	27.1	104							
Fluoride	0.891	mg/L	0.2	0.5	0.2	0.3							
pH (Field Measurement)	6.367 - 7.552	SU	6.81	7.33	6.58	6.70							
Sulfate	2023	mg/L	855	64	100	176							
Total Dissolved Solids	5418	mg/L	4340	568	752	940							

Notes:

mg/L = miligrams per Liter

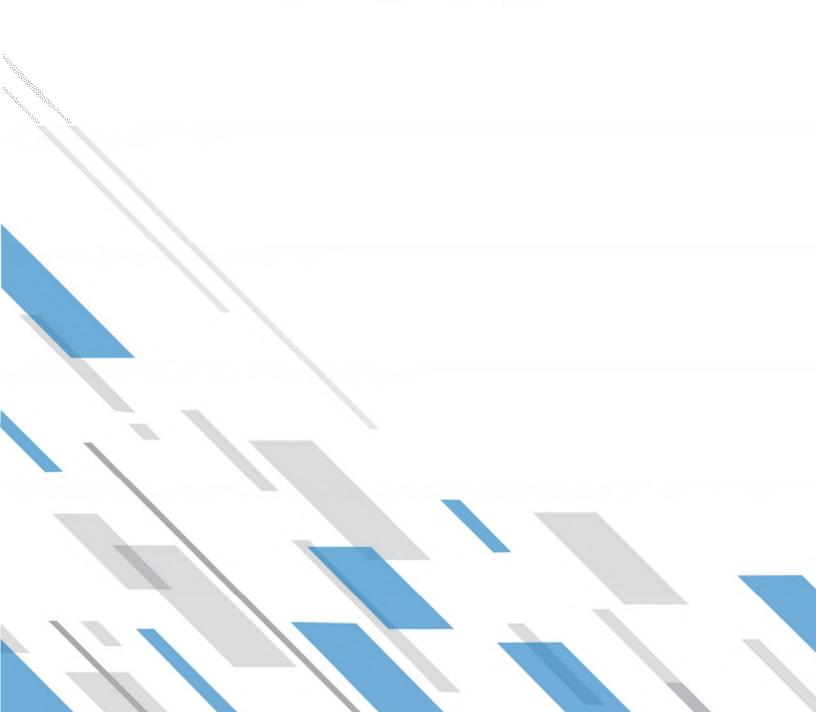
SU = Standard units

U = Nondetect

¹Background values calculated from upgradient MW-11 data from April 2016 through November 2023.

Prediction Limit

Big Rivers Electric Corp. Data: Green SI All Data Printed 12/7/2023, 3:38 PM


Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-12	0.9744	n/a	11/6/2023	0.24	No	21	14.29	x^3	0.01	Param Inter
Boron (mg/L)	MW-13	0.9744	n/a	11/6/2023	0.05ND	No	21	14.29	x^3	0.01	Param Inter
Boron (mg/L)	MW-14	0.9744	n/a	11/6/2023	0.13	No	21	14.29	x^3	0.01	Param Inter
Calcium (mg/L)	MW-12	415	n/a	11/6/2023	77.2	No	21	0	x^2	0.01	Param Inter
Calcium (mg/L)	MW-13	415	n/a	11/6/2023	95.6	No	21	0	x^2	0.01	Param Inter
Calcium (mg/L)	MW-14	415	n/a	11/6/2023	155	No	21	0	x^2	0.01	Param Inter
Chloride (mg/L)	MW-12	3967	n/a	11/6/2023	20.3	No	21	0	sqrt(x)	0.01	Param Inter
Chloride (mg/L)	MW-13	3967	n/a	11/6/2023	27.1	No	21	0	sqrt(x)	0.01	Param Inter
Chloride (mg/L)	MW-14	3967	n/a	11/6/2023	104	No	21	0	sqrt(x)	0.01	Param Inter
Fluoride (mg/L)	MW-12	0.891	n/a	11/6/2023	0.5	No	21	9.524	n/a	0.04353	NP Inter (normality)
Fluoride (mg/L)	MW-13	0.891	n/a	11/6/2023	0.2	No	21	9.524	n/a	0.04353	NP Inter (normality)
Fluoride (mg/L)	MW-14	0.891	n/a	11/6/2023	0.3	No	21	9.524	n/a	0.04353	NP Inter (normality)
pH [Field] (SU)	MW-12	7.552	6.367	11/6/2023	7.33	No	21	0	No	0.005	Param Inter
pH [Field] (SU)	MW-13	7.552	6.367	11/6/2023	6.58	No	21	0	No	0.005	Param Inter
pH [Field] (SU)	MW-14	7.552	6.367	11/6/2023	6.7	No	21	0	No	0.005	Param Inter
Sulfate (mg/L)	MW-12	2023	n/a	11/6/2023	64	No	21	0	No	0.01	Param Inter
Sulfate (mg/L)	MW-13	2023	n/a	11/6/2023	100	No	21	0	No	0.01	Param Inter
Sulfate (mg/L)	MW-14	2023	n/a	11/6/2023	176	No	21	0	No	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-12	5418	n/a	11/6/2023	568	No	21	0	x^6	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-13	5418	n/a	11/6/2023	752	No	21	0	x^6	0.01	Param Inter
Total Dissolved Solids (mg/L)	MW-14	5418	n/a	11/6/2023	940	No	21	0	x^6	0.01	Param Inter

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 •• 816-333-9400 •• 816-333-3690 •• www.burnsmcd.com

Sebree Generating Station Reid/HMP&L CCR Surface Impoundment

2023 Annual Groundwater Monitoring and Corrective Action Report

Revision 0

January 24, 2024

Issue Purpose: Client Use

Project No.: 14055-010

14665 West Lisbon Road Suite #1A Brookfield, WI 53005 262-781-0475 www.kprginc.com

55 East Monroe Street Chicago, IL 60603 312-269-2000

www.sargentlundy.com

TABLE OF CONTENTS

Table	of Co	ontents	
Lists	of Tal	oles, Figures, & Appendices	i
		Summary / Overview	
		duction	
		Procedures and Groundwater Flow Evaluation	
		Field Procedures	
	2.2	Groundwater Flow Evaluation	4
3.0	Analy	tical Data and Monitoring Status	5
	3.1	Sampling Summary	5
	3.2	Data Summary	6
	3.3	Current Monitoring Status	9
4.0	Corre	ective Action Status	9
5.0	Sumi	mary / Conclusions and Recommendations	10
6.0		ences	

LISTS OF TABLES, FIGURES, & APPENDICES

Tables

Table 1. Reid/HMP&L CCR Surface Impoundment – 2023 Groundwater Elevation Data	4
Table 2. Reid/HMP&L CCR Surface Impoundment – Groundwater Seepage Velocity Estimates	
Table 3. Reid/HMP&L CCR Surface Impoundment – Summary of Groundwater Sampling Events	
Table 4. Reid/HMP&L CCR Surface Impoundment – 2023 Lithium Analytical Results	8

Figures

Figure 1 – Monitoring Well Locations

Figure 2 – June 2023 Potentiometric Surface Map

Figure 3 – November 2023 Potentiometric Surface Map

Figure 4 – Areal Distribution of Impacts - Lithium

Appendices

Appendix A – Groundwater Data Summary Tables

Appendix B - Analytical Data Packages

EXECUTIVE SUMMARY / OVERVIEW

Groundwater monitoring requirements in accordance with Sections 257.94 and 257.95 of the U.S. Environmental Protection Agency's (EPA) Coal Combustion Residuals (CCR) Rule, 40 CFR Part 257 Subpart D, have been completed for the Reid/Henderson Municipal Power & Light (Reid/HMP&L) CCR Surface Impoundment (the Unit) at the Big Rivers Electric Corporation's (BREC) Sebree Generating Station (the Station) located in Webster County, Kentucky. The CCR monitoring well network for this Unit consists of four monitoring wells (MW-7 through MW-10) as shown on Figure 1. Well MW-7 is the background monitoring well, and wells MW-8, MW-9, and MW-10 are the downgradient monitoring wells. The Unit also has an assessment groundwater monitoring network to assist in defining the nature and extent of impacts as required under 40 CFR 257.95(g)(1). The current assessment network consists of wells MW-110, MW-111, and MW-112, which are also shown on Figure 1. Well MW-110 was installed in 1st Quarter 2019, while wells MW-111 and MW-112 were installed in 1st Quarter 2022.

This overview of the 2023 groundwater monitoring period is provided in accordance with revised requirements under Section 257.90(e)(6) of the CCR Rule. Each required item is discussed separately below.

- Section 257.90(e)(6)(i) At the start of the current monitoring period, the subject CCR unit was
 operating under the assessment monitoring program in accordance with Section 257.95 of the CCR
 Rule.
- Section 257.90(e)(6)(ii) At the end of the current monitoring period, the subject CCR unit continues
 to operate under the assessment monitoring program in accordance with Section 257.95 of the CCR
 Rule.
- Section 257.90(e)(6)(iii) The following statistically significant increases (SSIs) above established background for the Appendix III detection monitoring constituents were noted during this monitoring period:

CCR Wells

- MW-7 (upgradient) none
- MW-8 boron, calcium, chloride, fluoride, sulfate and total dissolved solids (both events)
- MW-9 calcium and total dissolved solids (both events)
- MW-10 boron, chloride, fluoride, pH, and total dissolved solids (both events)

Expanded Nature and Extent Assessment Wells

- MW-110 boron, calcium chloride, sulfate, and total dissolved solids (both events)
- MW-111 boron, chloride, and fluoride (both events); and pH and total dissolved solids (June only)
- MW-112 chloride (both events); and boron (November only)

The initial statistical evaluation of Appendix III constituents determined that there were SSIs in downgradient monitoring wells relative to established background prediction limits for various Appendix III parameters at various downgradient monitoring locations. The monitoring program was transitioned to assessment monitoring under Section 257.95 of the CCR Rule in February 2018.

Section 257.90(e)(6)(iv) – There was one only constituent confirmed at a statistically significant level
(SSL) above groundwater protection standards for the Appendix IV assessment monitoring
constituents for this Unit during this monitoring period. Specifically, this was for lithium at
downgradient CCR monitoring well MW-10. This is consistent with previous monitoring periods.

The assessment of corrective measures (ACM) in accordance with Section 257.96(a) of the CCR Rule was initiated in January 2019. A public meeting was held on May 24, 2023 to present the results of the ACM and supporting hydrogeologic studies. A Final Report on Selection of Groundwater Remedy was issued on July 25, 2023.

- Section 257.90(e)(6)(v) As noted above, the Final Report on Selection of Groundwater Remedy
 was issued on July 25, 2023. The selected remedy was identified as Alternative #2b which consists
 of closure by removal, institutional controls, and groundwater monitoring.
- Section 257.90(e)(6)(vi) Remedial activities pursuant to Section 257.98 of the CCR Rule were initiated on July 31, 2023 with contractor mobilization to the site. Closure work is ongoing and is expected to be completed in 2024 (see Section 4.0 below for current status details).

1.0 INTRODUCTION

On behalf of Big Rivers Electric Corporation (BREC), KPRG Associates, Inc. (KPRG) and Sargent & Lundy (S&L) have prepared this Annual Groundwater Monitoring and Corrective Action Report for the Reid/Henderson Municipal Power & Light (Reid/HMP&L) CCR Surface Impoundment (the Unit) at the Sebree Generating Station (the Station) located in Webster County, Kentucky.

Groundwater sampling in accordance with the 2023 semi-annual assessment monitoring requirements promulgated by Sections 257.94 and 257.95 of the U.S. Environmental Protection Agency's (EPA) Coal Combustion Residuals (CCR) Rule, 40 CFR Part 257 Subpart D, have been successfully completed for the Unit. The CCR monitoring well network consists of four monitoring wells (MW-7 through MW-10) as shown on Figure 1. Well MW-7 is the upgradient, background monitoring location. Monitoring wells MW-8, MW-9 and MW-10 are the downgradient monitoring locations. The Unit also has an assessment groundwater monitoring network to assist in defining and monitoring the nature and extent of groundwater impacts as required under 40 CFR 257.95(g)(1). The current assessment network consists of wells MW-110, MW-111, and MW-112, which are also shown on Figure 1. Well MW-110 was installed in 1st Quarter 2019, while wells MW-111 and MW-112 were installed in 1st Quarter 2022.

This annual report covers the work performed relative to CCR groundwater monitoring during the calendar year 2023. It does not duplicate information or activities reported in previous annual submittals. It is prepared in accordance with 40 CFR 257.90(e)(1) through (6) and summarizes the sampling procedures used, provides an evaluation of groundwater flow conditions, summarizes the analytical data generated, presents the statistical evaluations and assessment monitoring completed, identifies the other key compliance actions completed during the year, and provides the current status of the site compliance activities along with recommendations.

2.0 FIELD PROCEDURES AND GROUNDWATER FLOW EVALUATION

2.1 FIELD PROCEDURES

As previously noted, the Unit's groundwater monitoring program consists of the CCR groundwater monitoring network around the Reid/HMP&L CCR Surface Impoundment (wells MW-7 through MW-10) and the assessment monitoring network (wells MW-110, MW-111 and MW-112), all as shown on Figure 1. Characterization well MW-110 was installed by AECOM in February 2019. It is noted that well MW-110 was installed without proper Kentucky Division of Waste Management (KDWM) approval. However, as discussed in the Supplemental Site Investigation Report dated September 1, 2022, the well was installed using recognized industry practices by a Kentucky licensed well driller. The groundwater sampling data from this well is believed to be representative of existing water quality and is only being used for screening proposes.

In February 2022, KPRG installed two additional characterization monitoring wells, MW-111 and MW-112, for the purposes of assisting with defining the extent of potential lithium impacts to the southwest and south-southeast of well MW-10 (KPRG and S&L, 2022). The wells were installed using rotary sonic drilling and constructed in accordance with the "Monitoring Well Drilling/Construction Specification" submitted to the Kentucky Energy and Environment Cabinet, Department of Environmental Protection, Division of Waste Management (DWM) on February 11, 2022, and verbally approved by the DWM on February 15, 2022, with formal written approval received on February 17, 2022. No new monitoring wells were installed in 2023.

As part of sampling procedures, the integrity of all monitoring wells was inspected and water levels were obtained using an electronic water level meter (see summary of water level discussion below). All wells were found in good condition with locked protector casings and intact concrete surface seals.

All groundwater samples were collected using the low-flow sampling technique from dedicated pumps. The samples were not filtered prior to analysis to provide for total metals concentrations as opposed to dissolved metals concentrations.

2.2 GROUNDWATER FLOW EVALUATION

Water level data measurements were obtained from each well during each round of semi-annual groundwater monitoring which occurred in June and November of 2023. A complete round of water levels was collected prior to initiating sampling, and the water level data for 2023 are summarized in Table 1.

Table 1. Reid/HMP&L CCR Surface Impoundment – 2023 Groundwater Elevation Data

Monitoring Well	Top of Casing Elevation (ft, amsl)	Groundwater Elevation (ft, amsl) June 2023*	Groundwater Elevation (ft, amsl) November 2023
MW-7	440.93	422.17	416.49
MW-8	394.29	388.32	387.20
MW-9	395.40	387.69	386.69
MW-10	422.27	388.52	387.15
MW-110	388.70	383.31	382.58
MW-111	403.57	387.70	386.78
MW-112	427.77	392.64	389.26

Note: * - Water levels for assessment wells collected 6/30/23. All others collected 6/29/23.

The water levels were used to generate groundwater flow maps for the two sampling events, which are provided as Figures 2 and 3. A review of the maps indicates groundwater flow is consistently to the

southwest towards an unnamed tributary to Groves Creek located west-southwest of the impoundment. In accordance with general groundwater sampling requirements under 40 CFR 257.93(c), Table 2 provides a summary of the natural flow and an estimated rate of groundwater flow for each sampling event. The flow rate was calculated using the following equation:

$$V_s = \frac{Kdh}{n_e dl}$$
, where:

V_s is seepage velocity (distance/time)

K is hydraulic conductivity (distance/time)

dh/dl is hydraulic gradient (unitless)

ne is effective porosity (unitless)

The hydraulic conductivity geometric mean of 3.1 x 10⁻⁵ cm/sec (1.02 x 10⁻⁶ ft/sec) used in Table 2 was obtained from the slug test results completed on wells MW-10, MW-110, MW-111, and MW-112. The horizontal hydraulic gradient was obtained from the respective groundwater flow maps provided on Figures 2 and 3. An estimated effective porosity of the aquifer materials of 0.10 was used (Freeze and Cherry, 1979).

Table 2. Reid/HMP&L CCR Surface Impoundment – Groundwater Seepage Velocity Estimates

Date	Groundwater Flow Direction	K _{avg} (ft/sec)	Average Hydraulic Gradient	Porosity (unitless)	Estimated Seepage Velocity (ft/day)
June 2023	Southwesterly	1.02E-6	0.021	0.1	0.019
November 2023	Southwesterly	1.02E-6	0.029	0.1	0.026

3.0 ANALYTICAL DATA AND MONITORING STATUS

3.1 SAMPLING SUMMARY

The groundwater sampling summary from 2023 is provided in Table 3, in accordance with 40 CFR 257.90(e)(3). The table includes the event type dates of sampling and wells included in the sampling.

Table 3. Reid/HMP&L CCR Surface Impoundment – Summary of Groundwater Sampling Events

Event Type	Sampling Event	Dates	Wells Sampled
Assessment	Semi-Annual	June 29, 2023	MW-7 (upgradient), MW-8, MW-9, and MW-10
Characterization	Semi-Annual	June 30, 2023	MW-110, MW-111, and MW-112
Assessment	Semi-Annual	November 20-21, 2023	MW-7 (upgradient), MW-8, MW-9, and MW-10
Characterization	Semi-Annual	November 20-21, 2023	MW-110, MW-111, MW-112

3.2 DATA SUMMARY

As discussed in Section 1.0, this site is in assessment monitoring. The analytical data for each well from the assessment monitoring groundwater sampling for Appendix III and IV parameters are provided in Appendix A (Tables A-1 through A-7) along with calculated prediction limits and applicable Groundwater Protection Standards (GWPSs) under the CCR Rule for Appendix IV constituents. All tables include the sample dates and whether the specific well is considered upgradient or downgradient relative to groundwater flow and the Unit. The analytical data packages from these sampling events are provided in Appendix B. It is noted that updated background calculations for statistical purposes were completed by AECOM as part of the 2021 Annual Groundwater and Corrective Action Report and are considered to still be representative for statistical comparison purposes. The statistical background for the Appendix III and IV groundwater quality data at the Reid Surface Impoundment were evaluated by AECOM in 2021 using an interwell approach that statistically compared constituent concentrations at downgradient monitoring wells to those present at a background monitoring well. Monitoring well MW-7 is the designated background and monitoring wells MW-8, MW-9, and MW-10 are designated as compliance wells because they are located downgradient of the impoundment.

The statistical analyses were performed in accordance with the U.S. Environmental Protection Agency's Final CCR Rule 40 CFR Parts 257.93(f), 257.93(g), and 257.93(h) and the Groundwater Monitoring System and Statistical Methods Certification. Prediction limits (i.e., parametric or nonparametric) with 1 of 2 retesting were developed for each constituent based on the frequency of non-detect values and whether the background data for that constituent exhibited a normal, lognormal, or nonparametric distribution. For the statistical analysis, non- detect values were represented as one-half the detection limit. No outliers were identified in the background data. The background datasets were used to develop an upper prediction limit (UPL) for the Appendix III and IV background data at 95 percent confidence. Data from the downgradient monitoring wells for the same time period were compared to the UPL to identify statistically significant

increases (SSIs) over background. Mann-Kendall trend analysis was used to identify statistically significant increasing trends for constituents with SSIs. Appendix IV GWPSs were established as the higher of either the established federal maximum contaminant level (MCL) or the background 95% UPL for the specific compound. Recalculation of background values is not appropriate at this time because the Unit is under a semi-annual assessment sampling program. Recalculation of background statistics at this time would therefore not be accordance with the Unified Guidance as sufficient new data has not been generated to verify that it is statistically viable to pool it with the existing background dataset. For semi-annual sampling programs, the *minimum* timeframe prior to recalculating background is 2 to 3 years based on the Unified Guidance.

Relative to the results of the expanded assessment monitoring program for the purposes of defining the extent of groundwater impacts, groundwater sampling was performed at the Unit in June and November 2023. The sampling included all existing and new monitoring wells. The groundwater samples were analyzed for the full list of CCR Rule Appendix III and Appendix IV parameters. The data are included in the tables provided in Appendix A along with all previous data for the wells. Detections above established prediction limits suggesting a statistically significant increase (SSI) in downgradient wells for both Appendix III and Appendix IV parameters are as follows:

Appendix III Parameters

CCR Wells

- MW-7 (upgradient) none
- o MW-8 boron, calcium, chloride, fluoride, sulfate and total dissolved solids (both events)
- MW-9 calcium and total dissolved solids (both events)
- MW-10 boron, chloride, fluoride, pH, and total dissolved solids (both events)

Expanded Nature and Extent Assessment Wells

- MW-110 boron, calcium chloride, sulfate, and total dissolved solids (both events)
- MW-111 boron, chloride, and fluoride (both events); and pH and total dissolved solids (June only)
- o MW-112 chloride (both events); and boron (November only)

Appendix IV Parameters

CCR Wells

- MW-7 thallium (June only)
- MW-8 fluoride and lithium (both events); combined radium 226/228 (June only)
- MW-9 barium (both events); and thallium (June only)
- MW-10 barium, fluoride, and lithium (both events); mercury (November only); and combined radium 226/228 (June only)

Expanded Nature and Extent Assessment Wells

- MW-110 lithium (both events); chromium and lead (November only); and thallium (June only)
- MW-111 barium and fluoride (both events); and lithium (June only)
- o MW-112 barium (both events); chromium (November only); and thallium (June only)

Relative to statistically significant level (SSL) detections above established GWPSs, the data indicate results consistent with historical sampling with lithium being the only parameter that was detected above an established GWPS. None of the other noted SSIs for Appendix IV parameters were above the established GWPSs for those parameters. The new lithium data collected during the 2023 sampling events are summarized below in Table 4. Only lithium at well location MW-10 exceeds the established GWPS of 0.04 mg/l.

Table 4. Reid/HMP&L CCR Surface Impoundment – 2023 Lithium Analytical Results

	Param	eter
Monitoring Well	Lithiu GWPS 0.04	
	June 2023	November 2023
MW-7	0.007J	0.007J
MW-8	0.03	0.03M2
MW-9	0.006J	0.006J
MW-10	0.52	0.54

MW-110	0.01J	0.01J
MW-111	0.008J	0.008J
MW-112	0.006J	0.007J

J – Estimated value; M2 – Matrix spike recovery low, method control sample recovery acceptable.

The areal distribution of lithium impacts is provided on Figure 4, which includes all assessment lithium data generated to date. This illustrates that the extent of impacts above the GWPS for lithium has been defined, and the impacts appear to be limited to the general vicinity of well MW-10. This areal distribution suggests that impacts to groundwater likely originated as seepage from beneath the southern portion of the surface impoundment, possibly due to the added driving head associated with the pond water within this portion of the Unit. However, at this time there is currently no feasible means of directly tracing that potential under the footprint of the Unit. It is noted that subsequent numerical groundwater modeling performed in support of groundwater remedy engineering evaluations corroborates this hypothesis.

3.3 CURRENT MONITORING STATUS

The site continues to be in semi-annual assessment monitoring. No further delineation of lithium impacts is proposed at this time.

4.0 CORRECTIVE ACTION STATUS

During this annual reporting period, a remedy was selected to address the lithium impacts at the Unit observed at monitoring well MW-10 during this and previous annual reporting periods. As documented in the Assessment of Corrective Measures (ACM) performed for the Unit in accordance with Section 257.96(a) of the CCR Rule (AECOM, 2019c), the following five corrective measures alternatives were developed and evaluated as potential remedies:

- Alternative #1: No Action and Groundwater Monitoring
- Alternative #2a: Closure in Place (CiP), Institutional Controls (ICs), and Groundwater Monitoring
- Alternative #2b: Closure by Removal (CbR), ICs, and Groundwater Monitoring
- Alternative #3: CiP, ICs, Hydraulic Containment, Other Source Control, Ex-Situ Treatment, and Groundwater Monitoring
- Alternative #4: CiP, ICs, Physical Containment, Ex-Situ Treatment, and Groundwater Monitoring

To determine the most appropriate remedy of the five preceding options, an evaluation was performed in accordance with EPA guidance on selecting remedies under the Resource Conservation and Recovery Act (EPA, 2000) and in accordance with the threshold and balancing performance criteria prescribed by the CCR Rule. Based on the results of this evaluation, Alternative #2b (CbR, ICs, and Groundwater Monitoring) was selected. On May 24, 2023, a public meeting was held in Henderson, Kentucky, to discuss the evaluation of potential remedies, the supporting hydrogeologic studies, and the proposed remedy. Finally, the final report

describing the selected remedy and how the selected remedy meets the standards specified in Section 257.97(b) of the CCR Rule was finalized on July 25, 2023 (S&L and KPRG, 2023b).

On July 31, 2023, closure construction activities commenced at the Unit. Through January 2, 2024, approximately 303,000 cubic yards of CCR have been removed from the Unit and disposed of in the on-site landfill. It is estimated that approximately 537,000 cubic yards of CCR remain in the Unit. Closure is expected to be completed in 2024.

5.0 SUMMARY / CONCLUSIONS AND RECOMMENDATIONS

The site continues to be in semi-annual assessment monitoring. The assessment monitoring requirements in accordance with the CCR Rule are being successfully met. Only monitoring well MW-10 has shown a concentration of one Appendix IV parameter above the established GWPSs. Specifically, lithium was detected at this location in all 2023 sampling events above its GWPS of 0.4 mg/l. The corrective action is ongoing, with closure expected to be completed in 2024 (see Section 4.0 for additional details on remedy selection and status).

At this time, it is recommended to continue with semi-annual assessment monitoring in accordance with 40 CFR 257.95. The next sampling event should be scheduled for the June 2024 timeframe.

6.0 REFERENCES

AECOM, 2018. 2016-2017 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Webster County, Kentucky, January 2018.

AECOM, 2019a. 2018 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Webster County, Kentucky, January 2019.

AECOM, 2019b. Remedy Selection Progress Report, Reid/HMP&L Surface Impoundment, Sebree Generating Station, Webster County, Kentucky, December 2019.

AECOM, 2019c. Assessment of Corrective Measures Under the CCR Rule, CCR Surface Impoundment, Reid/HMP&L Station, Webster County, Kentucky, June 2019.

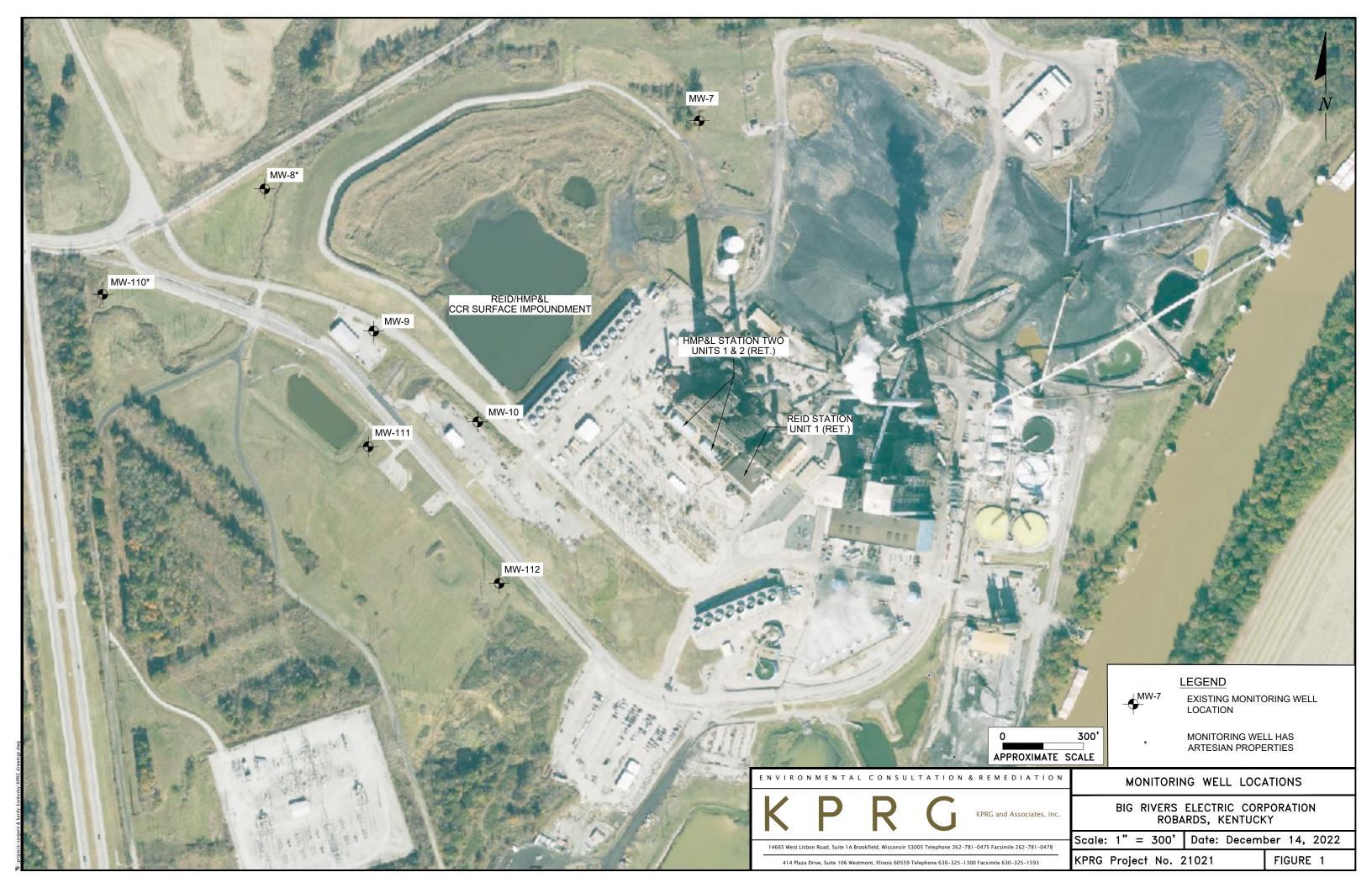
AECOM, 2020. 2019 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties, Kentucky, January 2020.

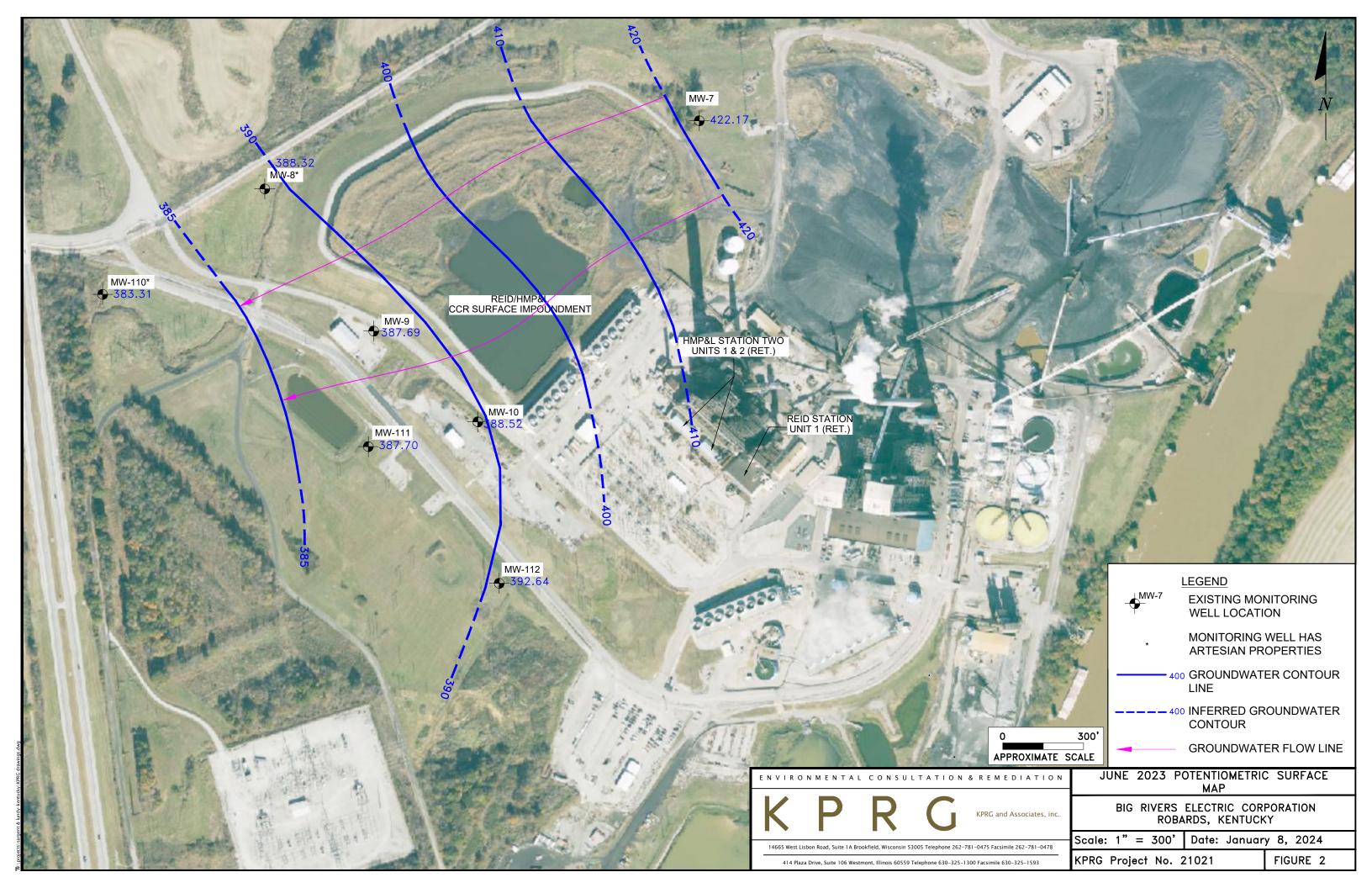
AECOM, 2021a. 2020 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky, January 2021.

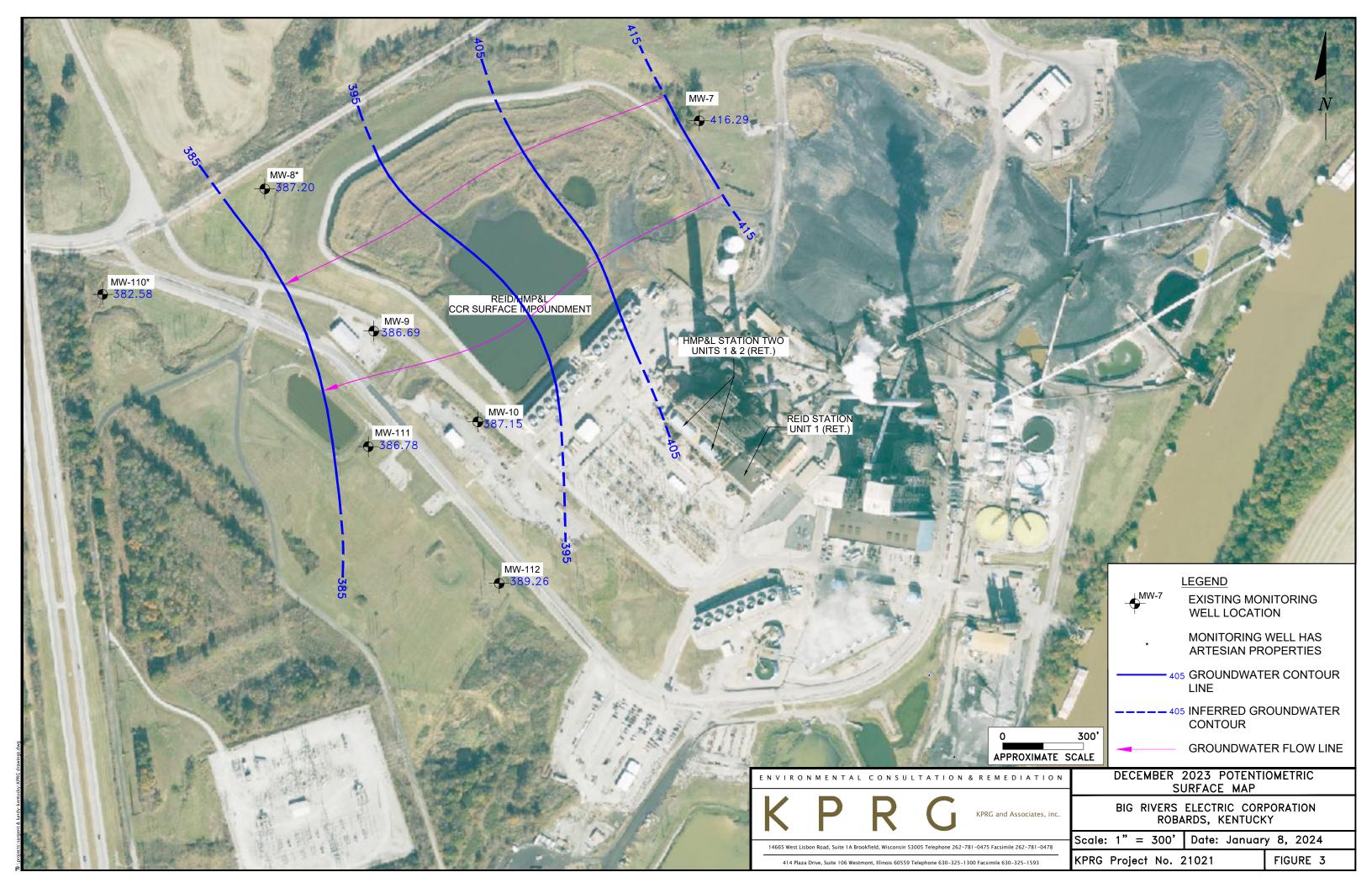
AECOM, 2022. 2021 Annual Groundwater Monitoring and Corrective Action Report, Sebree Generating Station, Henderson and Webster Counties Kentucky January 2022.

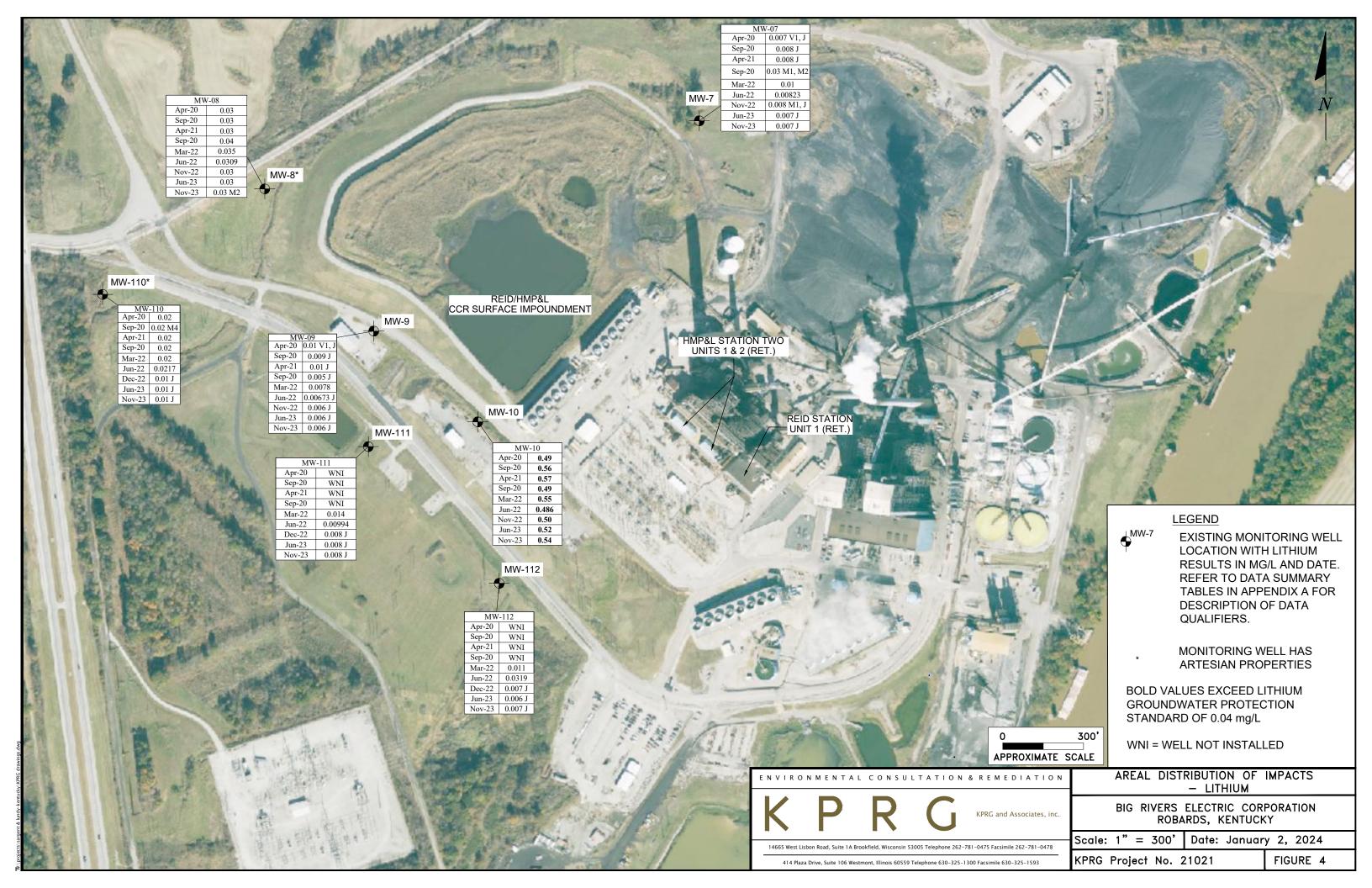
EPA, 2000. "Fact Sheet #3: Final Remedy Selection for Results-Based RCRA Corrective Action." RCRA Corrective Action Workshop On Results-Based Project Management: Fact Sheet Series. March 2000.

Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc. Publishing.


S&L and KPRG, 2022. Supplemental Site Characterization Report. Sebree Generating Station, Reid/HMP&L CCR Surface Impoundment. Rev. 0. September 2022.


S&L and KPRG, 2023a. 2022 Annual Groundwater Monitoring and Corrective Action Report. Sebree Generating Station, Reid/HMP&L CCR Surface Impoundment. Rev. 0. January 2023.


S&L and KPRG, 2023b. Final Report on Selection of Groundwater Remedy. Sebree Generating Station, Reid/HMP&L CCR Surface Impoundment. Rev. 0. July 2023.


January 24, 2024

FIGURES

APPENDIX A

Groundwater Quality Data Summary Tables

REID/HMPL CCR SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY Table A-1. MW-7 (up-gradient)

Table A-1. WW-7 (up-gradient)															DATE										
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	1/31/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/16/2019	4/16/2020	9/24/2020	4/21/2021	9/29/2021	3/16/2022	6/07/2022	11/30/2022	6/29/2023	11/21/2023
						•	Baseline Eve	nts		•		Assessmen	Re-Sample	1		•	•			Assessment		•	•		
Boron	0.3676	NA	0.246	0.245 J	0.271 J	0.250 J	0.33 J	0.295 J	0.286 JB	0.268 J	0.320 J		0.249 J	0.299 J	0.309 JB	ND D2, M4,	0.34 M4	0.33 M2, M4	0.34	1.77 D1, M2	0.36	0.329	0.35 M1	0.33	0.35
Calcium	48.11	NA	41.1	42.1 B	42.3	47.6	41.5 B	41.1	45.1	40.6	41.8 B		46.6	41.6 B	46.1	44.4 D2	45.7 D2, M2	41.8 D2,	43.4 D1	27 D1, M2	46.2	40.5	43.1 D1,M!,M2	44.1 D1	39.4 D1
Chloride	6.95	NA	2.48 JB	2.52 J	2.93 JB F1	3.26 B F1	4.02 B	5.73 B	4.99 F1 B	5.28 F1 B	3.65 B		6.88 B F1	5.38 B	4.94	4.7	4.1	3.3	4.9	6.5	4.7	3.16	2.8	2.6	3
Fluoride	0.3622	4	ND J	ND J	ND J F1	ND J F1	ND JB	ND J	ND J F1	ND J F1	ND J		ND J	ND J	0.255 J	0.3	0.3	0.3	0.3	0.5	0.29	0.26	0.3	0.2	0.3
Sulfate	26.59	NA	12.8	13.2	15.9	18.8	23.6 B	25.7	22.3 B	16.6 B	14.2 F1		23.4	18.7 B	16.8 B	19	15	12	15	34 D	19	12.6	11	10	11
pH (Field Measurement)	8.034-6.483	NA	7.39	7.47	7.6	7.16	7.74	7.26	7.23	7.36	7.36	7.01	7.17	6.94	7.46	7.07	6.86	6.56	7.75	7.80	7.67	7.18	7.51	7.69 H3	7.18
Total Dissolved Solids	310.7	NA	233	243	243	250	253	291	290	267	278		295	263	271	228	148	114	280	610	263	234	262	186	238
APPENDIX IV CONSTITUENTS				·					•							· ·		•	•		•		•	•	
Antimony	0.0008951	0.006	ND	ND JB	ND JB	ND J	ND	ND	ND JB	ND JB	NA	ND JB	ND JB	NA	0.0000760 JB	ND U	< 0.005	<0.005 M2	<0.005 U	<0.005 M2, U	<0.00051	ND	ND M3, U	<0.002 U	<0.002 U
Arsenic	0.003938	0.01	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND JB	ND JB	NA	0.00116 J	0.0014	0.0025	0.0015 M2	0.0026	<0.001 M2, U	0.0022	0.002 J	0.0037 M1	0.002	0.003
Barium	0.0908	2	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	ND J	ND J	ND J	0.0824 J	0.062	0.087	0.075 M3	0.082	0.074 M2	0.074	0.074	0.079 M1	0.076	0.076
Beryllium	0.0005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND U	<0.0020 V1	<0.002	<0.0020 U	<0.002 M2, U	<0.00027	ND	ND M1, U	<0.0010 U	<0.0010 U
Cadmium	0.000076	0.005	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND U	<0.0010	<0.001 M2	<0.0010 U	<0.001 M2, U	<0.00022	ND	ND M1, U	<0.0001 U	<0.0001 U
Chromium	0.00171	0.1	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND JB	ND JB	NA	0.00136 J	ND U	<0.0020	<0.002 M2	0.0007 J	<0.002 M2, U	0.0019 J	ND	ND M1, U	<0.0006 U	<0.0006 U
Cobalt	0.00239	0.006	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	NA	ND J	ND J	NA	0.000158 J	ND U	<0.004	<0.004 M2	<0.004 U	<0.004 M2, U	0.0005	3E-04 J	ND M1, U	<0.004 U	<0.004 U
Fluoride	0.3622	4	ND J	ND J	ND J F1	ND J F1	ND JB	ND J	ND J F1	ND J F1	NA	ND J	ND J	ND J	0.255 J	0.3	0.3	0.3	0.3	0.5	0.292	0.26	0.3	0.2	0.3
Lead	0.00064	0.015	ND J	ND JB	ND	ND J	ND	ND	ND	ND	NA	ND	ND	NA	0.0000730 J	ND U	<0.002	<0.002 M2	<0.002 U	<0.002 U	0.00047 J	ND	ND M1, U	<0.0005 U	0.0005 J
Lithium	0.00994	0.04	ND J	ND	ND	ND	ND J	ND	ND	ND	NA	ND	ND	ND	ND	0.008 J	0.007 V1, J	0.008 J	0.008 J	0.03 M1, M2	0.0101	0.008	0.008 M1, J	0.007 J	0.007 J
Mercury	0.000135	0.002	ND	ND	ND	ND	ND	ND	0.000135	ND	NA	ND	NA	NA	ND	ND U	<0.0005	<0.000 M2	<0.0005 U	<0.000 M2, U	0.00025	ND	ND M1,M2, U	<0.0002 U	<0.0002 U
Molybdenum	0.01745	0.1	0.0109	0.0185	0.0136	0.0118	0.0127	ND J	ND J	ND J	NA	ND J	ND J	ND J	0.00442 J	0.01	0.006 J	0.006 M2, J	0.005 J	<0.01 M2, U	0.0096	0.012	0.01 M1	0.007 J	0.009 J
Radium 226	1.844 pCi/L	5 pCi/L	0.865	0.685	0.473	ND	0.921	0.662	0.795	0.642	NΔ	0.650	1 15	0.730	0.698	0.652	1.83	0.968	0.703	0.912	0.531	0.610 U	1 130	1.81	0.562
Radium 228	1.044 pCI/L	3 pC/L	0.005	0.000	0.473	ND	0.521	0.002	0.795	0.042	IVA	0.000	1.15	0.730	0.090	-0.208	1.03	0.300	0.703	0.512	0.001	0.010	1.130	1.01	0.302
Selenium	0.00066	0.05	ND	ND	ND	ND J	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND U	<0.003	<0.003 M2	<0.003 U	<0.003 U	< 0.00074	ND	ND M1, U	<0.001 U	<0.001 U
Thallium	0.000058	0.002	ND	ND J	ND J	ND	ND	ND	ND	ND	NA	ND	NA	NA	ND	ND U	<0.0020	<0.002 M2	< 0.0020	<0.002 M2, U	< 0.00047	3E-04 J	ND M1, U	0.0001 J	<0.0001 U

NA = Not Analyzed

NA = Not Analyzed
pCi/L = picoCuries per Liter
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
D2 = Sample required dilution due to matrix interference

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable H3 - Sample received and analyzed past holding time.

^{*}All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

ND = Not Detected at or above Method Detection Limit

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 = Sample required dilution due to high concentration of target analyte

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

BOLD - Exceeds GWPS

REID/HMPL CCR SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY Table A-2. MW-8 (down-gradient)

															DATE											
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	1/31/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/17/2019	4/16/2020	9/24/2020	4/21/2021	9/29/2021	3/15/2022	6/7/2022	11/30/2022	6/29/2023	11/20/2023
							B	aseline Events					Assessment	Re-Sample						Ass	essment					
Boron	0.3676	NA	1.46	1.07	1.3	1.00	1.74	1.60 B	1.37 B	1.32	1.54	0.309 JB		1.32	1.46	1.41 B	1.49 D2	1.56 D1	1.41 D2	1.42 D1, M	4 1.5 D1	1.6	1.52	1.53	1.60 D1	1.49 D1, M1,
Calcium	48.11	NA	283	242 B	228	194	235 B	251	253	228	235 B	46.1		253	254 B	272	267 D1	292 D1	257 D1	281 D1, M	2 267 D1	260	257	281	276 D1	251 D1, M1,
Chloride	6.95	NA	48.7	38.2 J	41.4 B	66.4 JB	42.1 B	43.6 B	47.1 B	58.5 JB	38.6 B	4.94		42.0 B	46.3 B	57.2	49.5	47.3	49.2	45.8 D	61.4 D	49	49.3	42.3	48.2	46.5 M2
Fluoride	0.3622	4	ND J	ND J F1	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J		ND J	ND J	0.370 J	0.4	0.4	0.4	0.3	0.4	0.42	0.386	ND U	0.4	0.4 M2
Sulfate	26.59	NA	1100 HB	1140	1120	1080	1220 B	1180 B	1110	1440 B	1040	16.8 B		1050	1180 B	1220 B	1240 D	1130 D	1400 D	1090 D	2320 D	1230	1240	1,330 D	1450 D	1600 D, M1
pH (Field Measurement)	8.034-6.483	NA	7.13	7.14	7.37	7.06	7.50	7.10	7.11	7.10	7.15	7.46	6.97	7.09	6.93	725	7.04	6.78	6.58	6.64	6.12	7.21	6.72	7.88	7.56 H3	7.08
Total Dissolved Solids	310.7	NA	1930	1980	1960	2030	2010	1990	2090	2030	2100	271		2060	1990	2090	2200	1930	1940	2000	2090	2030	2010 B	2,140	2030	1780
APPENDIX IV CONSTITUENTS																										
Antimony	0.0008951	0.006	ND	ND JB	ND JB	ND J	ND	ND JB	ND JB	ND JB	NA	0.0000760 B	ND JB	ND JB	NA	0.000205 JB	ND U	< 0.005	< 0.005	<0.005 U	<0.005 U	<0.00051	ND	ND U	<0.002 U	<0.002 U
Arsenic	0.003938	0.01	ND	ND J	ND J	ND J	ND J	ND J	ND	ND J	NA	0.00116 J	ND JB	ND JB	NA	0.000438 J	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.00028	ND	ND U	<0.0004 U	<0.0004 U
Barium	0.0908	2	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	0.0824 J	ND J	ND J	ND J	0.0188 J	0.016	0.017	0.016	0.018	0.02	0.016	0.017	0.042	0.015	0.016
Beryllium	0.0005	0.004	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0020 V1	<0.0020	<0.0020 U	<0.0020 U	<0.00027	ND	ND U	<0.0010 U	<0.0010 M2, U
Cadmium	0.000076	0.005	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.00022	ND	ND U	<0.0001 U	<0.0001 U
Chromium	0.00171	0.1	ND	ND J	ND	ND	ND	ND	ND	ND	NA	0.00136 J	ND JB	ND JB	NA	0.00320	ND U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0015	ND	ND U	<0.0006 U	<0.0006 U
Cobalt	0.00239	0.006	ND	ND J	ND J	ND J	ND	ND J	ND	ND	NA	0.000158 J	ND J	ND J	NA	0.000141 J	ND U	<0.004	<0.004	<0.004 U	<0.004 U	<0.00026	ND	ND U	<0.004 U	<0.004 U
Fluoride	0.3622	4	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	NA	0.255 J	ND J	ND J	ND J	0.370 J	0.4	0.4	0.4	0.3	0.4	0.42	0.386	ND U	0.4	0.4 M2
Lead	0.00064	0.015	ND	ND	ND	ND J	ND	ND	ND	ND	NA	0.0000730 J	ND	ND	NA	0.000104 J	ND U	<0.002	< 0.002	<0.002 U	<0.0020 U	<0.00017	ND	ND U	<0.0005 U	<0.0005 U
Lithium	0.00994	0.04	0.0314 J	0.035 J	0.0314 J	0.0324 J	0.0408 J	0.0377 J	0.0367 J	0.0375 J	NA	ND	0.0347 J	0.0368 J	0.0375 J	0.0370 J	0.03	0.03	0.03	0.03	0.04	0.035	0.031	0.03	0.03	0.03 M2
Mercury	0.000135	0.002	ND	ND	ND	ND	ND	ND	ND JB	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0005	< 0.0005	<0.0005 U	<0.0005 U	0.00019 J H	ND	2E-04 J	<0.0002 U	<0.0002 M1, Y2,
Molybdenum	0.01745	0.1	0.0138 J	0.0186	0.0157	0.0147	0.0173	0.0158	0.0175	0.0139	NA	0.00442 J	0.0147	0.0140	0.0149	0.0146	0.01	0.01	0.01	0.01	0.01	0.013	0.013	0.01	0.01	0.01
Radium 226	1.844 pCi/L	5 pCi/L	1.00	1.22	4.26	1.26	4.00	4.42	1.40	4.4	NA	0.600	1.20	1.6	1.40	4.42	0.914	1.02	0.200	1.04	1.70	4.47	0.52	4.00	2.10	4.00
Radium 228	1.044 PCI/L	5 pCI/L	1.98	1.32	1.36	1.36	1.92	1.12	1.48	1.4	INA	0.698	1.29	1.6	1.46	1.43	1.59	1.93	0.306	1.94	1.72	1.17	0.52	1.00	2.18	1.82
Selenium	0.00066	0.05	ND	ND	ND	ND J	ND	ND	ND	ND J	NA	ND	ND	NA	NA	0.000634 J	ND U	< 0.003	< 0.003	<0.003 U	<0.003 U	<0.00074	ND	ND U	<0.001 U	<0.001 U
Thallium	0.000058	0.002	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	0.0000470 J	ND U	<0.0020	< 0.0020	<0.0029 U	<0.0020 U	< 0.00047	ND	ND U	<0.0001 U	<0.0001 U

NA = Not Analyzed
pCi/L = picoCuries per Liter
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
D2 = Sample required dilution due to matrix interference
M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
H3 - Sample received and analyzed past holding time.

^{*}All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

ND = Not Detected at or above Method Detection Limit

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 = Sample required dilution due to high concentration of target analyte

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

BOLD - Exceeds GWPS

Table	A 2	MAIA/ O	(down-gradient)

Table A-3. MW-9 (down-gradient)															DATE											
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016		5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018	9/26/2018	5/2/2019	10/17/2019	4/16/2020	9/24/2020	4/21/2021	9/29/2021	3/15/2022	6/07/2022	11/30/2022	6/29/2023	11/21/2023
							Base	line Events					Assessment	Re-Sample						As	sessment					
Boron	0.3676	NA	0.316	0.264 J	0.333 J	0.257 J	0.431 J	0.362 JB	0.101 JB	0.0844 J	0.0816 J	0.309 JB		0.239 J	0.0857 J	0.307 JB	ND D2, U	0.32	0.22	0.23	<0.10 U	0.084 J	0.078 J	ND U	<0.10 U	<0.10 V1, U
Calcium	48.11	NA	64.1	71.2 B	71.5	72.3	75.0 B	72.9	60.8	57.6	57.0 B	46.1		68.6	60.3 B	68.6	66.8 D2	71.2 D2	65.3 D2	66.9 D1	59.4 D1	61	62.4	60.5	62.3 D1	59.4 D1
Chloride	6.95	NA	26.5 B	30.9	36.6 B	32.6 B	42.4 B	38.0 B	6.40 B	7.14 B	5.83 B	4.94		31.2 B	6.93 B	21.8	17.6	22.8	19.9	22.5	7.2	6.7	6.6	6.7	6.1	6.5
Fluoride	0.3622	4	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	ND J	0.255 J		ND J	ND J	0.223 J	0.2	0.3	0.3	0.2	0.2	0.20	0.192	0.2	0.2	0.2
Sulfate	26.59	NA	9.51	17.6	27.7	39.6	57.2 B	30.4	ND J	ND JB	ND J	16.8 B		ND J	0.481 JB	0.223 JB	ND U	<1	<1	<1 U	<1 U	< 0.35	ND	0.6 J	0.5 J	<0.5 U
oH (Field Measurement)	8.034-6.483	NA	7.32	7.27	7.55	7.13	7.64	7.31	7.04	7.04	7.04	7.46	7.13	7.00	6.69		7.22	7.04	6.67	7.12	6.23	7.05	6.53	7.74	7.45 H3	6.93
Total Dissolved Solids	310.7	NA	363	389	403	409	465	435	303	308	316	271		399	293		392	320	308	422	264	298	291 H	306	338	314
APPENDIX IV CONSTITUENTS																										
Antimony	0.0008951	0.006	ND	ND JB	ND JB	ND J	ND	ND JB	ND JB	ND JB	NA	0.0000760 B	ND JB	ND JB	NA	0.000192 JB	ND U	< 0.005	< 0.005	<0.005 U	<0.005 U	<0.00051	ND	ND U	<0.002 U	<0.002 U
Arsenic	0.003938	0.01	ND	ND J	ND J	ND J	ND J	ND J	ND J	ND	NA	0.00116 J	ND JB	ND JB	NA	0.000563 J	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.00028	ND	ND U	<0.0004 U	<0.0004 U
Barium	0.0908	2	1.1	1.03	0.889	0.635	0.827	0.833	0.253	0.227	NA	0.0824 J	0.967	0.777	0.288	1.03	0.763	1.06 D1	0.730	0.782	0.248	0.26	0.258	0.253	0.245	0.251
Beryllium	0.0005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0020 V1	<0.0020	<0.0020 U	<0.0020 U	<0.00027	ND	ND U	<0.0010 U	<0.0010 U
Cadmium	0.000076	0.005	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.00022	ND	ND U	<0.0001 U	<0.0001 U
Chromium	0.00171	0.1	ND	ND	ND	ND	ND	ND	ND	ND	NA	0.00136 J	ND JB	ND JB	NA	0.00316	ND U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.0015	ND	0.0048	<0.0006 U	<0.0006 U
Cobalt	0.00239	0.006	ND	ND J	ND J	ND J	ND	ND	ND	ND	NA	0.000158 J	ND JB	ND J	NA	0.0000550 J	ND U	< 0.004	<0.004	<0.004 U	<0.004 U	<0.00026	ND	ND U	<0.004 U	<0.004 U
Fluoride	0.3622	4	ND J	ND J	ND J	ND J	ND JB	ND J	ND J	ND J	NA	0.255 J	ND JB	ND J	ND J	0.223 J	0.2	0.3	0.3	0.2	0.2	0.20	0.192	0.2	0.2	0.2
_ead	0.00064	0.015	ND	ND JB	ND	ND J	ND	ND	ND	ND	NA	0.0000730 J	ND	ND	NA	0.0000760 J	ND U	<0.002	<0.002	<0.002 U	<0.002 U	<0.00017	ND	ND U	<0.0005 U	<0.0005 U
_ithium	0.00994	0.04	0.0120 J	0.0105 J	0.0102 J	0.0119 J	0.0179 J	0.0136 J	ND	ND	NA	ND	0.0108 JB	0.0112 J	ND	0.0141 J	0.009 J	0.01 V1, J	0.009 J	0.01 J	0.005 J	0.0078	0.00673 J	0.006 J	0.006 J	0.006 J
Mercury	0.000135	0.002	ND	ND	ND	ND	ND	ND	ND JB	ND J	NA	ND	ND	NA	NA	ND	ND U	<0.0005	<0.0005	<0.0005 U	<0.0005 U	0.00022 H	ND	0.0002 J	<0.0002 Y2, U	<0.0002 U
Molybdenum	0.01745	0.1	ND	ND	ND	ND	ND	ND	ND	ND	NA	0.00442 J	ND	ND	ND	ND	ND U	<0.01	<0.01	<0.01 U	<0.01 U	<0.00061	ND	ND U	<0.002 U	<0.002 U
Radium 226	1.844 pCi/L	5 pCi/L	2.07	2.04	2.04	4.20	244	2.52	4.20	4.00	NA	0.000	204	4.02	4.22	2.22	1.09	2.00	2.44	2.00	4.42	4.25	4.75	4.70	4.74	4.20
Radium 228	1.044 POVE	5 POVE	2.01	2.04	2.91	1.30	2.11	2.03	1.20	1.20	INA	0.096	2.04	1.55	1.23	2.32	1.23	2.90	3.44	3.59	1.13	1.35	1.75	1.70	1.71	1.20
Selenium	0.00066	0.05	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.003	<0.003	<0.003 U	<0.003 U	<0.00074	ND	ND U	<0.001 U	<0.001 U
Thallium	0.000058	0.002	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	< 0.0020	< 0.0020	<0.0020 U	<0.0020 U	< 0.00047	0.000372 J	ND U	0.0001 J	<0.0001 U

"All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

ND = Not Detected at or above Method Detection Limit

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 = Sample required diktion due to high concentration of target analyte

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

BOLD - Exceeds GWPS

NA = Not Analyzed
pCi/L = picoCuries per Liter
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
D2 = Sample required dilution due to matrix interference
M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
H3 - Sample received and analyzed past holding time.

REID/HMPL CCR SURFACE IMPOUNDMENT - ANALYTICAL SUMMARY Table A-4. MW-10 (down-gradient)

Table A-4. MW-10 (down-gradient)															DATE											
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/30/2016	5/31/2016	8/23/2016	10/18/2016	2/9/2017	5/11/2017	8/23/2017	9/22/2017	10/11/2017	5/2/2018	4/6/2018	6/29/2018		5/2/2019	10/17/2019	4/16/2020	9/24/2020	4/21/2021	9/29/2021	3/15/2022	6/7/2022	11/30/2022	6/29/2023	11/21/2023
							Base	line Events					Assessment	Re-Sample						A	Assessment					
Boron	0.3676	NA	0.416	0.336 J	0.460 J	0.489 J	0.540 JB	0.679 JB	0.560 JB	0.543 J	0.637 J	0.309 JB		0.419 J	0.464 J	0.498 JB	ND D2,U	0.54	0.51	0.54	0.54	0.55	0.534	0.53	0.52	0.56
Calcium	48.11	NA	16.5	21.3 B	23	36	14.3 B	13.1	33.7	21.4	11.9 B	46.1		9.94	10.5 B	19.5	9.76 D2	12.5 D2	8.80 D2	7.95 D1	8.25	15	11.5	8.56	8.67	9.16
Chloride	6.95	NA	31.5 B	26.9	28.9 B	31.6 B	29.4 JB	29.1 B	32.3 B	29.7 B	25.8 B	4.94		26.7 B	27.9 B	26.6	25.7	21.5	21.4	21.4	20.7	18	16.7	17.8	16.2	17.2
Fluoride	0.3622	4	ND J	ND J	ND J	ND J	ND	ND J	ND J	ND J	ND J	0.255 J		ND J	ND J	0.570 J	0.6	0.5	0.5	0.5	0.5	0.62	0.54	0.6	0.5	0.5
Sulfate	26.59	NA	208 HB	135	144	152	145	168	177 B	226 B	147	16.8 B		129	138 B	114 B	80 D	58 D	62 D	52 D	61 D	41	32.3	30	25	24
pH (Field Measurement)	8.034-6.483	NA	9.72	8.95	8.1	7.53	7.08	9.84	8.14	8.14	9.19	7.46	9.37	9.15	8.98	9.15	9.24	8.87	8.74	9.88	8.26	9.34	8.68	9.82	8.95 H3	9.12
Total Dissolved Solids	310.7	NA	644	532	558	602	679	763	758	763	728	271		721	673	642	568	466	436	530	514	480	439 H	530	428	408
APPENDIX IV CONSTITUENTS																										
Antimony	0.0008951	0.006	ND	ND JB	ND JB	ND J	ND	ND JB	ND JB	ND JB	NA	0.0000760 B	ND JB	ND JB	NA	0.0000580 JB	ND U	< 0.005	<0.005	<0.005 U	<0.005 U	<0.00051	ND	ND U	<0.002 U	<0.002 U
Arsenic	0.003938	0.01	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	NA	0.00116 J	ND JB	ND JB	NA	0.00254 J	0.0022	0.0019	0.0019	0.0018	0.0017	0.0019	0.0015 J	0.0016	0.0015	0.0016
Barium	0.0908	2	ND J	ND J	ND J	ND J	ND JB	ND J	ND JB	ND J	NA	0.0824 J	ND J	ND J	ND J	0.100 J	0.077	0.093	0.084	0.089	0.096	0.13	0.126	0.129	0.14	0.165
Beryllium	0.0005	0.004	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0020 V1	<0.0020	<0.0020 U	<0.0020 U	< 0.00027	ND	ND U	<0.0010 U	<0.0010 U
Cadmium	0.000076	0.005	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	< 0.00022	ND	ND U	<0.0001 U	<0.0001 U
Chromium	0.00171	0.1	ND J	ND J	ND J	ND	ND J	ND J	ND JB	ND	NA	0.00136 J	ND JB	ND JB	NA	0.00299 J	0.0006 J	< 0.0020	0.0006 J	0.0007 J	0.0006 J	0.0016 J	ND	ND U	<0.0006 U	0.0006 J
Cobalt	0.00239	0.006	ND	ND J	ND J	ND J	ND J	ND J	ND JB	ND J	NA	0.000158 J	ND J	ND J	NA	0.000685 J	ND U	< 0.004	< 0.004	<0.004 U	<0.004 U	0.00068	0.000419 J	ND U	<0.004 U	<0.004 U
Fluoride	0.3622	4	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	NA	0.255 J	ND J	ND J	ND J	0.570 J	0.6	0.5	0.5	0.5	0.5	0.62	0.54	0.6	0.5	0.5
Lead	0.00064	0.015	ND	ND JB	ND	ND J	ND J	ND J	ND	ND	NA	0.0000730 J	ND J	ND	NA	0.000671 J	ND U	< 0.002	<0.002	<0.002 U	<0.002 U	0.00027 J	ND	ND U	<0.0005 U	<0.0005 U
Lithium	0.00994	0.04	0.339	0.199	0.219	0.0736	0.481	0.607	0.204	0.345	NA	ND	0.694	0.630	0.570	0.574	0.51	0.49	0.56	0.57	0.49	0.55	0.486	0.5	0.52	0.54
Mercury	0.000135	0.002	ND	ND	ND	ND	ND	ND	ND JB	ND	NA	ND	ND	NA	NA	ND	0.0002 J	0.0002 J	0.0002 J	0.0003 J	0.0002 J	0.00019 J H	ND	0.0003 J	<0.0002 U	0.0002 J
Molybdenum	0.01745	0.1	0.0170 J	0.0171	0.0141	ND J	0.0119	ND J	ND J	ND J	NA	0.00442 J	ND J	ND J	ND J	0.00797 J	0.007 J	0.006 J	0.007 J	0.007 J	0.007 J	0.0065	0.00545	0.006 J	0.005 J	0.005 J
Radium 226	1.844 pCi/L	5 pCi/L	0.612	ND	0.715	ND	0.422	0.287	0.619	0.301	NΔ	0.608	0.512	0.683	0.704	0.20511	0.458	1.24	0.594	0.760	0.602	0.826	0.805	0.856	1 010	0.210
Radium 228	1.044 POVE	3 POVE	0.012	140	0.713	ND	0.422	0.207	0.019	0.551	1474	0.030	0.512	0.003	0.704	0.2050	0.379	1.24	0.394	0.709	0.092	0.020	0.000	0.000	1.310	0.210
Selenium	0.00066	0.05	ND	ND	ND	ND J	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	< 0.003	<0.003	<0.003 U	<0.003 U	< 0.00074	ND	ND U	<0.001 U	<0.001 U
Thallium	0.000058	0.002	ND	ND J	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	NA	ND	ND U	< 0.0020	< 0.0020	<0.0020 U	<0.0020 U	< 0.00047	0.000667 J	ND U	<0.0001 U	<0.0001 U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

ND = Not Detected at or above Method Detection Limit

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 = Sample required dilution due to high concentration of target analyte

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

BOLD -Exceeds GWPS

NA = Not Analyzed
pCit = picoCuries per Liter
B = Compound was found in the blank and sample.
F1 = MS and/or MSD Recovery is outside acceptance limits.
D2 = Sample required dilution due to matrix interference
M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
H3 - Sample received and analyzed past holding time.

Table A-5. MW-110 (down-gradient)

								D	ATE					
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/29/2019	4/10/2019	10/24/2019	4/17/2020	10/1/2020	5/26/2021	10/1/2021	3/15/2022	6/7/2022	12/2/2022	6/30/2023	11/20/2023
					•	•		Charac	terization	•		•		•
Boron	0.3676	NA	0.484 JB	0.496 JB	ND D2, U	0.54 M4	0.53 D2, M1, M4	0.54	0.52	0.60	0.537	0.53	0.51 M2	0.56 M2
Calcium	48.11	NA	176 B	178	204 D1	181 D1, M2	162 D1, M2	163 D1	155 D1	150	143	151 D1	152 D1, M3	105 D1, M3
Chloride	6.95	NA	26.0	30.4 B	30.0	22.1	19.9	21.8	21.1	20	19.6	2.1	17.7	17.6 M2
Fluoride	0.3622	4	0.279 J	0.255 JB	0.3	0.3	0.3	0.3	0.3	0.36	0.326	0.3	0.3	0.3
Sulfate	26.59	NA	563	596 B	` D M1	460 D	411 D	428 D	853 D	440	450	539 D	493 D	401 D, M1
pH (Field Measurement)	8.034-6.483	NA	7.25	7.50	6.84	7.17	7.56	7.75	6.69	7.19	6.87	7.28	7.68 H3	7.15
Total Dissolved Solids	310.7	NA	1170	1200	1270	1150	1060	1140	1090	930	934 B	1,020	1070	824
APPENDIX IV CONSTITUENTS														
Antimony	0.0008951	0.006	0.000240 JB	0.000204 JB	ND U	<0.005	<0.005 M4	<0.005 U	<0.005 U	<0.00051	ND	ND U	<0.002 U	<0.002 U
Arsenic	0.003938	0.01	0.00534	0.00238 J	ND U	0.0012	0.0004 J	<0.0010 U	<0.0010 U	0.0011	0.00198 J	ND U	<0.0004 U	0.0006 J
Barium	0.0908	2	0.118 J	0.107 JB	0.065	0.065	0.056 M1	0.055	0.049	0.059	0.0696	0.049	0.046	0.046
Beryllium	0.0005	0.004	0.000716 J	0.000314 J	ND U	<0.0020 M2	<0.0020 M4	<0.0020 U	<0.0020 U	<0.00027	ND	ND U	<0.0010 U	<0.0010 U
Cadmium	0.000076	0.005	ND	ND	ND U	<0.0010	<0.0010	<0.0010 U	<0.0010 U	<0.00022	ND	ND U	<0.0001 U	<0.0001 U
Chromium	0.00171	0.1	0.0180 B	0.0115	0.0010 J	0.0047	0.0016 J	0.0009 J	<0.0020 U	0.0035	0.00729	ND U	<0.0006 U	0.0028
Cobalt	0.00239	0.006	0.00911 B	0.00384 J	ND U	<0.004	<0.004 M4	<0.004 U	<0.004 U	0.0017	0.00359	ND U	<0.004 U	<0.004 U
Fluoride	0.3622	4	0.279 J	0.255 JB	0.3	0.3	0.3	0.3	0.3	0.36	0.326	0.3	0.3	0.3
Lead	0.00064	0.015	0.00661	0.00399 J	ND U	0.002	0.0008 J	<0.002 U	<0.002 U	0.0017	0.00328	ND U	<0.0005 U	0.001 J
Lithium	0.00994	0.04	0.0299 J	0.0303 J	0.02	0.02	0.02 M4	0.02	0.02	0.0203	0.0217	0.01 J	0.01 J	0.01 J
Mercury	0.000135	0.002	ND	ND ^	ND U	0.0002 J	<0.0005 M1, M4	<0.0005 U	<0.0005 U	<0.00013 H	ND	ND U	<0.0002 U	<0.0002 M1, Y2, U
Molybdenum	0.01745	0.1	0.00153 J	0.00120 J	ND U	<0.01	<0.01 M4	<0.01 U	<0.01 U	<0.00061	0.00123	ND U	<0.002 U	<0.002 U
Radium 226	1.844 pCi/L	5 pCi/L	1.84	1 93	0.195	1 37	0.941	0.636	0.652	1.580	-0.901 U	1.09	1.25	0.811
Radium 228	1.044 pCI/L	3 pC//L	1.04	1.53	0.727	1.37	0.541	0.030	0.032	1.500	-0.5010	1.03	1.23	0.011
Selenium	0.00066	0.05	ND	ND	ND U	<0.003	<0.003 M4	<0.003 U	<0.003 U	<0.00074	ND	ND U	<0.001 U	<0.001 U
Thallium	0.000058	0.002	0.000112 J	0.0000640 J	ND U	<0.0020	<0.0020	<0.0020 U	<0.0020 U	<0.00047	0.000569 J	ND U	0.0002 J	<0.0001 U

^{*}All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL)

GWPS = Groundwater Protection Standard

BOLD -Exceeds GWPS

NA = Not Analyzed

pCi/L = picoCuries per Liter

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

D2 = Sample required dilution due to matrix interference

M3 = The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 = The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

H3 - Sample received and analyzed past holding time.

ND = Not Detected at or above Method Detection Limit

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 = Sample required dilution due to high concentration of target analyte

M1 = Matrix spike recovery was high; the method control sample recovery was acceptable

M2 = Matrix spike recovery was low; the method control sample recovery was acceptable

U = Target analyte was analyzed for, but was below detection limit

V1 = CCV recovery was above method acceptance limits. This target analyte not detected in the sample

Table A-6. MW-111 (down-gradient)

						DA	TE				
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/16/2	2022 6/0	7/2022	12/02	/2022	6/30/	2023	11/20	/2023
ALL ENDIX III CONCINICENTO		00				Characte	erization				
Boron	0.3676	NA	0.54	0.521		0.5		0.48		0.57	
Calcium	48.11	NA	19	16.5		16	D1	20.4	D1	16.6	D1
Chloride	6.95	NA	18	19.8		16.7		19.4		18.2	
Fluoride	0.3622	4	0.55	0.561		0.5		0.4		0.4	M1
Sulfate	26.59	NA	6.7	2.86		0.9	J	5		2	
pH (Field Measurement)	8.034-6.483	NA	8.00	7.56		8.17		8.18	H3	7.94	
Total Dissolved Solids	310.7	NA	310	305	Н	326		358		292	
APPENDIX IV CONSTITUENTS											
Antimony	0.0008951	0.006	0.0018	J N	D	ND	U	<0.002	U	<0.002	U
Arsenic	0.003938	0.01	0.0014	0.001)6 J	0.0008	J	0.0007	J	0.0011	
Barium	0.0908	2	0.89	0.7	18	0.848		0.89		1.03	D1
Beryllium	0.0005	0.004	<0.00027	N	D	ND	U	<0.0010	U	<0.0010	U
Cadmium	0.000076	0.005	<0.00022	N	D	ND	U	<0.0001	U	< 0.0001	U
Chromium	0.00171	0.1	<0.0015	N	D	ND	U	<0.0006	U	< 0.0006	U
Cobalt	0.00239	0.006	0.00085	0.0002	6 J	ND	U	<0.004	U	< 0.004	U
Fluoride	0.3622	4	0.55	0.5	51	0.5		0.4		0.4	M1
Lead	0.00064	0.015	0.00054	J	D	ND	U	<0.0005	U	< 0.0005	U
Lithium	0.00994	0.04	0.014	0.009	14	0.008	J	0.008	J	0.008	J
Mercury	0.000135	0.002	0.00031	N	D	0.0002	J	<0.0002	U	< 0.0002	U
Molybdenum	0.01745	0.1	0.0044	J 0.005	27	0.003	J	0.003	J	0.002	J
Radium 226	1.844 pCi/L	5 pCi/L	0.67	U 0.	18	1.64		1.48		1.71	
Radium 228	1.044 pCI/L	5 pCI/L	0.67	0.	ю	1.04		1.40		1.71	
Selenium	0.00066	0.05	< 0.00074	N	D	ND	U	<0.001	U	<0.001	U
Thallium	0.000058	0.002	< 0.00047	1	D	ND	U	0.0001	J	<0.0001	U

^{*}All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL) GWPS - Groundwater Protection Standard

ND - Not Detected at or above Method Detection Limit

NA - Not Analyzed

pCi/L - picoCuries per Liter

B - Compound was found in the blank and sample.

F1 - MS and/or MSD Recovery is outside acceptance limits.

D2 - Sample required dilution due to matrix interference

M3 - The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable

M4 - The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable

H3 - Sample received and analyzed past holding time.

J - Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

D1 - Sample required dilution due to high concentration of target analyte

M1 - Matrix spike recovery was high; the method control sample recovery was acceptable

M2 - Matrix spike recovery was low; the method control sample recovery was acceptable

U - Target analyte was analyzed for, but was below detection limit

V1 - CCV recovery was above method acceptance limits. This target analyte not detected in the sample BOLD -Exceeds GWPS

Table A-7. MW-112 (down-gradient)								DA	TE					
APPENDIX III CONSTITUENTS	Pred. Limit	GWPS	3/17/	2022	6/07/	2022	7/26/	2022	12/02	/2022	6/30/	/2023	11/20	/2023
ALL ENDIX III CONSTITUENTS	Trea. Linix	OW 5		Characteri	zation		Resa	ımple			Charact	erization		
Boron	0.3676	NA	0.39		0.331		NA		0.36		0.33		0.37	
Calcium	48.11	NA	29		30.7		NA		28.2	D1	30.2	D1	27.6	D1
Chloride	6.95	NA	8.4		9.5		NA		9.1		10.9		10.9	
Fluoride	0.3622	4	0.31		0.287		NA		0.3		0.3		0.3	M1
Sulfate	26.59	NA	12.4		14.7		NA			M1	24		24	
pH (Field Measurement)	8.034-6.483	NA	7.76		7.40		NA		7.80		7.98	H3	7.50	
Total Dissolved Solids	310.7	NA	288		275		NA		330		306		278	
APPENDIX IV CONSTITUENTS														
Antimony	0.0008951	0.006	0.00058	J	ND		NA		ND	U	< 0.002	U	<0.002	U
Arsenic	0.003938	0.01	0.00089	J	0.00336	J	NA		0.0009	J	0.0014		0.0018	
Barium	0.0908	2	0.34		0.43		NA		0.316		0.319		0.331	
Beryllium	0.0005	0.004	<0.00027		0.00203		NA		ND	U	<0.0010	U	<0.0010	U
Cadmium	0.000076	0.005	<0.00022		ND		NA		ND	U	<0.0001	U	<0.0001	U
Chromium	0.00171	0.1	0.0024		0.0311		NA		ND	U	<0.0006	U	0.0021	
Cobalt	0.00239	0.006	0.002		0.0141		0.00297		ND	U	< 0.004	U	< 0.004	U
Fluoride	0.3622	4	0.31		0.287		NA		0.3		0.3		0.3	M1
Lead	0.00064	0.015	0.001		0.013		NA		ND	U	< 0.0005	U	0.0006	J
Lithium	0.00994	0.04	0.011		0.0319		NA		0.007	J	0.006	J	0.007	J
Mercury	0.000135	0.002	< 0.00013		ND		NA		0.0003	J	< 0.0002	U	<0.0002	U
Molybdenum	0.01745	0.1	0.0062		0.00605		NA		0.005	J	0.005	J	0.006	J
Radium 226	1.844 pCi/L	5 pCi/L	0.71		2.56		NA		1.2		1.69		0.565	
Radium 228	1.044 PCI/L	3 pGI/L	0.71	5	2.56						1.09		0.565	
Selenium	0.00066	0.05	<0.00074		ND		NA		ND	U	<0.001	U	<0.001	U
Thallium	0.000058	0.002	< 0.00047		0.000277	J	NA		ND	U	0.0001	J	<0.0001	U

*All results listed in milligrams per liter (mg/L) unless otherwise noted by the Maximum Contaminant Level (MCL) GWPS - Groundwater Protection Standard ND - Not Detected at or above Method Detection Limit

ND - Not Detected at or above Method Detection Limit
J - Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.
D1 - Sample required dilution due to high concentration of target analyte
M1 - Matrix spike recovery was high; the method control sample recovery was acceptable
M2 - Matrix spike recovery was low; the method control sample recovery was acceptable
U - Target analyte was analyzed for, but was below detection limit
V1 - CCV recovery was above method acceptance limits. This target analyte not detected in the sample
BOLD - Exceeds GWPS

NA - Not Analyzed
pCi/L - picoCuries per Liter
B - Compound was found in the blank and sample.
F1 - MS and/or MSD Recovery is outside acceptance limits.
D2 - Sample required dilution due to matrix interference
M3 - The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable
M4 - The analysis of the spike sample required a dilution such that the spike concentration was diluted below the reporting limit. The method control sample recovery was acceptable
H3 - Sample received and analyzed past holding time.

APPENDIX B

Analytical Data Packages

Certificate of Analysis 3032611

Greg Dick Big Rivers Electric Corporation Reid/Green Station PO Box 24 Henderson, KY 42419 Customer ID: Report Printed:

44-102032 07/31/2023 11:54

Project Name: HMPL S

HMPL Surface Impoundment

Workorder:

3032611

Dear Greg Dick

Enclosed are the analytical results for samples received by the laboratory 06/30/2023 12:44.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3032611-01	MW7/		Groundwater	06/29/2023 09:30	06/30/2023 12:44	Greg Dick
3032611-02	MW8/		Groundwater	06/29/2023 14:00	06/30/2023 12:44	Greg Dick
3032611-03	MW9/		Groundwater	06/29/2023 15:15	06/30/2023 12:44	Greg Dick
3032611-04	MW10/		Groundwater	06/29/2023 18:05	06/30/2023 12:44	Greg Dick
3032611-05	DUPLICATE/		Groundwater	06/29/2023 15:50	06/30/2023 12:44	Greg Dick
3032611-06	FIELD BLANK/		Water	06/29/2023 18:45	06/30/2023 12:44	Greg Dick
<u>LabNumber</u>	<u>Measurement</u>	<u>Value</u>				
3032611-01	Field Conductance	456				
	Field pH	6.87				
	Field Temp (C)	15.85				
3032611-02	Field Conductance	2560				
	Field pH	6.82				
	Field Temp (C)	17.92				
3032611-03	Field Conductance	521				
	Field pH	6.77				
	Field Temp (C)	18.90				
3032611-04	Field Conductance	770				
	Field pH	8.73				
	Field Temp (C)	17.71				
3032611-05	Field Conductance	521				
	Field pH	6.77				
	Field Temp (C)	18.90				

ANALYTICAL RESULTS

Sample Collection Date Time: 06/29/2023 09:30 Lab Sample ID: 3032611-01 Sample Received Date Time: 06/30/2023 12:44 Description: MW7

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Arsenic	0.0020		mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Barium	0.076		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Boron	0.33		mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:16	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Calcium	44.1	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:19	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Lithium	0.007	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Molybdenum	0.007	J	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:01	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.69	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	186		ma/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.411	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.40	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.81	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.81	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	2.6	mg/L	0.5	0.4	SW846 9056	07/05/2023 22:51	07/05/2023 22:51	CSC
Fluoride	0.2	mg/L	0.2	0.2	SW846 9056	07/05/2023 22:51	07/05/2023 22:51	CSC
Sulfate	10	mg/L	1	0.5	SW846 9056	07/05/2023 22:51	07/05/2023 22:51	CSC

Pace®
ANALYTICAL SERVICES

Pace Analytical Services, LLC
P.O. Box 907
Madisonville, KY 42431
270.821.7375
www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: **3032611-02** Sample Collection Date Time: 06/29/2023 14:00 Description: **MW8** Sample Received Date Time: 06/30/2023 12:44

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Barium	0.015		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Boron	1.60	D1	mg/L	1.00	1.00	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:28	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Calcium	276	D1	mg/L	40.0	13.0	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:32	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Lithium	0.03		mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Molybdenum	0.01		mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:03	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.56	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	2030		mg/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.676	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.50	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	2.18	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	2.18	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	48.2		mg/L	0.5	0.4	SW846 9056	07/05/2023 23:18	07/05/2023 23:18	CSC
Fluoride	0.4		mg/L	0.2	0.2	SW846 9056	07/05/2023 23:18	07/05/2023 23:18	CSC
Sulfate	1450	D	mg/L	10	5	SW846 9056	07/05/2023 23:46	07/05/2023 23:46	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 3032611-03

Description: MW9

Sample Collection Date Time: 06/29/2023 15:15 Sample Received Date Time: 06/30/2023 12:44

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Barium	0.245		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:35	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Calcium	62.3	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:38	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Lithium	0.006	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Mercury	ND	Y2, U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:06	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.45	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	338		mg/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.982	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	0.727	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.71	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.71	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	6.1	mg/L	0.5	0.4	SW846 9056	07/06/2023 00:13	07/06/2023 00:13	CSC
Fluoride	0.2	mg/L	0.2	0.2	SW846 9056	07/06/2023 00:13	07/06/2023 00:13	CSC
Sulfate	0.5	J mg/L	1	0.5	SW846 9056	07/06/2023 00:13	07/06/2023 00:13	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

Lab Sample ID: 3032611-04

Description: MW10

Sample Collection Date Time: 06/29/2023 18:05 Sample Received Date Time: 06/30/2023 12:44

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Arsenic	0.0015		mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Barium	0.140		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Boron	0.52		mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:54	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Calcium	8.67		mg/L	0.40	0.13	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:54	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Lithium	0.52		mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Molybdenum	0.005	J	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:08	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.95	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	428		ma/L	100	100	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.574	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.34	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.91	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.91	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	16.2	mg/L	0.5	0.4	SW846 9056	07/06/2023 01:35	07/06/2023 01:35	CSC
Fluoride	0.5	mg/L	0.2	0.2	SW846 9056	07/06/2023 01:35	07/06/2023 01:35	CSC
Sulfate	25	mg/L	1	0.5	SW846 9056	07/06/2023 01:35	07/06/2023 01:35	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3032611-05**Description: **DUPLICATE**Sample Collection Date Time: 06/29/2023 15:50
Sample Received Date Time: 06/30/2023 12:44

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Barium	0.252		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Boron	ND	U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 14:03	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Calcium	61.0	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 14:06	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Lithium	0.007	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:10	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.45	H3	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	330		mg/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	1.11	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.43	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	2.54	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	2.54	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result Fla	ag Units	MRL	MDL Method	Prepared	Analyzed	Analyst
Chloride	6.3	mg/L	0.5	0.4 SW846 9056	07/06/2023 02:03	07/06/2023 02:03	CSC
Fluoride	0.2	mg/L	0.2	0.2 SW846 9056	07/06/2023 02:03	07/06/2023 02:03	CSC
Sulfate	0.5 J	mg/L	1	0.5 SW846 9056	07/06/2023 02:03	07/06/2023 02:03	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3032611-06**Description: **FIELD BLANK**Sample Collection Date Time: 06/29/2023 18:45
Sample Received Date Time: 06/30/2023 12:44

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Barium	ND	U	mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Boron	ND	M2, U	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 14:13	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Calcium	ND	M1, U	mg/L	0.40	0.13	SW846 6010 B	07/03/2023 09:56	07/05/2023 14:13	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Lithium	ND	U	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 16:13	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result Fl		Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	5.84	НЗ	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	ND	п	ma/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.171	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	0.468	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	0.639	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	0.639	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	ND	M1, U	mg/L	0.5	0.4	SW846 9056	07/06/2023 02:58	07/06/2023 02:58	CSC
Fluoride	ND	M1, U	mg/L	0.2	0.2	SW846 9056	07/06/2023 02:58	07/06/2023 02:58	CSC
Sulfate	ND	M1, U	mg/L	1	0.5	SW846 9056	07/06/2023 02:58	07/06/2023 02:58	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3032611

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

Results reported from dilution.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D

Y2

MDI

	•
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
E	Concentration exceeds calibration range
H3	Sample received and analyzed past holding time.
J	Estimated value.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Qualifiers/Acronyms

IVIDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery
RPD	Relative Percent Difference

Method Detection Limit

Series Greater than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Blank (BCG0024-BLK1)										
·										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023 10:44	ND	0.40								
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
Blank (BCG0024-BLK2)										
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023 15:39										
Molybdenum	ND	0.01	mg/L							U
Antimony	ND	0.005	mg/L							U
Mercury	ND	0.0005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	0.0001	0.0020	mg/L							J
LCS (BCG0024-BS1)										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023 10:47										
Boron	0.13	0.10	mg/L	0.125		103	85-115			
Calcium	6.32	0.40	mg/L	6.25		101	85-115			
LCS (BCG0024-BS2)										
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023 15:41										
Molybdenum	0.06	0.01	mg/L	0.0625		101	85-115			
Antimony	0.060	0.005	mg/L	0.0625		95.8	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		99.0	85-115			
Arsenic	0.0603	0.0010	mg/L	0.0625		96.4	85-115			
Barium	0.061	0.004	mg/L	0.0625		98.1	85-115			
Beryllium	0.0601	0.0020	mg/L	0.0625		96.2	85-115			
Cadmium	0.0601	0.0010	mg/L	0.0625		96.1	85-115			
Chromium	0.0621	0.0020	mg/L	0.0625		99.3	85-115			
Cobalt	0.062	0.004	mg/L	0.0625		99.0	85-115			
Lead	0.060	0.002	mg/L	0.0625		96.6	85-115			
Lithium	0.06	0.02	mg/L	0.0625		96.5	85-115			
Selenium	0.058	0.003	mg/L	0.0625		92.9	85-115			
Thallium	0.0594	0.0020	mg/L	0.0625		95.1	85-115			

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	tais by Svvo40 60					-			DDD	
A	D "	Reporting	1.121	Spike	Source	0/550	%REC	DES	RPD	Nier
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Matrix Spike (BCG0024-MS1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023	12:09									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	160	4.00	mg/L	6.25	152	123	80-120			D2, M3
Matrix Spike (BCG0024-MS2)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023	12:16									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	8.40	4.00	mg/L	6.25	ND	134	80-120			D2, M1
Matrix Spike (BCG0024-MS3)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023	16:33									
Antimony	0.062	0.005	mg/L	0.0625	ND	99.5	80-120			
Mercury	0.0027	0.0005	mg/L	0.00250	ND	109	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	105	80-120			
Arsenic	0.0631	0.0010	mg/L	0.0625	ND	101	80-120			
Barium	0.108	0.004	mg/L	0.0625	0.046	98.7	80-120			
Beryllium	0.0573	0.0020	mg/L	0.0625	ND	91.7	80-120			
Cadmium	0.0603	0.0010	mg/L	0.0625	ND	96.5	80-120			
Chromium	0.0617	0.0020	mg/L	0.0625	ND	98.7	80-120			
Cobalt	0.060	0.004	mg/L	0.0625	ND	96.7	80-120			
Lead	0.060	0.002	mg/L	0.0625	ND	95.3	80-120			
Lithium	0.07	0.02	mg/L	0.0625	0.01	91.3	80-120			
Selenium	0.059	0.003	mg/L	0.0625	ND	93.6	80-120			
Thallium	0.0597	0.0020	mg/L	0.0625	0.0002	95.2	80-120			
Matrix Spike (BCG0024-MS4)	Source: 3032611-06		-							
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023										
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120			
Mercury	0.0029	0.0005	mg/L	0.00250	ND	118	80-120			
Antimony	0.061	0.005	mg/L	0.0625	ND	98.1	80-120			
Arsenic	0.0625	0.0010	mg/L	0.0625	ND	100	80-120			
Barium	0.063	0.004	mg/L	0.0625	ND	100	80-120			
Beryllium	0.0617	0.0020	mg/L	0.0625	ND	98.8	80-120			
Cadmium	0.0617	0.0020	mg/L	0.0625	ND	98.8	80-120			
Chromium	0.0638	0.0010	mg/L	0.0625	ND	102	80-120			
Cobalt	0.065	0.0020	mg/L	0.0625	ND	104	80-120			
Lead	0.063	0.004	-	0.0625			80-120			
			mg/L		ND	101				
Lithium	0.06	0.02	mg/L	0.0625	ND	102	80-120			
Selenium	0.060	0.003	mg/L	0.0625	ND	95.5	80-120			
Thallium	0.0634	0.0020	mg/L	0.0625	0.0001	101	80-120			

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Matrix Spike Dup (BCG0024-MSD1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/202	23 12:13									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	165	4.00	mg/L	6.25	152	214	80-120	3.48	20	D2, M3
Matrix Spike Dup (BCG0024-MSD2)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/202	23 12:19									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	7.31	4.00	mg/L	6.25	ND	117	80-120	13.9	20	D2
Matrix Spike Dup (BCG0024-MSD3)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/202	23 16:35									
Antimony	0.064	0.005	mg/L	0.0625	ND	102	80-120	2.64	20	
Molybdenum	0.07	0.01	mg/L	0.0625	ND	105	80-120	0.103	20	
Mercury	0.0028	0.0005	mg/L	0.00250	ND	112	80-120	3.47	20	
Arsenic	0.0635	0.0010	mg/L	0.0625	ND	102	80-120	0.580	20	
Barium	0.108	0.004	mg/L	0.0625	0.046	98.2	80-120	0.261	20	
Beryllium	0.0571	0.0020	mg/L	0.0625	ND	91.3	80-120	0.414	20	
Cadmium	0.0606	0.0010	mg/L	0.0625	ND	97.0	80-120	0.585	20	
Chromium	0.0619	0.0020	mg/L	0.0625	ND	99.1	80-120	0.430	20	
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.5	80-120	0.791	20	
Lead	0.060	0.002	mg/L	0.0625	ND	95.4	80-120	0.102	20	
Lithium	0.07	0.02	mg/L	0.0625	0.01	92.0	80-120	0.655	20	
Selenium	0.059	0.003	mg/L	0.0625	ND	94.8	80-120	1.21	20	
Thallium	0.0594	0.0020	mg/L	0.0625	0.0002	94.8	80-120	0.465	20	
Matrix Spike Dup (BCG0024-MSD4)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/202	23 16:40									
Mercury	2.92		ug/L	2.50	0.0510	115	80-120	200	20	Y2
Antimony	0.060	0.005	mg/L	0.0625	ND	96.3	80-120	1.85	20	
Molybdenum	0.06	0.01	mg/L	0.0625	ND	103	80-120	3.80	20	
Arsenic	0.0599	0.0010	mg/L	0.0625	ND	95.8	80-120	4.30	20	
Barium	0.061	0.004	mg/L	0.0625	ND	97.3	80-120	2.97	20	
Beryllium	0.0599	0.0020	mg/L	0.0625	ND	95.8	80-120	3.03	20	
Cadmium	0.0602	0.0010	mg/L	0.0625	ND	96.3	80-120	2.59	20	
Chromium	0.0612	0.0020	mg/L	0.0625	ND	97.9	80-120	4.18	20	
Cobalt	0.062	0.004	mg/L	0.0625	ND	98.5	80-120	5.15	20	
Lead	0.061	0.002	mg/L	0.0625	ND	97.7	80-120	3.57	20	
Lithium	0.06	0.02	mg/L	0.0625	ND	96.7	80-120	5.28	20	
Selenium	0.058	0.003	mg/L	0.0625	ND	92.3	80-120	3.43	20	
Thallium	0.0610	0.0020	mg/L	0.0625	0.0001	97.3	80-120	3.86	20	

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Post Spike (BCG0024-PS1)	Source: 3032610-0	1								
Prepared: 7/3/2023 9:56, Analyzed: 7/5/	2023 12:22									
Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
Calcium	173	4.00	mg/L	6.25	152	340	75-125			D2, M3
Post Spike (BCG0024-PS2)	Source: 3032610-0	1								
Prepared: 7/3/2023 9:56, Analyzed: 7/7/	2023 16:42									
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	75-125			
Mercury	0.0028	0.0005	mg/L	0.00250	ND	111	75-125			
Antimony	0.062	0.005	mg/L	0.0625	ND	99.9	75-125			
Arsenic	0.0633	0.0010	mg/L	0.0625	ND	101	75-125			
Barium	0.106	0.004	mg/L	0.0625	0.046	95.5	75-125			
Beryllium	0.0570	0.0020	mg/L	0.0625	ND	91.2	75-125			
Cadmium	0.0609	0.0010	mg/L	0.0625	ND	97.5	75-125			
Chromium	0.0618	0.0020	mg/L	0.0625	ND	98.8	75-125			
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.1	75-125			
Lead	0.059	0.002	mg/L	0.0625	ND	94.2	75-115			
Lithium	0.07	0.02	mg/L	0.0625	0.01	91.0	75-125			
Selenium	0.060	0.003	mg/L	0.0625	ND	95.6	75-125			
Thallium	0.0593	0.0020	mg/L	0.0625	0.0002	94.5	75-125			

Conventional Chemistry Analyses Madisonville - Quality Control

		D		0	0		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Nesuit	LIIIII	Office	Level	Nesuit	70INLO	LIIIIII	NED	LIIIII	Notes
Batch BCF2697 - Default Prep Micro										
LCS (BCF2697-BS1)										
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	4.96		Std. Units	5.00		99.2	98.8-101.2			
LCS (BCF2697-BS2)										
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	4.99		Std. Units	5.00		99.8	98.8-101.2			
Duplicate (BCF2697-DUP1) Sc	ource: 3032611-06									
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	5.79	0.10	Std. Units		5.84			0.860	10	Н3
Duplicate (BCF2697-DUP2) Sc	ource: 3064450-01									
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14										
pH (Lab)	9.64	0.10	Std. Units		9.64			0.00	10	Н3
Data December 19 to 19 t										
Batch BCF2838 - Default Prep Wet Chem										
Blank (BCF2838-BLK1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023										
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2838-BS1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Total Dissolved Solids	1490	25	mg/L	1500		99.4	80-120			
Duplicate (BCF2838-DUP1) Sc	ource: 3032610-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Total Dissolved Solids	1040	100	mg/L		1070			3.03	10	
Duplicate (BCF2838-DUP2) Sc	ource: 3063392-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Frepareu. 0/30/2023 10.43, Arialyzeu. 0/30/2023	10.45									

Ion Chromatography Madisonville - Quality Control

	F	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0128 - Default Prep IC										
Matrix Spike (BCG0128-MS1)	Source: 3032611-06									
Prepared: 7/6/2023 3:25, Analyzed: 7/6/2023	3:25									
Chloride	17.1		mg/L	12.5	0.0	137	75-125			M1
Fluoride	7.4		mg/L	5.00	0.0	147	75-125			M1
Sulfate	36		mg/L	25.0	0.4	144	75-125			M1
Matrix Spike Dup (BCG0128-MSD1)	Source: 3032611-06									
Prepared: 7/6/2023 3:52, Analyzed: 7/6/2023	3:52									
Fluoride	6.6		mg/L	5.00	0.0	131	75-125	11.4	15	M1
Chloride	15.5		mg/L	12.5	0.0	124	75-125	9.67	15	
Sulfate	32		mg/L	25.0	0.4	128	75-125	11.3	15	M1

Certified Analyses included in this Report

Analyte Certifications

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431

4500-H+ B-2000 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3032611
Shipped By: Client	Temperature: 5.60° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	lacksquare
Check if bottles are intact	☑
Check if bottles are correct	abla
Check if bottles have sufficient volume	
Check if samples received on ice	✓
Check if VOA headspace is acceptable	
Check if samples received in holding time.	✓
Check if samples are preserved properly	☑

Scheduled for: <u>03/13/2023</u>

Page 16 of 41

Printed: 3/10/2023 3:47:11PM

Client: Big Rivers Electric C Reid/Green Station	Corporation		c Corporation Reid/Gree	Invoice To: n Big Rivers E	lectric Corporation Reid/Green Statio
		Station Greg Dick		Greg Dick	
Project: HMPL Surface Imp	oundment	PO Box 24		PO Box 24	
		Henderson, KY 4	2419	Henderson,	KY 42419
		Phone: <u>(270)</u> 844 PWS ID#:	<u>-5736</u>	PO#:	
Please Print Legibly	0.1	State: <u>k)</u>	/	Quote#	_
Collected by (Signature):	Yu requ	red information*			ance Monitoring? Yes No
*For composite samples pleas					es Chlorinated? Yes No
Influent: Start Date	Start time	End Date	End Time	_ Temp (oC)	·
Effluent: Start Date	Start time	End Date	End Time	_ Temp (oC)	
Workorder # Date	information* Collection	iners		•	
Sample ID#	: Time (24 hr):	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested
3032611-01 A - 1 29 23	0930	Plastic 500mL pH<2 1 w/HNO3	MW7	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium
					Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
, Pasta		Preservation Check: pH:			
3032611-01 B 306/29/23	0930	Plastic 1L 1	≠ MW7	g/c	Fluoride 9056 TDS Sulfate 9056 pH (Lab) Chloride 9056
3032611-01 C 06 29 23		Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	MW7	g/c	Radium 226 (sub)
		Preservation Check: pH:			
3032611-01 D 06/29/23		Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW7	g/c	Radium 228 (sub)
	ı	Preservation Check: pH :	_		
3032611-01 E (OL/29/23		Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW7		Radium 228 (sub) neter Serial Number
•	ı	Preservation Check: pH:	<u></u>		181390287
Preservation Check Perform	ned by: <u> LE</u>	<u> </u>		T	181460057 emp ∑ ⁰C
Field data collected by: 🎉 🎉	Dick Sty	Date (mm/dd/yy) 0	29 23 Time (24 hr)	0930	•
рн <u>6.87</u> с	ond (umho) 45	Res CI (mg/L)	Tot CI (mg/L)	Fre	ee CI (mg/L)
Temp (oC) 15.85 or	r (oF)	Static Water Level	DO (mg/L)	т	urb. (NTU)
Flow (MGD) or	(CFS)	or (g/min)			
Relinquished by: (Signature)		Received by: (Signatu	re)	Date (mm/	(dd/yy) Time (24 hr)
Mry Out		Ve El	2	06/30	123 1244
	<u>.</u>			••	
					·

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>03/13/2023</u>

						J			
Reid/Green St	vers Electric Co ation L Surface Impo		Report To: Big Rivers Elector Station Greg Dick PO Box 24 Henderson, K		torporation Reid/Green	Invoice To Big Rivers Greg Dick PO Box 24 Henderson	Electric Corpo	ration Reid/Gre	en Station
			Phone: <u>(270) 8</u> PWS ID#:	_	<u> "36</u>	PO#:		_	
Please Print	Legibly	<u> </u>	State: K	<u>(Y</u>		Quote#		=	
Collected by (S	Signature):	Jrz C	juired information*		_	•		ring? Yes	
*For composite	samples please	e indicate begin	time, end time and temp(oC) at en	d time below:	Samp	ies Chlorinate	d? Yes	No <u>"</u>
Influent: Start	Date	Start time	End Nate/		End Time	Temp (oC)			
Effluent: Start	_		' 1"'	ا	End Time	Temp (oC)	y		
LAB USE ONL Workorder # 3032611 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample	e Analysis Requ	uested
3032611-01 F	06/29/23	0930	Plastic 1L pH<2 w/HNO3	1	MW7	g/c	Radium Tot		
		·	(Sub) Preservation Check: pH:	/					
3032611-02 A	06/19/13	1400	Plastic 500mL pH<2 w/HNO3	1	MW8	g/c	Beryllium To Cadmium To 6010B Chro Tot 6020 Ar Tot 6020 Th	6020 Barium Tot 6020 Boron Tot 6020 Calcium Tot 6020 Calcium Tot 6020 Calcium Tot 6020 Calcium Tot 6020 Colybdenum Tot 6020	Tot 6010B m Tot D Cobalt 20 Lithium D Mercury
			Preservation Check: pH:	V					
3032611-02 B	06/19/13	1400	Plastic 1L	1	MW8	g / c		56 TDS Sulfate	9056 pH
3032611-02 C	06/19/23	1400	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)		MW8	g/c	(Lab) Chlor Radium 22		
3032611-02 D	<u>06/19/23</u>		Preservation Check: pH: Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	1	MW8	g/c	Radium 22	8 (sub)	
Preservation (Check Perform	ed by:	KED	<u> </u>					
Field data colle	ected by: Greg	Dick Shall	Date (mm/dd/yy)	06/20	7/23 Time (24 hr)	1400			,
		and (umho) 2			Tot CI (mg/L) _	F	ree Cl (mg/L)		•
Temp (oC)	17,92 or	(oF)	Static Water Level						
Flow (MGD) _			or (g/min)				· · · -		
Relinquished b	y: (Signature)		Received by: (Signa	ature)		Date (mn	n/dd/yy)	Time (24 hr)	
	My Ou	y .	<u> </u>			06/3	0/23	1244	<u> </u>
PACE	- Check here if	trip charge ap	plied to associated COC		Printed:	3/10/2023 3:4	7:11PM	Page 17	7 of 41

Scheduled for: <u>03/13/2023</u>

Page 18 of 41

Printed: 3/10/2023 3:47:11PM

Client: Big Ri Reid/Green St	vers Electric Co ation	orporation	Report To: Big Rivers Elect Station	ric Corporation Reid/Gree	Invoice To: n Big Rivers E		ration Reid/Green Station
Proiect: HMP	L Surface Impo	undment	Greg Dick		Greg Dick		
			PO Box 24 Henderson, KY	12/19	PO Box 24 Henderson,	KV 12/10	
			•		rienderson,	K1 42415	
			Phone: <u>(270) 84</u> PWS ID#:	<u>4-5/36</u>	PO#:		_
Please Print	Legibly	_	State: K	<u>Y</u>	Quote#	-	_
Collected by (S	Signature):	MyC	url		Compl	iance Monitor	ing? Yes No 🛩
		•	dired information*		Sample	es Chlorinate	d? Yes No _
*For composite	samples please	e indicate begin	time, end time and temp(oC) a	at end time below:	oump.	oo omormatot	. 100 110
Influent: Start	Date	Start time	End Pare	End Time	Temp (oC)		
			End Date				
LAB USE ONL Workorder # 3032611 Sample ID#	Date	information* Collection Time (24 hr):		Sample Description	n Composite	Sample	Analysis Requested
3032611-02 E	06/19/23	1400	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	MW8	g/c	Radium 228	3 (sub)
3032611-02 F	06/20/23	1400	Plastic 1L pH<2 w/HNO3 1 (Sub)	. MW8	g/c	Radium Tota	al (sub)
3032611-03 A	06/29/23	1515	Preservation Check: pH:	•			
332311 03 A	30/21/05		Plastic 500mL pH<2 1 w/HNO3	MW9	g/c	Beryllium To Cadmium To 6010B Chro Tot 6020 An Tot 6020 Th	6020 Barium Tot 6020 bt 6020 Boron Tot 6010B ot 6020 Calcium Tot mium Tot 6020 Cobalt timony Tot 6020 Lithium allium Tot 6020 Mercury olybdenum Tot 6020 ot 6020
			Preservation Check: pH:	<u>~</u>			
3032611-03 B	06 19 23	1515	Plastic 1L 1	MW9	g/c		56 TDS Sulfate 9056 pH
3032611-03 C	06 29 23	1515	Plastic 1L pH<2 w/HNO3 1	MW9	g/c	(Lab) Chlori Radium 226	
	, ,		Rad 226 (Sub) Preservation Check: pH:	<u>/</u>			
Preservation (Check Performe	ed by: VE	<u>D</u>				
Field data colle	cted by: Green	Dick Stry	Date (mm/dd/yy) _{	16/29/23 Time (24 hr)	1515		
	,	لا nd (umho) _ 5 2		Tot CI (mg/L)		ee CI (mg/L)	
Temp (oC)	18.90 or	(oF)	Static Water Level				<u> </u>
			or (g/min)		<u> </u>	a.b. ((110) _	
Relinquished by	y: (Signature)		Received by: (Signati	ıre)	Date (mm.	/dd/yy)	Time (24 hr)
The state of the s	Out		15-J)	06/30	23	1244
					_ , _ ,		
							

Chain of Custody
Scheduled for: 03/13/2023

Page 19 of 41

Printed: 3/10/2023 3:47:11PM

	<u> </u>		00/10/2020			
Client: Big Rivers Electric Corporat Reid/Green Station	E	•	orporation Reid/Green	Invoice To: Big Rivers E	lectric Corpora	tion Reid/Green Station
Project: HMPL Surface Impoundme	a t F	Station Greg Dick PO Box 24 Henderson, KY 4241	9	Greg Dick PO Box 24 Henderson,	KY 42419	
		Phone: (270) 844-57	<u>36</u>	PO#:		
Please Print Legibly		PWS ID#: State: KY		Quote#		
Collected by (Signature):	Teggired Informat	tion*	_	Compli	ance Monitorin	g? Yes No 🚄
*For composite samples please indica	0 .		d time below:	Sample	es Chlorinated?	Yes No <u></u>
Influent: Start DateStart				Temp (oC)		
Effluent: Start Date Start	,,,	_	•			
LAB USE ONLY *required information workorder # Date Colle (mm/dd/yy): Time	ction	reservative to	Sample Description	Composite	Sample A	nalysis Requested
	Plastic 1L pH		MW9	g/c	Radium 228 (<u> </u>
, ,	Rad 228	3 (Sub) Check: pH :				
3032611-03 E 06/29/23 (5		I<2 w/HNO3 . 1	MW9	g/c	Radium 228 (sub)
. 4	Preservation	Check: pH:				
3032611-03 F <u>06[29]23</u> <u>15</u>	(Su	I<2 w/HNO3 1 ib) Check: pH :	MW9	g/c	Radium Total	(sub)
3032611-04 A <u>06/24/23</u> <u>18</u>	Plastic 500 w/HN	0mL pH<2 1	MW10	g/c	Beryllium Tot Cadmium Tot 6010B Chrom Tot 6020 Antii Tot 6020 Thai	020 Barium Tot 6020 6020 Boron Tot 6010B 6020 Calcium Tot ium Tot 6020 Cobalt mony Tot 6020 Lithium lium Tot 6020 Mercury bdenum Tot 6020
	Preservation	Check: pH :			Colomatii Tot	0020
3032611-04 B <u>06 29 23</u> <u>180</u>	Plasti	c1L 1	MW10	g / c	Fluoride 9056 (Lab) Chloride	TDS Sulfate 9056 pH 9056
Preservation Check Performed by: _	KED					
Field data collected by:	Dat	te (mm/dd/yy)	Time (24 hr) _			
pH Cond (uml	o) F	Res CI (mg/L)	Tot CI (mg/L)	Fre	ee CI (mg/L)	
Temp (oC) or (o	F) Static	Water Level	DO (mg/L)	т	urb. (NTU)	
Flow (MGD) or (CFS) or	(g/min)				
Relinquished by: (Signature)	Recei	ved by: (Signature)		Date (mm/	dd/yy)	
- In Ous	<u></u>			06/30	23	1244

Scheduled for: <u>03/13/2023</u>

Page 20 of 41

Printed: 3/10/2023 3:47:11PM

		<u> </u>		_	
Client: Big Rivers Electric C Reid/Green Station	orporation	Report To: Big Rivers Elec Station	ctric Corporation Reid/Greer	Invoice To: n Big Rivers E	Electric Corporation Reid/Green Station
Project: HMPL Surface Impo	oundment	Greg Dick PO Box 24		Greg Dick PO Box 24	
	skit [†] Jane	Henderson, K	Y 42419	Henderson,	KY 42419
		Phone: <u>(270) 8</u> PWS ID#:	<u>344-5736</u>	PO#:	,
Please Print Legibly		State:	<u>kY</u>	Quote#	<u>. </u>
Collected by (Signature):	الميل كيمالي red	/ quired information*			ance Monitoring? Yes No
*For composite samples pleas	e indicate begir	time, end time and temp(oC)) at end time below:	Sample	es Chlorinated? Yes No
Influent: Start Date	Start time	End Date	End Time	_Temp (oC)	
Influent: Start Date	Start time	End Date	End Time	Temp (oC)	<u>*</u>
Workorder # Date	information* Collection Time (24 hr):	Bottle and Preservative	Sample Description	n Composite	Sample Analysis Requested
3032611-04 C 06 19 23	1805	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)	1 MW10	g/c	Radium 226 (sub)
		Preservation Check: pH:			
3032611-04 D 06/29/23	1805	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1 MW10	g/c	Radium 228 (sub)
		Preservation Check: pH:	<u> </u>		
3032611-04 E 66/1/13	1805	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1 MW10	g / c	Radium 228 (sub)
		Preservation Check: pH:	<u>/</u>		
3032611-04 F 06 29 23	1805	Plastic 1L pH<2 w/HNO3 (Sub)		g/c	Radium Total (sub)
		Preservation Check: pH:	<u>/</u>		
		-			
		_			
Preservation Check Perform	ed by:	(6)			·
Field data collected by: Gru	D.4 9h	Date (mm/dd/yy)	06/29/23 Time (24 hr)	1805	
pH <u>8.73</u> Co	V		Tot CI (mg/L)		ee Cl (mall)
Temp (oC) 17.71 or					il i
Flow (MGD) or	(CFS)	Static Water Level or (g/min) _			urb. (NTO)
Relinquished by: (Signature)		Received by: (Signa	ature)	Date (mm/	dd/yy) Time (24 hr)
Myling		_ (2	06/30/	1245
٧.		· · · · · · · · · · · · · · · · · · ·		<u> </u>	

Scheduled for: <u>03/13/2023</u>

			<u> </u>			J		
Reid/Green St	vers Electric C ation L Surface Impo		Report To: Big Rivers Ele Station Greg Dick PO Box 24 Henderson, K		poration Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,		ration Reid/Green Station
			Phone: <u>(270) :</u> PWS ID#:			PO#:	-	-
Please Print	Legibly	A C	State:	KY	_	Quote#		
Collected by (S	ignature):	May (quired information*		-			ing? Yes No
*For composite	samples pleas	e indicate begir	n time, end time and temp(oC	c) at end	time below:	Oampie		7: 165 <u> </u>
Influent: Start	Date	Start time	End Date	En	nd Time	Temp (oC)		
Effluent: Start	Care	Start time	End Date	Er	nd Time	Temp (oC)		
LAB USE ONL Workorder # 3032611 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample	· Analysis Requested
3032611-05 A	व्यक्षियां छ	_1550	Plastic 500mL pH<2 w/HNO3	0	DUPLICATE	g/c	Arsenic Tot Beryllium To Cadmium To 6010B Chro Tot 6020 An Tot 6020 Th	6020 Barium Tot 6020 ot 6020 Boron Tot 6010B ot 6020 Calcium Tot mium Tot 6020 Cobalt timony Tot 6020 Lithium allium Tot 6020 Mercury olybdenum Tot 6020
			Preservation Check: pH:	<u>~</u>				
3032611-05 B	06/19/23	1550	Plastic 1L	1	DUPLICATE	g/c		56 TDS Sulfate 9056 pH
3032611-05 C	06/29/23	1550	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub)	1	DUPLICATE	g/c	(Lab) Chlori Radium 226	
3032611-05 D	06/29/23	_1550	Preservation Check: pH: Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	1	DUPLICATE	g/c	Radium 228	s (sub)
3032611-05 E	06/29/23	1550	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	1	DUPLICATE	g/c	Radium 228	ß (sub)
Preservation (Check Perform	ed by: <u>\</u>	<u>a</u>	••				
Field data colle	cted by: Grey	Dick Shyl	Date (mm/dd/yy)	06/29/	13 Time (24 hr)	1550		
pH _	6.77 co	ond (umho)	8 Res Cl (mg/L))	Tot Cl (mg/L) _	Fre	ee CI (mg/L) _	
Temp (oC) _	18,90 or	(oF)	Static Water Level		DO (mg/L) _	т	urb. (NTU) _	
Flow (MGD) _	or	(CFS)	or (g/min)					
Relinquished b	y: (Signature)		Received by: (Sign	ature)		Date (mm/	/dd/yy)	Time (24 hr)
, Ingl	Dal		- K-B)		06/30	123	1245
								Page 01 of 44
PACE-	Cneck nere if	trip charge ap	plied to associated COC		Printed:	3/10/2023 3:47	:11PM	Page 21 of 41

Scheduled for: 03/13/2023

	Ochedalea	101. <u>00/10/2020</u>			
Client: Big Rivers Electric Corporation Reid/Green Station	Report To:	ric Corporation Reid/Green	Invoice To:	lectric Corpora	ation Reid/Green Station
	Station	to corporation molaration	· ·	.iootiio Gorpoid	
Project: HMPL Surface Impoundment	Greg Dick PO Box 24		Greg Dick PO Box 24		
	Henderson, KY	42419	Henderson,	KY 42419	
	Phone: <u>(270) 84</u> PWS ID#:	<u>4-5736</u>	PO#:		
Please Print Legibly	State: <u> </u>	<u> </u>	Quote#		
Collected by (Signature):); quired information*	· ·	Compli	ance Monitorir	ng? Yes No 🗸
*For composite samples please indicate begi	n time, end time and temp(oC) a	at end time below:	Sample -	es Chlorinated	? Yes No
Influent: Start Date Start time_	End/Date	End Time	Temp (oC)		
Effluent: Start Date Start time _					
LAB USE ONLY *required information* Workorder # Date Collection 3032611 (mm/dd/yy): Time (24 hr):	Bottle and Preservative	Sample Description	Qi		
Sample ID#		Sample Description	Composite	Sample	Analysis Requested
3032611-05 F <u>66/29/23</u> <u>1550</u>	Plastic 1L pH<2 w/HNO3 1 (Sub)	DUPLICATE	g/c	Radium Tota	l (sub)
, ,	Preservation Check: pH :	<u></u>			
3032611-06 A <u>06/19/13</u> 1845	Plastic 500mL pH<2 1 w/HNO3	FIELD BLANK	g/c	Beryllium Tot	6020 Barium Tot 6020 t 6020 Boron Tot 6010B t 6020 Calcium Tot
	·			Tot 6020 Ant Tot 6020 Tha Tot 6020 Mol	nium Tot 6020 Cobalt imony Tot 6020 Lithium allium Tot 6020 Mercury lybdenum Tot 6020
	Preservation Check: pH :	/		Selenium Tot	1 6020
3032611-06B <u>06/24/23</u> <u>1845</u>	Plastic 1L 1	—— FIELD BLANK	g/c	Fluoride 905	6 TDS Sulfate 9056 pH
3032611-06 C 06/29/23 1845	Plastic 1L pH<2 w/HNO3 1		g/c	(Lab) Chlorid Radium 226	le 9056
<u> </u>	Rad 226 (Sub)		g, c	riadiani 220	(305)
3032611-06 D 06/29/23 1845	Preservation Check: pH: Plastic 1L pH<2 w/HNO3 1		g/c	Radium 228	(ah)
3032011-00 D <u>00 21 23 18-7 5</u>	Rad 228 (Sub)	,	g/C	nauluiii 220	(900)
	Preservation Check: pH:				
Preservation Check Performed by:	ED .				
Field data collected by:	Date (mm/dd/yy) _	Time (24 hr) _			
pH Cond (umho)	Res CI (mg/L)	Tot CI (mg/L) _	Fre	ee CI (mg/L) _	
Temp (oC) or (oF)	Static Water Level	DO (mg/L)	Т	urb. (NTU)	
Flow (MGD) or (CFS)					
Relinquished by: (Signature)	Received by: (Signati	ure)	Date (mm	/dd/vv)	Time (24 hr)
9-0-0	V		06/30		_
y voy Cure			<u> </u>	123	1245
			_		
PACE- Check here if trip charge ap	plied to associated COC	Printed:	3/10/2023 3:47	:11PM	Page 22 of 41

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>03/13/2023</u>

Page 23 of 41

Printed: 3/10/2023 3:47:11PM

Station Greg Dick PO Box 24 Henderson, KY 42418 Phone: (270) 844-573 PWS ID#: State: Conation The and temp(oC) at ending the state in	36 I time below:	Greg Dick PO Box 24 Henderson, PO#: Quote# Compli	KY 42419 iance Monitoring? Yes es Chlorinated? Yes	No <u>~</u> No <u>~</u>
PWS ID#: State: Notation The and temp(oC) at end Ind Date Preservative PH<2 w/HNO3 1 PH<2 w/HNO3 1 PH<2 w/HNO3 1 PH<2 w/HNO3 1 PH<2 w/HNO3 1	I time below: Ind Time Ind Time Sample Description FIELD BLANK	Quote# Compliance Sample Femp (oC) Temp (oC) Composite g / c	Sample Analysis	No
ind Date End Date En	nd Time ind Time Sample Description FIELD BLANK	Compli	Sample Analysis	No
ind Date End Date Preservative PH<2 w/HNO3 1 pH<2 w/HNO3 1 pH<2 w/HNO3 1 Sub)	nd Time ind Time Sample Description FIELD BLANK	Sample Femp (oC) Temp (oC) Composite g / c	Sample Analysis	No
Ind Date Specific Spe	nd Time ind Time Sample Description FIELD BLANK	Temp (oC) Temp (oC) Composite g / c	Sample Analysis Radium 228 (sub)	
d Preservative pH<2 w/HNO3 228 (Sub) pH<2 w/HNO3 1 pH<2 w/HNO3 1 Sub)	Sample Description FIELD BLANK	Composite	Sample Analysis Radium 228 (sub)	s Requested
pH<2 w/HNO3 1 pH<2 w/HNO3 1 pH<2 w/HNO3 1 pH<2 w/HNO3 1	Sample Description FIELD BLANK	Composite g / c	Sample Analysis Radium 228 (sub)	s Requested
pH<2 w/HNO3 1 228 (Sub) on Check: pH : pH<2 w/HNO3 1 Sub)	FIELD BLANK	g/c	Radium 228 (sub)	s Requested
228 (Sub) on Check: pH : pH<2 w/HNO3 1 Sub)		·		
pH<2 w/HNO3 1 Sub)	FIELD BLANK	g/c	Radium Total (sub)	
Date (mm/dd/yy)	Time (24 hr)			
			ee CI (ma/L)	
		,		
ceived by: (Signature)			/dd/yy) Time (2	
	Res Cl (mg/L) iic Water Level (g/min)	Res CI (mg/L) Tot CI (mg/L) iic Water Level DO (mg/L) (g/min)	ic Water Level DO (mg/L) T	Res Cl (mg/L) Tot Cl (mg/L) Free Cl (mg/L) sic Water Level DO (mg/L) Turb. (NTU) (g/min) Ceived by: (Signature) Date (mm/dd/yy) Time (2)

Greensburg, PA 15601 (724)850-5600

July 25, 2023

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville, KY 42431

RE: Project: 3032611

Pace Project No.: 30602389

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on July 06, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

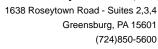
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622


Samantha Bayune

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3032611
Pace Project No.: 30602389

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

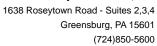
Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249


Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

SAMPLE SUMMARY

Project: 3032611
Pace Project No.: 30602389

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30602389001	3032611-01	Water	06/29/23 09:30	07/06/23 10:00
30602389002	3032611-02	Water	06/29/23 14:00	07/06/23 10:00
30602389003	3032611-03	Water	06/29/23 15:15	07/06/23 10:00
30602389004	3032611-04	Water	06/29/23 18:05	07/06/23 10:00
30602389005	3032611-05	Water	06/29/23 15:50	07/06/23 10:00
30602389006	3032611-06	Water	06/29/23 18:45	07/06/23 10:00
30602389007	3032611-06 (MS)	Water	06/29/23 18:45	07/06/23 10:00
30602389008	3032611-06 (MSD)	Water	06/29/23 18:45	07/06/23 10:00

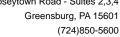
SAMPLE ANALYTE COUNT

Project: 3032611
Pace Project No.: 30602389

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30602389001	3032611-01	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389002	3032611-02	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389003	3032611-03	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389004	3032611-04	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389005	3032611-05	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389006	3032611-06	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602389007	3032611-06 (MS)	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
30602389008	3032611-06 (MSD)	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY


 Project:
 3032611

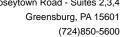
 Pace Project No.:
 30602389

Sample: 3032611-01	Lab ID: 30602	2389001 Collected: 06/29/23 09:30	Received:	07/06/23 10:00 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Comments: • Collection date	·				0.0	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.411 ± 0.529 (0.881) C:NA T:89%	pCi/L	07/20/23 14:16	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.40 ± 0.527 (0.794) C:74% T:84%	pCi/L	07/19/23 11:28	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.81 ± 1.06 (1.68)	pCi/L	07/24/23 10:30	7440-14-4	
Sample: 3032611-02 PWS:	Lab ID: 30602 Site ID:	2389002 Collected: 06/29/23 14:00 Sample Type:	Received:	07/06/23 10:00 M	Matrix: Water	
	and time on sample contain					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.676 ± 0.558 (0.806) C:NA T:89%	pCi/L	07/20/23 14:30	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.50 ± 0.500 (0.688) C:81% T:89%	pCi/L	07/19/23 11:28	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	2.18 ± 1.06 (1.49)	pCi/L	07/24/23 10:30	7440-14-4	
Commiss 2022044 02	Lab ID. 2000	1300000 Callegeed 00/00/00 45:45	Danaireade	07/00/00 40:00	Antrice Mater	
Sample: 3032611-03 PWS:	Lab ID: 30602 Site ID:	2389003 Collected: 06/29/23 15:15 Sample Type:	Received:	07/06/23 10:00 N	Matrix: Water	
_	and time on sample contain	, ,,				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.982 ± 0.698 (1.01) C:NA T:94%	pCi/L	07/20/23 14:30	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.727 ± 0.430 (0.806) C:80% T:86%	pCi/L	07/19/23 11:28	15262-20-1	
	Pace Analytical S	Services - Greensburg				
Total Radium	Total Radium Calculation	1.71 ± 1.13 (1.82)	pCi/L	07/24/23 10:30	7440-14-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

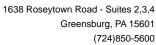

 Project:
 3032611

 Pace Project No.:
 30602389

Sample: 3032611-04 PWS:	Lab ID: 30602 Site ID:	2389004 Collected: 06/29/23 18:05 Sample Type:	Received:	07/06/23 10:00 N	Matrix: Water	
Comments: • Collection date	and time on sample contain	ners does not match COC.				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.574 ± 0.426 (0.533) C:NA T:97%	pCi/L	07/20/23 14:30	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.34 ± 0.506 (0.773) C:78% T:85%	pCi/L	07/19/23 11:28	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.91 ± 0.932 (1.31)	pCi/L	07/24/23 10:30	7440-14-4	
Sample: 3032611-05	Lab ID: 30602		Received:	07/06/23 10:00 N	Matrix: Water	
PWS: Comments: • Collection date	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
- Taramotoro	 -					
	•	Services - Greensburg				
Radium-226	EPA 903.1	1.11 ± 0.513 (0.389) C:NA T:93%	pCi/L	07/20/23 14:30	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.43 ± 0.516 (0.769) C:82% T:84%	pCi/L	07/19/23 11:28	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.54 ± 1.03 (1.16)	pCi/L	07/24/23 10:30	7440-14-4	
Sample: 3032611-06	Lab ID: 30602	2389006 Collected: 06/29/23 18:45	Received:	07/06/23 10:00 M	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Comments: • Collection date	and time on sample contain	ners does not match COC.				
Parameters	Method Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.171 ± 0.207 (0.315) C:NA T:89%	pCi/L	07/24/23 12:33	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.468 ± 0.380 (0.763) C:79% T:89%	pCi/L	07/17/23 12:38	15262-20-1	
	•	Services - Greensburg				
Total Radium	Total Radium Calculation	$0.639 \pm 0.587 (1.08)$	pCi/L	07/25/23 11:19	7440-14-4	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3032611 Pace Project No.: 30602389

Received: 07/06/23 10:00 Matrix: Water Lab ID: 30602389007 Collected: 06/29/23 18:45 Sample: 3032611-06 (MS) PWS: Site ID: Sample Type: Comments: • Collection date and time on sample containers does not match COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 109.09 %REC ± NA (NA) pCi/L Radium-226 07/24/23 12:33 13982-63-3 C:NA T:NA Pace Analytical Services - Greensburg 139.10 %REC ± NA (NA) EPA 904.0 Radium-228 pCi/L 07/17/23 12:38 15262-20-1 C:NA% T:NA% Sample: 3032611-06 (MSD) Lab ID: 30602389008 Collected: 06/29/23 18:45 Received: 07/06/23 10:00 PWS: Site ID: Sample Type: Comments: • Collection date and time on sample containers does not match COC. Qual **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg EPA 903.1 95.08 %REC 13.72RPD ± Radium-226 pCi/L 07/24/23 12:33 13982-63-3 NA (NA) C:NA T:NA Pace Analytical Services - Greensburg 106.57 %REC 26.48RPD ± Radium-228 EPA 904.0 pCi/L 07/17/23 12:38 15262-20-1 NA (NA)

C:NA% T:NA%

Project: 3032611
Pace Project No.: 30602389

QC Batch: 600244 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602389001, 30602389002, 30602389003, 30602389004, 30602389005

METHOD BLANK: 2917653 Matrix: Water

Associated Lab Samples: 30602389001, 30602389002, 30602389003, 30602389004, 30602389005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.418 ± 0.322 (0.624) C:84% T:78%
 pCi/L
 07/19/23 11:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

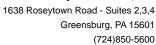
Project: 3032611
Pace Project No.: 30602389

QC Batch: 600243 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602389001, 30602389002, 30602389003, 30602389004, 30602389005


METHOD BLANK: 2917652 Matrix: Water

Associated Lab Samples: 30602389001, 30602389002, 30602389003, 30602389004, 30602389005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.000 ± 0.237 (0.382) C:NA T:84%
 pCi/L
 07/20/23 14:16

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

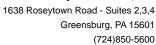
Project: 3032611
Pace Project No.: 30602389

QC Batch: 600629 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602389006, 30602389007, 30602389008


METHOD BLANK: 2919000 Matrix: Water

Associated Lab Samples: 30602389006, 30602389007, 30602389008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.502 ± 0.356 (0.692) C:78% T:90%
 pCi/L
 07/17/23 12:38

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 3032611
Pace Project No.: 30602389

QC Batch: 600628 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602389006, 30602389007, 30602389008

METHOD BLANK: 2918998 Matrix: Water

Associated Lab Samples: 30602389006, 30602389007, 30602389008

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0871 ± 0.209 (0.404) C:NA T:90%
 pCi/L
 07/24/23 12:33

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 3032611
Pace Project No.: 30602389

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/25/2023 12:10 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3032611
Pace Project No.: 30602389

Date: 07/25/2023 12:10 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
30602389001	3032611-01	EPA 903.1	600243		
30602389002	3032611-02	EPA 903.1	600243		
30602389003	3032611-03	EPA 903.1	600243		
30602389004	3032611-04	EPA 903.1	600243		
30602389005	3032611-05	EPA 903.1	600243		
30602389006	3032611-06	EPA 903.1	600628		
30602389007	3032611-06 (MS)	EPA 903.1	600628		
30602389008	3032611-06 (MSD)	EPA 903.1	600628		
30602389001	3032611-01	EPA 904.0	600244		
30602389002	3032611-02	EPA 904.0	600244		
30602389003	3032611-03	EPA 904.0	600244		
30602389004	3032611-04	EPA 904.0	600244		
30602389005	3032611-05	EPA 904.0	600244		
30602389006	3032611-06	EPA 904.0	600629		
30602389007	3032611-06 (MS)	EPA 904.0	600629		
30602389008	3032611-06 (MSD)	EPA 904.0	600629		
30602389001	3032611-01	Total Radium Calculation	603591		
30602389002	3032611-02	Total Radium Calculation	603591		
30602389003	3032611-03	Total Radium Calculation	603591		
30602389004	3032611-04	Total Radium Calculation	603591		
30602389005	3032611-05	Total Radium Calculation	603591		
30602389006	3032611-06	Total Radium Calculation	603919		

Pace Analytical *

LAB USE ONLY S S న 0 රි 8 8 Results Requested By: Standard 000 Comments Requested Analysis Workorder Name: HMPL Surface Impoundme Owner Received Date: 6/30/2023 Radium Total 822 mulbeA 23 Control 10:00 Date/Time 8adium 226 Preserved Containers Received By Pace Analytical Services LLC Greensburg PA Water Water Matrix Water Water Water Water 1638 Rosey Town Rd Suite 2,3,4 IR44-McCoy IR44-McCoy IR44-McCoy IR44-McCoy IR44-McCoy IR44-McCoy Greensburg, PA 15601 Lab ID Date/Time Subcontract To: (724) 850-5615 06/29/23 09:30 06/29/23 14:00 06/29/23 15:15 06/29/23 18:05 06/29/23 15:50 06/29/23 18:45 Date/Time Sample |Collect Type Kayla Zachary rob.whittington@pacelabs.com Pace Analytical Services, LLC Workorder: 3032611 Madisonville, KY 42409 Transfers |Released By 825 Industrial Road 3032611-05 3032611-06 3032611-04 3032611-02 3032611-03 3032611-01 item Sample ID 270-821-7375 Report To: 10 6

Sample Intact (Yor N ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice or N Custody Seal Y or 🕅 ပ္ Cooler Temperature on Receipt

This chain of custody is considered complete as is since this information is available in the owner laboratory.

WO#:30602389 ęriday, June 17, 2016 11:01:34 AM

Page 37 of 41

FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3032611

WO#: 30602389

PM: SMB

Due Date: 07/27/23

CLIENT: PACE_44_MVKY

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431

Phone: (270) 821-7375

Fax: 844-270-7904

Project Manager:

Released By

Released By

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID Comments
Sample ID: 3032611-01	Water	Sampled:06/29/2023 09:30	Specific Method
Radium 228 (sub)		12/26/2023 09:30	EPA 904.0 Radium Sum C
Radium Total (sub)		12/26/2023 09:30	EPA 904.0 Radium Sum C
Radium 226 (sub)		12/26/2023 09:30	EPA 903.1
Sample ID: 3032611-02	Water	Sampled:06/29/2023 14:00	Specific Method
Radium 226 (sub)		12/26/2023 14:00	EPA 903.1
Radium 228 (sub)		12/26/2023 14:00	EPA 904.0 Radium Sum C
Radium Total (sub)		12/26/2023 14:00	EPA 904.0 Radium Sum C
Sample ID: 3032611-03	Water	Sampled:06/29/2023 15:15	Specific Method
Radium Total (sub)		12/26/2023 15:15	EPA 904.0 Radium Sum (
Radium 226 (sub)		12/26/2023 15:15	EPA 903.1
Radium 228 (sub)		12/26/2023 15:15	EPA 904.0 Radium Sum C
Sample ID: 3032611-04	Water	Sampled:06/29/2023 18:05	Specific Method
Radium 228 (sub)		12/26/2023 18:05	EPA 904.0 Radium Sum (
Radium Total (sub)		12/26/2023 18:05	EPA 904.0 Radium Sum C
Radium 226 (sub)		12/26/2023 18:05	EPA 903.1
Sample ID: 3032611-05	Water	Sampled:06/29/2023 15:50	Specific Method
Radium 226 (sub)	· · · · · · ·	12/26/2023 15:50	EPA 903.1
Radium 228 (sub)		12/26/2023 15:50	EPA 904.0 Radium Sum C
Radium Total (sub)		12/26/2023 15:50	EPA 904.0 Radium Sum C

Received By

Date

Date

Page 38 of 41

es aleadre 7-6-2310:00

Date

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3032611

Analysis		Expires	Laboratory ID	Comments	
Sample ID: 3032611-06	Water	Sampled:06/29/2023 18:45	Specific Method		
Radium Total (sub)		12/26/2023 18:45	EPA 904.0 Radium	Sum (
Radium 226 (sub)		12/26/2023 18:45	EPA 903.1		
Radium 228 (sub)		12/26/2023 18:45	EPA 904.0 Radium	Sum (

WO#: 30602389

Due Date: 07/27/23

CLIENT: PACE_44_MVKY

ex alexader 7-6-23 10:00

Released By

Date

	DC#_Title: ENV-FRM- Pittsburgh	GBUF	8-008	8 v0	5_Samp	ÎÓ#	: "3	0602	389
Pace	Effective Date: 07/06/2023				PM	l: SMB		Carrier and an Artist	ate: 07/27/23
Client Name:	Pare Madison	ille							
Courier: 🗌 Fed	Ex DUPS Q USPS Q Client	☐ Com	mercia	al 🔲 P	ace 🔲 Oth	er			Initial / Date
Tracking Number	_{er:} 120674570140650	1100 1	. 2_(YTX	<u>570MU</u>	18110		Examined By	Milly
Custody Seal on Thermometer U	, , , ,	es No	_45	-	Intact: lue None	☐ Yes 1	No.	Labeled By: _ Temped By: _	TH717h3 TM_716h3
Cooler Tempera	ture: Observed Temp 🤼		°C	Corre	ction Facto	r: <u> </u>	ها	C Final Te	mp: <u>3.1 °</u> C
Temp should be abo	ve freezing to 6°C								
Comments:	AMPLY .	Yes	No	NA	pH paper	Lot#		D.P.D. Resid	ual Chiorine Lot#
	. Duanaut	1	140	INA		<u> </u>			
Chain of Custody		+ +		-	1. 2.				10FW
Chain of Custody	corrections present on COC	—	1	-	2.				
Chain of Custody		+3	-	 	3.				
	Signature on COC:		1		4.		m	כארורן	
Sample Labels m	<u>-</u>		J			143	0 0	L ALIEN	E AL lank a
-Includes da				1	71. E. J.	Lad a	ALC.	7 801048	5 06 1301/23 19103 SAME
Matrix:	cc/ circle is	$\overline{\mathcal{N}}$			dutel	. l		· HI M DWW	iples some
		1	`	_		4 MV	2.0		
	within Hold Time:	1			6.				
Short Hold Time	Analysis (2nr</td <td></td> <td>١)</td> <td></td> <td>7.</td> <td></td> <td></td> <td></td> <td></td>		١)		7.				
remaining):	nd Time Requested:		7	-	8,				
Sufficient Volume		1	_		9.			***************************************	
Correct Containe	·	7			10.				
-Pace Contai		+		 -	10.				
Containers Intact	••	1			11.				
Orthophosphate		~~3		٠	12.				
	samples field filtered:			1	13.				
	checked for dechlorination			3	14:				
	eceived for dissolved tests:			<u> </u>	15:				
	ecked for preservation:	1			16.				
exceptions: \	/OA, coliform, TOC, O&G, adon, non-aqueous matrix			<u>.</u>		er			
	eet method preservation	1			Initial when completed	M		Date/Time of Preservation	
				i	Preservative	1			
8260C/D : Headsp	pace in VOA Vials (> 6mm)		Ĩ	1	17.				***************************************
624.1 : Headspac	e in VOA Vials (0mm)			7	18.		•		
Trip Blank Presen	t:			7	Trip b	lank cus		eal present?	YES or NO
Rad Samples Scre	eened <0.5 mrem/hr.	7	,		initial when completed	TH	Date: *	716123	Survey Meler SN: 1563
Comments:			,						

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

BGIN CM Other ISCN CIN **BROS** SPLC Profile Number MCKN MGFU Notes **NOAK** U69V Vials **T65**V H69A DC98 UEAB 5 **BP3S** ВРЗИ Page Plastic ВЬЗС USAB **8248** กเสย BP1N <^ **TSDA** Amber Glass USDA UEDA 7037611 **SEÐ∀** HFDA Container Codes Matrix Sample Line کے 5

		Plastic/Misc.	ပ္တဲ့		
	GCUB	1 gallon cubitainer		EZI	5g Encore
	12GN	1/2 gallon cubitainer		VOAK	Kit Volatile Solid
	SP5T	120mL coliform Na Thiosulfate		_	Wipe/Swab
	BP1N	1L plastic HNO3		ZPLC	ZPLC Siploc Bag
	BP1U	1L plastic unpreserved			
	BP3S	250mL plastic H2SO4		WT	Water
	BP3N	250mL plastic HNO3		SE	Solid
	BP3U	250mL plastic unpreserved		OL	Non-Aq Liquid
	المامات	250mL plastic NAOH		WP	Wipe
んらのど	n	0mL plastic H2SO4			:
J	Date: 07/23/23	OmL plastic unpreserved			
נו.		production colors .			

40mL clear VOA vial Na Thiosulfate

40mL clear VOA vial HCI

4oz amber wide jar

40mL amber VOA vial H2SO4

Glass

40mL clear VOA vial

DG9S VG9U VG9T VG9H

00mL amber glass Na Thiosulfate

00mL amber glass unpreserved

AGSU

AGST

1 Gallon Jug with HNO3

Qualtrax ID: 55678

Page 41 of 41

CLIENT: PACE_44_MVKY PM: SMB

Due Date: 07/27/23

MO#:3060

500mL amber glass unpreserved 500mL clear glass unpreserved

8oz wide jar ur

WGKU

General

Z U

250mL amber glass unpreserved

250mL amber glass H2SO4 1L clear glass unpreserved

4oz wide jar unpreserved

WGFU

JGFU

L amber glass H2SO4

1 Gallon Jug

N S

L amber glass HCI

AG1H

AG1T

AG1S

BG2U

L amber glass NA Thiosulfate

AG2U

Page 1 of 1

Certificate of Analysis 3032610

Greg Dick
Big Rivers Electric Corporation Reid/Green Station
PO Box 24
Henderson, KY 42419

Customer ID: Report Printed:

44-102032 07/31/2023 11:56

Project Name: HMPL

HMPL Surface Impoundment Characterization Wells

Workorder: 3032610

Dear Greg Dick

Enclosed are the analytical results for samples received by the laboratory 06/30/2023 12:50.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3032610-01	MW-110/		Groundwater	06/30/2023 08:25	06/30/2023 12:50	Greg Dick
3032610-02	MW-111/		Groundwater	06/30/2023 09:25	06/30/2023 12:50	Greg Dick
3032610-03	MW-112/		Groundwater	06/30/2023 10:25	06/30/2023 12:50	Greg Dick
LabNumber	<u>Measurement</u>	<u>Value</u>				
3032610-01	Field Conductance	1290				
	Field pH	6.75				
	Field Temp (C)	17.70				
3032610-02	Field Conductance	531				
	Field pH	7.49				
	Field Temp (C)	18.79				
3032610-03	Field Conductance	530				
	Field pH	7.38				
	Field Temp (C)	18.51				

ANALYTICAL RESULTS

Lab Sample ID: 3032610-01 Description: MW-110 Sample Collection Date Time: 06/30/2023 08:25 Sample Received Date Time: 06/30/2023 12:50

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Barium	0.046		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Boron	0.51	M2	mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:38	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Calcium	152	D1, M3	mg/L	40.0	13.0	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:44	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Lithium	0.01	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB
Thallium	0.0002	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:43	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.68	H3	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	1070		mg/L	100	100	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.590	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	0.657	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.25	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.25	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	17.7	mg/L	0.5	0.4	SW846 9056	07/05/2023 20:06	07/05/2023 20:06	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	07/05/2023 20:06	07/05/2023 20:06	CSC
Sulfate	493	D mg/L	5	2	SW846 9056	07/05/2023 20:34	07/05/2023 20:34	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

ANALYTICAL RESULTS

 Lab Sample ID: 3032610-02
 Sample Collection Date Time: 06/30/2023 09:25

 Description: MW-111
 Sample Received Date Time: 06/30/2023 12:50

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Arsenic	0.0007	J	mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Barium	0.890		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Boron	0.48		mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:47	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Calcium	20.4	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:50	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Lithium	0.008	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Molybdenum	0.003	J	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:46	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.18	H3	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	358		mg/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.719	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	0.760	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.48	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.48	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	19.4	mg/L	0.5	0.4	SW846 9056	07/05/2023 21:01	07/05/2023 21:01	CSC
Fluoride	0.4	mg/L	0.2	0.2	SW846 9056	07/05/2023 21:01	07/05/2023 21:01	CSC
Sulfate	5	mg/L	1	0.5	SW846 9056	07/05/2023 21:01	07/05/2023 21:01	CSC

ANALYTICAL RESULTS

 Lab Sample ID: 3032610-03
 Sample Collection Date Time: 06/30/2023 10:25

 Description: MW-112
 Sample Received Date Time: 06/30/2023 12:50

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Arsenic	0.0014		mg/L	0.0010	0.0004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Barium	0.319		mg/L	0.004	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Boron	0.33		mg/L	0.10	0.10	SW846 6010 B	07/03/2023 09:56	07/05/2023 12:57	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Calcium	30.2	D1	mg/L	4.00	1.30	SW846 6010 B	07/03/2023 09:56	07/05/2023 13:00	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Lithium	0.006	J	mg/L	0.02	0.005	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Molybdenum	0.005	J	mg/L	0.01	0.002	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB
Thallium	0.0001	J	mg/L	0.0020	0.0001	SW846-6020 A	07/03/2023 09:56	07/07/2023 15:48	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.98	H3	Std. Units	0.10	0.10	4500-H+ B-2000	07/05/2023 13:07	07/05/2023 14:27	AED
Total Dissolved Solids	306		mg/L	50	50	2540 C-2015	06/30/2023 16:45	06/30/2023 16:45	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.474	_Sub	pCi/L			EPA 903.1	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.22	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
Radium	1.69	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW
See Attached Subcontract Report	1.69	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	07/31/2023 10:47	07/31/2023 10:49	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	10.9	mg/L	0.5	0.4	SW846 9056	07/05/2023 21:56	07/05/2023 21:56	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	07/05/2023 21:56	07/05/2023 21:56	CSC
Sulfate	24	mg/L	1	0.5	SW846 9056	07/05/2023 21:56	07/05/2023 21:56	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3032610

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

Results reported from dilution.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D

Y2

MDI

D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
Е	Concentration exceeds calibration range
H3	Sample received and analyzed past holding time.
J	Estimated value.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
М3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Qualifiers/Acronyms

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery

Mathad Datastian Limit

RPD Relative Percent Difference

Greater than Less than

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Blank (BCG0024-BLK1)										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023 10:44										
Boron	ND	0.10	mg/L							U
Calcium	ND	0.10	mg/L							U
-	ND	0.40	mg/L							
Blank (BCG0024-BLK2)										
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023 15:39										
Molybdenum	ND	0.01	mg/L							U
Mercury	ND	0.0005	mg/L							U
Antimony	ND	0.005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	0.0001	0.0020	mg/L							J
LCS (BCG0024-BS1)										
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023 10:47										
Boron	0.13	0.10	mg/L	0.125		103	85-115			
Calcium	6.32	0.40	mg/L	6.25		101	85-115			
LCS (BCG0024-BS2)										
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023 15:41										
Antimony	0.060	0.005	mg/L	0.0625		95.8	85-115			
Molybdenum	0.06	0.01	mg/L	0.0625		101	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		99.0	85-115			
Arsenic	0.0603	0.0010	mg/L	0.0625		96.4	85-115			
Barium	0.061	0.004	mg/L	0.0625		98.1	85-115			
Beryllium	0.0601	0.0020	mg/L	0.0625		96.2	85-115			
Cadmium	0.0601	0.0010	mg/L	0.0625		96.1	85-115			
Chromium	0.0621	0.0020	mg/L	0.0625		99.3	85-115			
Cobalt	0.062	0.004	mg/L	0.0625		99.0	85-115			
Lead	0.060	0.004	mg/L	0.0625		96.6	85-115			
Lithium	0.06	0.002	mg/L	0.0625		96.5	85-115			
Selenium	0.058	0.003	mg/L	0.0625		92.9	85-115			
Thallium	0.0594	0.003	mg/L	0.0625		95.1	85-115 85-115			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Matrix Spike (BCG0024-MS1)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023	12:09									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	160	4.00	mg/L	6.25	152	123	80-120			D2, M3
Matrix Spike (BCG0024-MS2)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/2023	12:16									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	8.40	4.00	mg/L	6.25	ND	134	80-120			D2, M1
Matrix Spike (BCG0024-MS3)	Source: 3032610-01									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023										
Molybdenum	0.07	0.01	mg/L	0.0625	ND	105	80-120			
Mercury	0.0027	0.0005	mg/L	0.00250	ND	109	80-120			
Antimony	0.062	0.005	mg/L	0.0625	ND	99.5	80-120			
Arsenic	0.0631	0.0010	mg/L	0.0625	ND	101	80-120			
Barium	0.108	0.004	mg/L	0.0625	0.046	98.7	80-120			
Beryllium	0.0573	0.0020	mg/L	0.0625	ND	91.7	80-120			
Cadmium	0.0603	0.0010	mg/L	0.0625	ND	96.5	80-120			
Chromium	0.0617	0.0020	mg/L	0.0625	ND	98.7	80-120			
Cobalt	0.060	0.004	mg/L	0.0625	ND	96.7	80-120			
Lead	0.060	0.002	mg/L	0.0625	ND	95.3	80-120			
Lithium	0.07	0.02	mg/L	0.0625	0.01	91.3	80-120			
Selenium	0.059	0.003	mg/L	0.0625	ND	93.6	80-120			
Thallium	0.0597	0.0020	mg/L	0.0625	0.0002	95.2	80-120			
Matrix Spike (BCG0024-MS4)	Source: 3032611-06									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/2023	16:37									
Mercury	0.0029	0.0005	mg/L	0.00250	ND	118	80-120			
Antimony	0.061	0.005	mg/L	0.0625	ND	98.1	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120			
Arsenic	0.0625	0.0010	mg/L	0.0625	ND	100	80-120			
Barium	0.063	0.004	mg/L	0.0625	ND	100	80-120			
Beryllium	0.0617	0.0020	mg/L	0.0625	ND	98.8	80-120			
Cadmium	0.0617	0.0010	mg/L	0.0625	ND	98.8	80-120			
Chromium	0.0638	0.0020	mg/L	0.0625	ND	102	80-120			
Cobalt	0.065	0.004	mg/L	0.0625	ND	104	80-120			
Lead	0.063	0.002	mg/L	0.0625	ND	101	80-120			
Lithium	0.06	0.02	mg/L	0.0625	ND	102	80-120			
Selenium	0.060	0.003	mg/L	0.0625	ND	95.5	80-120			
Thallium	0.0634	0.0020	mg/L	0.0625	0.0001	101	80-120			

IV	etals by SW846 6		Methods	J Mauisul	.viiie - Q(aunty CO		_	_		
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch BCG0024 - EPA 200.2											
Matrix Spike Dup (BCG0024-MSD1)	Source: 3032610-0	1									
Prepared: 7/3/2023 9:56, Analyzed: 7/5/202											
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U	
Calcium	165	4.00	mg/L	6.25	152	214	80-120	3.48	20	D2, M2, O	
			g/L	0.20	102		00 120	0.10		52, WO	
Matrix Spike Dup (BCG0024-MSD2) Source: 3032611-06											
Prepared: 7/3/2023 9:56, Analyzed: 7/5/202											
Boron	ND	1.00	mg/L	0.125	ND	447	80-120	40.0	20	D2, M2, U	
Calcium	7.31	4.00	mg/L	6.25	ND	117	80-120	13.9	20	D2	
Matrix Spike Dup (BCG0024-MSD3)	Source: 3032610-0	1									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/202	3 16:35										
Antimony	0.064	0.005	mg/L	0.0625	ND	102	80-120	2.64	20		
Molybdenum	0.07	0.01	mg/L	0.0625	ND	105	80-120	0.103	20		
Mercury	0.0028	0.0005	mg/L	0.00250	ND	112	80-120	3.47	20		
Arsenic	0.0635	0.0010	mg/L	0.0625	ND	102	80-120	0.580	20		
Barium	0.108	0.004	mg/L	0.0625	0.046	98.2	80-120	0.261	20		
Beryllium	0.0571	0.0020	mg/L	0.0625	ND	91.3	80-120	0.414	20		
Cadmium	0.0606	0.0010	mg/L	0.0625	ND	97.0	80-120	0.585	20		
Chromium	0.0619	0.0020	mg/L	0.0625	ND	99.1	80-120	0.430	20		
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.5	80-120	0.791	20		
Lead	0.060	0.002	mg/L	0.0625	ND	95.4	80-120	0.102	20		
Lithium	0.07	0.02	mg/L	0.0625	0.01	92.0	80-120	0.655	20		
Selenium	0.059	0.003	mg/L	0.0625	ND	94.8	80-120	1.21	20		
Thallium	0.0594	0.0020	mg/L	0.0625	0.0002	94.8	80-120	0.465	20		
Matrix Spike Dup (BCG0024-MSD4)	Source: 3032611-0	6									
Prepared: 7/3/2023 9:56, Analyzed: 7/7/202											
Molybdenum	0.06	0.01	mg/L	0.0625	ND	103	80-120	3.80	20		
Antimony	0.060	0.005	mg/L	0.0625	ND	96.3	80-120	1.85	20		
Mercury	2.92	3.000	ug/L	2.50	0.0510	115	80-120	200	20	Y2	
Arsenic	0.0599	0.0010	mg/L	0.0625	0.0310 ND	95.8	80-120	4.30	20	12	
Barium	0.0599	0.0010	mg/L	0.0625	ND	97.3	80-120	2.97	20		
Beryllium	0.0599	0.004	mg/L	0.0625	ND	95.8	80-120	3.03	20		
Cadmium	0.0699	0.0020	mg/L	0.0625	ND	96.3	80-120	2.59	20		
Chromium	0.0612	0.0010	mg/L	0.0625	ND	97.9	80-120	4.18	20		
Cobalt	0.062	0.0020	mg/L	0.0625	ND	98.5	80-120	5.15	20		
Lead	0.061	0.004	_	0.0625	ND	96.5 97.7	80-120	3.57	20		
			mg/L								
Lithium Selenium	0.06	0.02	mg/L	0.0625	ND	96.7	80-120	5.28	20		
	0.058	0.003	mg/L	0.0625	ND 0.0001	92.3	80-120	3.43	20		
Thallium	0.0610	0.0020	mg/L	0.0625	0.0001	97.3	80-120	3.86	20		

		Demontin		0 11	0		0/ DEC		DDD	
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0024 - EPA 200.2										
Post Spike (BCG0024-PS1)	Source: 3032610-0	1								
Prepared: 7/3/2023 9:56, Analyzed: 7/5/202	3 12:22									
Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
Calcium	173	4.00	mg/L	6.25	152	340	75-125			D2, M3
Post Spike (BCG0024-PS2)	Source: 3032610-0	1								
Prepared: 7/3/2023 9:56, Analyzed: 7/7/202	3 16:42									
Antimony	0.062	0.005	mg/L	0.0625	ND	99.9	75-125			
Mercury	0.0028	0.0005	mg/L	0.00250	ND	111	75-125			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	75-125			
Arsenic	0.0633	0.0010	mg/L	0.0625	ND	101	75-125			
Barium	0.106	0.004	mg/L	0.0625	0.046	95.5	75-125			
Beryllium	0.0570	0.0020	mg/L	0.0625	ND	91.2	75-125			
Cadmium	0.0609	0.0010	mg/L	0.0625	ND	97.5	75-125			
Chromium	0.0618	0.0020	mg/L	0.0625	ND	98.8	75-125			
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.1	75-125			
Lead	0.059	0.002	mg/L	0.0625	ND	94.2	75-115			
Lithium	0.07	0.02	mg/L	0.0625	0.01	91.0	75-125			
Selenium	0.060	0.003	mg/L	0.0625	ND	95.6	75-125			
Thallium	0.0593	0.0020	mg/L	0.0625	0.0002	94.5	75-125			

Conventional Chemistry Analyses Madisonville - Quality Control

		D		0	0		0/ DEC		DDD	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Nesuit	LIIIII	Office	Level	Nesuit	70INLO	LIIIIII	NED	LIIIII	Notes
Batch BCF2697 - Default Prep Micro										
LCS (BCF2697-BS1)										
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	4.96		Std. Units	5.00		99.2	98.8-101.2			
LCS (BCF2697-BS2)										
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	4.99		Std. Units	5.00		99.8	98.8-101.2			
Duplicate (BCF2697-DUP1) Sc	ource: 3032611-06									
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14	:27									
pH (Lab)	5.79	0.10	Std. Units		5.84			0.860	10	Н3
Duplicate (BCF2697-DUP2) Sc	ource: 3064450-01									
Prepared: 7/5/2023 13:07, Analyzed: 7/5/2023 14										
pH (Lab)	9.64	0.10	Std. Units		9.64			0.00	10	Н3
Data December 19 to 19 t										
Batch BCF2838 - Default Prep Wet Chem										
Blank (BCF2838-BLK1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023										
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCF2838-BS1)										
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Total Dissolved Solids	1490	25	mg/L	1500		99.4	80-120			
Duplicate (BCF2838-DUP1) Sc	ource: 3032610-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Total Dissolved Solids	1040	100	mg/L		1070			3.03	10	
Duplicate (BCF2838-DUP2) Sc	ource: 3063392-01									
Prepared: 6/30/2023 16:45, Analyzed: 6/30/2023	16:45									
Frepareu. 0/30/2023 10.43, Arialyzeu. 0/30/2023	10.45									

Ion Chromatography Madisonville - Quality Control

	F	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCG0128 - Default Prep IC										
Matrix Spike (BCG0128-MS1)	Source: 3032611-06									
Prepared: 7/6/2023 3:25, Analyzed: 7/6/2023	3:25									
Chloride	17.1		mg/L	12.5	0.0	137	75-125			M1
Fluoride	7.4		mg/L	5.00	0.0	147	75-125			M1
Sulfate	36		mg/L	25.0	0.4	144	75-125			M1
Matrix Spike Dup (BCG0128-MSD1)	Source: 3032611-06									
Prepared: 7/6/2023 3:52, Analyzed: 7/6/2023	3:52									
Chloride	15.5		mg/L	12.5	0.0	124	75-125	9.67	15	
Fluoride	6.6		mg/L	5.00	0.0	131	75-125	11.4	15	M1
Sulfate	32		mg/L	25.0	0.4	128	75-125	11.3	15	M1

Certified Analyses included in this Report

Analyte Certifications

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431

4500-H+ B-2000 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3032610
Shipped By: Client	Temperature: 5.60° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	$oldsymbol{arDelta}$
Check if bottles are intact	
Check if bottles are correct	$oldsymbol{arDelta}$
Check if bottles have sufficient volume	
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	
Check if samples are preserved properly	☑

•	Scheduled	tor: <u>03/13/2023</u>	41 0 498 0 888 1 81 00 4 8 6 1 0 10 0 18				
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment Characterization Wells	Report To: Big Rivers Electri Station Greg Dick PO Box 24 Henderson, KY 4	ic Corporation Reid/Green	Invoice To: Big Rivers E Greg Dick PO Box 24 Henderson,	Electric Corporation Reid/Green Station			
	Phone: (270) 844	<u>1-5736</u>	PO#:	_			
Please Print Legibly	PWS ID#: State:	ſ	Quote#	<u> </u>			
Collected by (Signature):	1.6			iance Monitoring? Yes No -			
requi	red information*						
*For composite samples please indicate begin til	·			es Chlorinated? Yes No			
Influent: Start DateStart time	End Date	End Tim:eT	emp (oC)				
Effluent: Start Date Start time	End Date	End TimeT	emp (oC)				
LAB USE ONLY *required information* Workorder # Date Collection 3032610 (mm/dd/yy): Time (24 hr): Sample ID#	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested			
3032610-01 A Ob 30123 0825	Plastic 500mL pH<2 1 w/HNO3	MW-110	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020			
3032610-01 B 06/30/23 0825	Plastic 1L 1	MW-110	g/c	Fluoride 9056 TDS Sulfate 9056 pH			
	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	MW-110	g/c	(Lab) Chloride 9056 Radium 226 (sub)			
P	reservation Check: pH :	· <u>/</u>					
3032610-01 D 06 30 13 0825	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW-110	g/c	Radium 228 (sub)			
Р.	reservation Check: pH:	<u>/</u>					
	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	MW-110	g/c	Radium 228 (sub)			
•		,					
	\		·· ····				
Field data collected by: Gray Dide My	Date (mm/dd/yy) <u>وا</u>	30 23 Time (24 hr) 0	825				
pH <u>6.75</u> Cond (umho) <u>129</u>	Res Cl (mg/L)	Tot CI (mg/L)	Fre	ee CI (mg/L)			
Temp (oC) 17.70 or (oF)	Static Water Level	DO (mg/L)	T	urb. (NTU)			
Flow (MGD) or (CFS)	or (g/min)			·			
Relinquished by: (Signature)	Received by: (Signatu	re)	Date (mm/	/dd/yy) Time (24 hr)			
In Out	16-D		06/30/	123 [250			

PACE- Check here if trip charge applied to associated COC

Printed: 3/10/2023 3:46:43PM

Scheduled for: 03/13/2023

¥

	30110441341	<u> </u>					
Client: Big Rivers Electric Corporation Reid/Green Station		c Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station			
Project: HMPL Surface Impoundment Characterization Wells	Station Greg Dick PO Box 24		Greg Dick PO Box 24 Henderson, KY 42419				
	Henderson, KY 42						
	Phone: <u>(270) 844-</u> PWS ID#:	· <u>5/36</u>	PO#:				
Please Print Legibly	State: KY		Quote#	<u> </u>			
Collected by (Signature):	Uired information*		Compli	ance Monitoring? Yes No 👱			
*For composite samples please indicate begin		end time below:	Sample	es Chlorinated? Yes No			
Influent: Start Date Start time		_ End Time	Temp (oC)				
Effluent: Start Date Start time		End Time	Temp (oC)				
LAB USE ONLY *required information* Workorder # Date Collection 3032610 (mm/dd/yy): Time (24 hr):	Bottle and Preservative OO	Sample Description	Composite	Comple Applysis Degreeted			
Sample ID# 3032610-01 F 06/30 23 0825	Plastic 1L pH<2 w/HNO3 1	- MW-110	g/c	Sample Analysis Requested Radium Total (sub)			
<u> </u>	(Sub) Preservation Check: pH :		9,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
3032610-02 A <u>106/30/23 0925</u>	Plastic 500mL pH<2 1 w/HNO3	MW-111	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020			
	Preservation Check: pH:	<u>/</u>					
3032610-02 B 06/30 L3 0925	Plastic 1L 1	MW-111	g/c	Fluoride 9056 TDS Sulfate 9056 pH			
3032610-02 C 06/30/13 0925	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	MW-111	g/c	(Lab) Chloride 9056 Radium 226 (sub)			
3032610-02 D 06 30 23 0925	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	MW-111	g/c	Radium 228 (sub)			
	E 10		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Field data collected by:	Date (mm/dd/yy) 06	30 23 Time (24 hr) _	0925				
	31 Res Cl (mg/L)			e Cl (mg/L)			
Temp (oC) <u>18.79</u> or (oF)	Static Water Level	DO (mg/L)	T	urb. (NTU)			
Flow (MGD) or (CFS)	or (g/min)						
Relinquished by: (Signature)	Received by: (Signature	e)	Date (mm/	dd/yy) Time (24 hr)			
The Our	~ C		06/30/				
PACE- Check here if trip charge app	olied to associated COC	Printed:		243PM Page 14 of 29			

Scheduled for: 03/13/2023

Client: Big Riv Reid/Green Sta		orporation	Report To: Big Rivers Elector Station Greg Dick	ctric Co	prporation Reid/Green	Invoice To: Big Rivers E	lectric Corpo	ration Reid/Green Station			
Project: HMPL Characterization		oundment	PO Box 24			PO Box 24	-				
,			Henderson, K	/ 42419	9	Henderson, KY 42419					
			Phone: <u>(270) 8</u> PWS ID#:			PO#:		_			
Please Print L	egibly.	- A (State:	<y_< td=""><td></td><td>Quote#</td><td></td><td>-</td></y_<>		Quote#		-			
Collected by (S	gnature):	Yrec	tired information*		_	Compli	ance Monitor	ing? Yes No			
*For composite	samples please	e indicate begir	time, end time and temp(oC)) at end	I time below:	Sample	es Chlorinated	1? Yes No			
Influent: Start I	ate	Start time	Erid Date	E	nd Time1	Temp (oC)					
Effluent: Start I	Date	Start time	End Date	E	nd Time	Temp (oC)					
LAB USE ONL' Workorder # 3032610 Sample ID#	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	Sample	Analysis Requested			
3032610-02 E	06/30/23	0925	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub)	1	MW-111	g/c	Radium 228	(sub)			
			Preservation Check: pH:	✓		•					
3032610-02 F	06/30/23	0925	Plastic 1L pH<2 w/HNO3 (Sub)	,	MW-111	g/c	Radium Tota	al (sub)			
	- ()		Preservation Check: pH:								
3032610-03 A	<u>Ø6/30 / 13</u>	_lo22	Plastic 500mL pH<2 w/HNO3	1	MW-112	g/c	Beryllium To Cadmium To 6010B Chro Tot 6020 An Tot 6020 Th	6020 Barium Tot 6020 bt 6020 Boron Tot 6010B ot 6020 Calcium Tot mium Tot 6020 Cobalt timony Tot 6020 Lithium allium Tot 6020 Mercury blybdenum Tot 6020 bt 6020			
3032610-03 B	06/30/23	1025	Plastic 1L		MW-112	g/c	Fluoride 90	56 TDS Sulfate 9056 pH			
3032610-03 C			Plastic 1L pH<2 w/HNO3		MW-112	g/c	(Lab) Chlori Radium 226	de 9056			
			Rad 226 (Sub) Preservation Check: pH:	,		9.0		, (-1-)			
Preservation C	Check Perform	ed by: <u>\</u>	<u>O</u>			, 1879,188		· · · · · · · · · · · · · · · · · · ·			
Field data colle	cted by: <u> </u>	g Dek Sh	Date (mm/dd/yy)	06/30	723 Time (24 hr) _	1025					
		,	<i>3∙</i> Res Cl (mg/L)				ee Cl (mg/L) _				
Temp (oC)	18.51 or	(oF)	Static Water Level		DO (mg/L)	т	urb. (NTU) _				
Flow (MGD)	or	(CFS)	or (g/min)		···						
Relinquished by	/: (Signature)		Received by: (Signa	ature)		Date (mm	/dd/vv)	Time (24 hr)			
910.	00		16. 5	_ ک	_	06/30/	•••	1250			
	The state of the s		1			00/10/					
						_					
			·								
PACE-	Check here if	trip charge ap	plied to associated COC		Printed: 3		:43PM	Page 15 of 29			

Scheduled for: 03/13/2023

Page 16 of 29

Printed: 3/10/2023 3:46:43PM

Station Greg Dick PO Box 24 Henderson, KY 424 Phone: (270) 844-5	Corporation Reid/Green	Greg Dick PO Box 24	Electric Corporation Reid/Green Statio
Station Greg Dick PO Box 24 Henderson, KY 424 Phone: (270) 844-5		Greg Dick PO Box 24	lectric Corporation Reid/Green Static
Greg Dick PO Box 24 Henderson, KY 424 Phone: (270) 844-5	419	PO Box 24	
Henderson, KY 424 Phone: (270) 844-5	419		
Phone: (270) 844-5	419		
		Henderson,	KY 42419
	<u>5736</u>	PO#:	
PWS ID#: State:		Quote#	
State			
information*	<u> </u>	Compli	ance Monitoring? Yes No
end time and temp(oC) at e	end time below:	Sample	es Chlorinated? Yes No
End Date	End TimeTe	emp (oC)	···
Pend Date	End Time Te	emp (oC)	
	,		
ত			
ai			
lle and Preservative	Sample Description	Composite	Sample Analysis Requested
tic 1L pH<2 w/HNO3 1	MW-112	g/c	Radium 228 (sub)
	 MW-112	g/c	Radium 228 (sub)
Rad 228 (Sub)			, ,
ervation Check: pH :	<u>-</u>		
tic 1L pH<2 w/HNO3 1 (Sub)	MW-112	g/c	Radium Total (sub)
	_		
			Number
	Thermome	ter Serial	Number 07
		X 1.19UZ	01
		1814600	57
	Te	mp 5.6 °C	3
_	•		
Date (mm/dd/yy)	Time (24 hr)		
			ee CI (mg/L)
		'	uib. (N10)
_ or (g/min)			
Received by: (Signature		Date (mm/	/dd/yy) Time (24 hr)
VT)	bllad	9) 19
1		06/30	23 1250
	End Date End Date End Date Lic 1L pH<2 w/HNO3 Rad 228 (Sub) Prvation Check: pH: Lic 1L pH<2 w/HNO3 Rad 228 (Sub) Prvation Check: pH: Lic 1L pH<2 w/HNO3 Rad 228 (Sub) Prvation Check: pH: Static Umm/dd/yy) Res CI (mg/L) Static Water Level or (g/min)	End Date End Time Te End Date End Time Te End Date End Time Te End Date End Time Te End Date End Time Te Sample Description MW-112 Rad 228 (Sub) Ervation Check: pH : Itic 1L pH<2 w/HNO3	end time and temp(oC) at end time below: End Date End Time Temp (oC)

PACE- Check here if trip charge applied to associated COC

Greensburg, PA 15601 (724)850-5600

July 24, 2023

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville, KY 42431

RE: Project: 3032610

Pace Project No.: 30602171

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on July 06, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

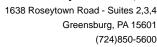
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622


Samantha Bayune

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3032610
Pace Project No.: 30602171

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

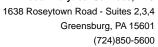
Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

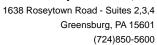

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



SAMPLE SUMMARY

Project: 3032610
Pace Project No.: 30602171

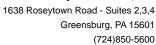
Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30602171001	3032610-01	Water	06/30/23 08:25	07/06/23 10:00	
30602171002	3032610-02	Water	06/30/23 09:25	07/06/23 10:00	
30602171003	3032610-03	Water	06/30/23 10:25	07/06/23 10:00	

SAMPLE ANALYTE COUNT

Project: 3032610
Pace Project No.: 30602171

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30602171001	3032610-01	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602171002	3032610-02	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30602171003	3032610-03	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	ZPC	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3032610
Pace Project No.: 30602171

Sample: 3032610-01 Lab ID: 30602171001 Collected: 06/30/23 08:25 Received: 07/06/23 10:00 Matrix: Water PWS: Site ID: Sample Type: Comments: • Collection time on containers does not match COC Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.590 \pm 0.436 \quad (0.591)$ Radium-226 pCi/L 07/20/23 14:16 13982-63-3 C:NA T:100% Pace Analytical Services - Greensburg EPA 904.0 $0.657 \pm 0.304 \quad (0.478)$ Radium-228 pCi/L 07/19/23 11:27 15262-20-1 C:81% T:93% Pace Analytical Services - Greensburg Total Radium Total Radium 1.25 ± 0.740 (1.07) pCi/L 07/24/23 10:30 7440-14-4 Calculation Sample: 3032610-02 Lab ID: 30602171002 Collected: 06/30/23 09:25 Received: 07/06/23 10:00 Site ID: Sample Type: Comments: • Collection time on containers does not match COC Act ± Unc (MDC) Carr Trac **Parameters** Method Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg Radium-226 EPA 903.1 $0.719 \pm 0.636 \quad (0.943)$ pCi/L 07/20/23 14:16 13982-63-3 C:NA T:82% Pace Analytical Services - Greensburg $0.760 \pm 0.354 \quad (0.588)$ Radium-228 EPA 904.0 07/19/23 11:27 15262-20-1 pCi/L C:82% T:91% Pace Analytical Services - Greensburg Total Radium Total Radium 1.48 ± 0.990 (1.53) pCi/L 07/24/23 10:30 7440-14-4 Calculation Sample: 3032610-03 Lab ID: 30602171003 Collected: 06/30/23 10:25 Received: 07/06/23 10:00 Matrix: Water PWS: Site ID: Sample Type: Comments: • Collection time on containers does not match COC **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 0.474 ± 0.638 (1.07) Radium-226 pCi/L 07/20/23 14:16 13982-63-3 C:NA T:90% Pace Analytical Services - Greensburg 1.22 ± 0.497 (0.805) Radium-228 EPA 904.0 pCi/L 07/19/23 11:28 15262-20-1 C:81% T:86% Pace Analytical Services - Greensburg Total Radium Total Radium 1.69 ± 1.14 (1.88) pCi/L 07/24/23 10:30 7440-14-4 Calculation

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

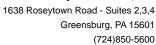
Project: 3032610
Pace Project No.: 30602171

QC Batch: 600244 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602171001, 30602171002, 30602171003


METHOD BLANK: 2917653 Matrix: Water

Associated Lab Samples: 30602171001, 30602171002, 30602171003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.418 ± 0.322 (0.624) C:84% T:78%
 pCi/L
 07/19/23 11:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3032610
Pace Project No.: 30602171

QC Batch: 600243 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30602171001, 30602171002, 30602171003

METHOD BLANK: 2917652 Matrix: Water

Associated Lab Samples: 30602171001, 30602171002, 30602171003

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 3032610
Pace Project No.: 30602171

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

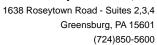
Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/24/2023 11:25 AM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.


(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3032610
Pace Project No.: 30602171

Date: 07/24/2023 11:25 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30602171001	3032610-01	EPA 903.1	600243		
30602171002	3032610-02	EPA 903.1	600243		
30602171003	3032610-03	EPA 903.1	600243		
30602171001	3032610-01	EPA 904.0	600244		
30602171002	3032610-02	EPA 904.0	600244		
30602171003	3032610-03	EPA 904.0	600244		
30602171001	3032610-01	Total Radium Calculation	603591		
30602171002	3032610-02	Total Radium Calculation	603591		
30602171003	3032610-03	Total Radium Calculation	603591		

Pace Analytical *

LAB USE ONLY 600 S Results Requested By: Standard 0 Comments Requested Analysis Workorder Name: HMPL Surface Impoundme Owner Received Date: 6/30/2023 Radium Total しゃどうでき 822 muibeA Date/Time 922 muibeA Preserved Containers gray alloader Pace Analytical Services LLC Greensburg PA Matrix Water Water Water Received By 1638 Rosey Town Rd Suite 2,3,4 IR44-McCoy IR44-McCoy IR44-McCoy Greensburg, PA 15601 7/5/2023 Lab ID Date/Time Subcontract To: (724) 850-5615 06/30/23 08:25 06/30/23 09:25 06/30/23 10:25 Date/Time Sample |Collect Type Kayla Zachary rob.whittington@pacelabs.com Pace Analytical Services, LLC Workorder: 3032610 Madisonville, KY 42409 Transfers |Released By 825 Industrial Road 3032610-02 3032610-03 3032610-01 Item Sample ID 270-821-7375 Report To:

Sample Intact (1) or N ***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC Received on Ice(9) or N Custody Seal Y or (ပ္ グラ Cooler Temperature on Receipt

This chain of custody is considered complete as is since this information is available in the owner laboratory.

"MT-ALL-C-002rev.00 24March2009

Page 1 of 1

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3032610

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601 Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID Comments
Sample ID: 3032610-01	Water	Sampled:06/30/2023 08:25	Specific Method
Radium Total (sub)		12/27/2023 08:25	EPA 904.0 Radium Sum C
Radium 228 (sub)		12/27/2023 08:25	EPA 904.0 Radium Sum C
Radium 226 (sub)		12/27/2023 08:25	EPA 903.1
Sample ID: 3032610-02	Water	Sampled:06/30/2023 09:25	Specific Method
Radium Total (sub)		12/27/2023 09:25	EPA 904.0 Radium Sum C
Radium 228 (sub)		12/27/2023 09:25	EPA 904.0 Radium Sum C
Radium 226 (sub)		12/27/2023 09:25	EPA 903.1
Sample ID: 3032610-03	Water	Sampled:06/30/2023 10:25	Specific Method
Radium Total (sub)	:	12/27/2023 10:25	EPA 904.0 Radium Sum (
Radium 228 (sub)		12/27/2023 10:25	EPA 904.0 Radium Sum C
Radium 226 (sub)		12/27/2023 10:25	EPA 903.1

WO#: 30602171

PM: SMB

Due Date: 07/27/23

CLIENT: PACE_44_MVKY

Released By Date Received By Date

Released By Date

Received By Date

	DC#_Title: ENV-FRM- Pittsburgh	GDOI	(-00 0	io vu:	- " WO# : 3	306021	.71
Pace warren	Effective Date: 07/06/2023		***************************************	~~~	PM: SMB	Due Da ICE_44_MVKY	te: 07/27/23
Client Name:	Pace Mudison	ille	,				
Courier: Fed	Ex 🖰 UPS 🗆 USPŞ 🗆 Client I		merçia	al 🗆 P	ace 🗌 Other		Initial / Date
		•		-			MULLA CONTRACT
Thermometer U	sed: <u>\6</u> Typ		e: 🕥	let) Bl	Intact: ☐ Yes 🖺 N ue None	Temped By: _	1471643 1471643
	ture: Observed Temp <u>U</u> .	<u>. </u>	•C	Corre	ction Factor:O	•C Final Tei	пр: Ч.Ч •С
Temp should be abo	ve freezing to 6°C				pH paper Lot#	D.P.D. Reside	ıal Chlorine Lot#
Comments:		Yes	No	NA	1003M		
Chain of Custody	y Present	J			1.		***************************************
Chain of Custody	y Filled Out:	J			2.		
-Were client	corrections present on COC		7				·
Chain of Custody	/ Relinquished	J			3.		
Sampler Name 8	& Signature on COC:		7		4.		
Sample Labels m			7		5. Times of	01:29 00 1	ottles.
-Includes da	te/time/ID						
Matrix:		V	7				
Samples Arrived	within Hold Time:	7			6.		
Short Hold Time	Analysis (<72hr		J		7.		
remaining):							
Rush Turn Arour	nd Time Requested:		7		8.		
Sufficient Volum	e:	7			9.		
Correct Containe	ers Used:	J			10.	•	
-Pace Contai	iners Used	j					
Containers Intac	t:	J			11.		
Orthophosphate	field filtered:			J	12.		
Hex Cr Aqueous	samples field filtered:			J	13.		
Organic Samples	checked for dechlorination			J	14:		
Filtered volume i	received for dissolved tests:			1	15:		
All containers ch	ecked for preservation:	J			16.		
· ·	VOA, coliform, TOC, O&G, adon, non-aqueous matrix				PHIL	•	
All containers me requirement	eet method preservation is:	7			Initial when TH completed Lot# of added Preservative	Date/Time of Preservation	
8260C/D: Heads	pace in VOA Vials (> 6mm)			1	17.		
524.1: Headspac	e in VOA Vials (0mm)			J	18.		
Trip Blank Presen	ıt:	M		7	Trip blank custoo	dy seal present?	YES or NO
Rad Samples Scro	eened <0.5 mrem/hr.	7			Initial when TH Discompleted	ate: 7/6h2	Survey Meter SN: 1563

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. **PM Review** is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects

Effective Date: 1/11/2023 2022610

1881

Profile Number 1851

Notes

5

Page

Bein ВИ Other ISCN GIN BUDE SPLC MCKN MGFU **NOAK** U69V Vials T65V H69/ S69d UEAB **B**P38 ВЬЗИ Plastic B_b3C **US48** BP25 UIAB S ВР1И C **TSÐA** Amber Glass **US**SA U£5A **SE**9∀ HIDA Container Codes Matrix Sample Item Line ۲

Kit Volatile Solid Non-Aq Liquid Wipe/Swab ZPLC Siploc Bag 5g Encore Water Wipe Solid VOAK ΝŅ × 占 공 Plastic/Misc. 120mL coliform Na Thiosulfate 250mL plastic unpreserved 11. plastic unpreserved plastic H2SO4 250mL plastic H2SO4 250mL plastic NAOH 250mL plastic HNO3 1/2 gallon cubitainer 1 gallon cubitainer 1L plastic HNO3 GCUB BP1N BP3S BP3N **BP3U** 12GN SP5T BP1U 40#:30602177

40mL clear VOA vial Na Thiosulfate

40mL clear VOA vial HCI

4oz amber wide jar

40mL amber VOA vial H2SO4

Glass

DG9S

VG9U VG9T VG9H JGFU

100mL amber glass Na Thiosulfate

100mL amber glass unpreserved

AG5U AG5T

1 Gallon Jug with HNO3

40mL clear VOA vial

500mL amber glass unpreserved 500mL clear glass unpreserved

8oz wide jar unpres

WGKU

AG2U

General

<u>8</u>

250ml. amber glass unpreserved

Page 29 of 29

Qualtrax ID: 55678

250mL amber glass H2SO4 1L clear glass unpreserved

4oz wide jar unpreserved

WGFU

BG2U

1L amber glass NA Thiosulfate

AG1T

1L amber glass H2SO4

AG1S AG1H

1 Gallon Jug

SN

1L amber glass HCI

Page 1 of 1

plastic unpreserved

Due | Date: 07/27/23

CLIENT: PACE_44_MVKY

Certificate of Analysis 3114321

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: 44-102032 Report Printed: 12/20/2023 14:14

Project Name: HMPL Surface Impoundment Workorder: 3114321

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/21/2023 13:14.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3114321-01	MW7/		Groundwater	11/21/2023 08:44	11/21/2023 13:14	Kaelyn Sperle
3114321-02	MW9/		Groundwater	11/21/2023 11:54	11/21/2023 13:14	Kaelyn Sperle
3114321-03	MW10/		Groundwater	11/21/2023 10:06	11/21/2023 13:14	Kaelyn Sperle
3114321-04	DUPLICATE/		Groundwater	11/21/2023 00:00	11/21/2023 13:14	Kaelyn Sperle
3114321-05	FIELD BLANK/		Water	11/21/2023 00:00	11/21/2023 13:14	Kaelyn Sperle
<u>LabNumber</u>	Measurement	Value				
3114321-01	Field Dissolved Oxygen	3.61				
	Field pH	7.18				
	Field Temp (C)	14.7				
	Field Turbidity	5.20				
3114321-02	Field Dissolved Oxygen	1.98				
	Field pH	6.93				
	Field Temp (C)	16.1				
	Field Turbidity	28.23				
3114321-03	Field Conductance	0.659				
	Field Dissolved Oxygen	2.08				
	Field pH	9.12				
	Field Temp (C)	15.1				
	Field Turbidity	5.83				

Sample Collection Date Time: 11/21/2023 08:44 Lab Sample ID: 3114321-01 Description: MW7

Sample Received Date Time: 11/21/2023 13:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Arsenic	0.0030		mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Barium	0.076		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Boron	0.35		mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/30/2023 15:22	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Calcium	39.4	D1	mg/L	4.00	1.30	SW846 6010 B	11/27/2023 08:58	11/29/2023 16:55	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Lead	0.0005	J	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Lithium	0.007	J	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Molybdenum	0.009	J	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:55	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.39	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	238		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.215	_Sub	pCi/L			EPA 903.1	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.347	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
Radium	0.562	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.562	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW

Analyte	Result Fl	lag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	3.0	mg/L	0.5	0.4	SW846 9056	11/28/2023 22:49	11/28/2023 22:49	CSC
Fluoride	0.3	mg/L	0.2	0.2	SW846 9056	11/29/2023 13:14	11/29/2023 13:14	CSC
Sulfate	11	mg/L	1	0.5	SW846 9056	11/28/2023 22:49	11/28/2023 22:49	CSC

Lab Sample ID: **3114321-02**Description: **MW9**Sample Collection Date Time: 11/21/2023 11:54
Sample Received Date Time: 11/21/2023 13:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND		mg/L	0.005	0.002		11/27/2023 08:58	11/27/2023 14:59	AKB
•			·						
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Barium	0.251		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Boron	ND	V1, U	mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:01	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Calcium	59.4	D1	mg/L	4.00	1.30	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:04	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Lithium	0.006	J	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:59	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.06	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	314		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.946	_Sub	pCi/L			EPA 903.1	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.250	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
Radium	1.20	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	1.20	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	6.5	mg/L	0.5	0.4	SW846 9056	11/28/2023 23:16	11/28/2023 23:16	CSC
Fluoride	0.2	mg/L	0.2	0.2	SW846 9056	11/29/2023 13:41	11/29/2023 13:41	CSC
Sulfate	ND	υ mg/L	1	0.5	SW846 9056	11/28/2023 23:16	11/28/2023 23:16	CSC

Lab Sample ID: **3114321-03**Description: **MW10**

Sample Collection Date Time: 11/21/2023 10:06 Sample Received Date Time: 11/21/2023 13:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Arsenic	0.0016		mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Barium	0.165		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Boron	0.56		mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:20	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Calcium	9.16		mg/L	0.40	0.13	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:20	MRWD
Chromium	0.0006	J	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Lithium	0.54		mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Mercury	0.0002	J	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Molybdenum	0.005	J	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:03	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.97	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	408		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.00	_Sub	pCi/L			EPA 903.1	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.210	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
Radium	0.210	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.210	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	17.2	mg/l	. 0.5	0.4	SW846 9056	11/28/2023 23:44	11/28/2023 23:44	CSC
Fluoride	0.5	mg/l	. 0.2	0.2	SW846 9056	11/29/2023 14:08	11/29/2023 14:08	CSC
Sulfate	24	mg/l	. 1	0.5	SW846 9056	11/28/2023 23:44	11/28/2023 23:44	CSC

Lab Sample ID: **3114321-04**Description: **DUPLICATE**Sample Collection Date Time: 11/21/2023 00:00
Sample Received Date Time: 11/21/2023 13:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Arsenic	0.0016		mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Barium	0.162		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Boron	0.55		mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:29	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Calcium	9.54		mg/L	0.40	0.13	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:29	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Lithium	0.52		mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Mercury	0.0002	J	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Molybdenum	0.005	J	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:06	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.97	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	428		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.690	_Sub	pCi/L			EPA 903.1	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	1.64	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
Radium	2.33	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	2.33	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW

Analyte	Result	Flag Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	17.4	mg/L	0.5	0.4	SW846 9056	11/29/2023 00:11	11/29/2023 00:11	CSC
Fluoride	0.5	mg/L	0.2	0.2	SW846 9056	11/29/2023 14:36	11/29/2023 14:36	CSC
Sulfate	24	mg/L	1	0.5	SW846 9056	11/29/2023 00:11	11/29/2023 00:11	CSC

Lab Sample ID: **3114321-05**Description: **FIELD BLANK**Sample Collection Date Time: 11/21/2023 00:00

Sample Received Date Time: 11/21/2023 13:14

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Barium	ND	U	mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/28/2023 19:00	AKB
Boron	ND	V1, U	mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:39	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Calcium	ND	U	mg/L	0.40	0.13	SW846 6010 B	11/27/2023 08:58	11/29/2023 17:39	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Lithium	ND	U	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/28/2023 19:00	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 15:28	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	6.05	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	ND	G1, U	mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.180	_Sub	pCi/L			EPA 903.1	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.467	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
Radium	0.647	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW
See Attached Subcontract Report	0.647	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:48	12/20/2023 11:49	RCW

	Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
(Chloride	ND	U	mg/L	0.5	0.4	SW846 9056	11/29/2023 00:39	11/29/2023 00:39	CSC
F	Fluoride	ND	L1, U	mg/L	0.2	0.2	SW846 9056	11/29/2023 00:39	11/29/2023 00:39	CSC
,	Sulfate	ND	U	mg/L	1	0.5	SW846 9056	11/29/2023 00:39	11/29/2023 00:39	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3114321

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
E	Concentration exceeds calibration range
G1	Residue yield was less than the method required 2.5mg.
Н3	Sample received and analyzed past holding time.
J	Estimated value.
L1	The associated blank spike recovery was above method acceptance limits.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
T16	Sample receipt temperature outside 0 - 6°C; sample not collected on same day as receipt; sample received on ice; client gave permission to proceed as documented on the COC or the project manager notified to contact client before proceeding.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).
V1	CCV recovery was above method acceptance limits. This target analyte not detected in the sample.

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Qualifiers/Acronyms

Y2

MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery

RPD Relative Percent Difference
> Greater than

Less than

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2072 - EPA 200.2										
Blank (BCK2072-BLK1)										
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023	14:37									
Mercury	ND	0.0005	mg/L							U
Molybdenum	ND	0.01	mg/L							U
Antimony	ND	0.005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
Blank (BCK2072-BLK2)										
Prepared: 11/27/2023 8:58, Analyzed: 11/29/2023	16:04									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
LCS (BCK2072-BS1)										
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023	14:41									
Molybdenum	0.06	0.01	mg/L	0.0625		101	85-115			
Antimony	0.062	0.005	mg/L	0.0625		98.6	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		99.0	85-115			
Arsenic	0.0619	0.0010	mg/L	0.0625		99.1	85-115			
Barium	0.061	0.004	mg/L	0.0625		97.8	85-115			
Beryllium	0.0562	0.0020	mg/L	0.0625		89.9	85-115			
Cadmium	0.0610	0.0010	mg/L	0.0625		97.6	85-115			
Chromium	0.0611	0.0020	mg/L	0.0625		97.7	85-115			
Cobalt	0.060	0.004	mg/L	0.0625		96.7	85-115			
Lead	0.058	0.002	mg/L	0.0625		93.4	85-115			
Lithium	0.06	0.02	mg/L	0.0625		88.8	85-115			
Selenium	0.061	0.003	mg/L	0.0625		97.1	85-115			
Thallium	0.0595	0.0020	mg/L	0.0625		95.2	85-115			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
	rtoduit	Lillie	Cinto	LOVOI	TOSUIT	, or the	Lillito	1110	Little	110100
Batch BCK2072 - EPA 200.2										
LCS (BCK2072-BS2)										
Prepared: 11/27/2023 8:58, Analyzed: 11/29/2023	16:07									
Boron	0.13	0.10	mg/L	0.125		108	85-115			
Calcium	6.15	0.40	mg/L	6.25		98.3	85-115			
Matrix Spike (BCK2072-MS1) Sc	urce: 3113381-0)1								
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023	15:35									
Antimony	0.062	0.005	mg/L	0.0625	ND	99.8	80-120			
Mercury	0.0033	0.0005	mg/L	0.00250	ND	131	80-120			M1
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	80-120			
Arsenic	0.0651	0.0010	mg/L	0.0625	0.0006	103	80-120			
Barium	0.110	0.004	mg/L	0.0625	0.046	102	80-120			
Beryllium	0.0538	0.0020	mg/L	0.0625	ND	86.1	80-120			
Cadmium	0.0618	0.0010	mg/L	0.0625	ND	98.8	80-120			
Chromium	0.0654	0.0020	mg/L	0.0625	0.0028	100	80-120			
Cobalt	0.062	0.004	mg/L	0.0625	ND	98.7	80-120			
Lead	0.059	0.002	mg/L	0.0625	0.001	93.1	80-120			
Lithium	0.07	0.02	mg/L	0.0625	0.01	85.2	80-120			
Selenium	0.062	0.003	mg/L	0.0625	ND	98.8	80-120			
Thallium	0.0591	0.0020	mg/L	0.0625	ND	94.6	80-120			
Matrix Spike (BCK2072-MS2)	urce: 3113381-0	1								
Prepared: 11/27/2023 8:58, Analyzed: 11/29/2023	17:58									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Calcium	119	4.00	mg/L	6.25	105	232	80-120			D2, M3
Matrix Spike Dup (BCK2072-MSD1) So	urce: 3113381-0)1								
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023										
Antimony	0.063	0.005	mg/L	0.0625	ND	101	80-120	1.64	20	
Mercury	0.0026	0.0005	mg/L	0.00250	ND	106	80-120	21.0	20	Y2
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	80-120	0.239	20	
Arsenic	0.0650	0.0010	mg/L	0.0625	0.0006	103	80-120	0.143	20	
Barium	0.109	0.004	mg/L	0.0625	0.046	100	80-120	0.927	20	
Beryllium	0.0540	0.0020	mg/L	0.0625	ND	86.4	80-120	0.357	20	
Cadmium	0.0626	0.0010	mg/L	0.0625	ND	100	80-120	1.30	20	
Chromium	0.0649	0.0020	mg/L	0.0625	0.0028	99.3	80-120	0.842	20	
Cobalt	0.061	0.004	mg/L	0.0625	ND	98.2	80-120	0.545	20	
Lead	0.060	0.002	mg/L	0.0625	0.001	94.0	80-120	0.968	20	
Lithium	0.07	0.02	mg/L	0.0625	0.01	84.8	80-120	0.348	20	
Selenium	0.062	0.003	mg/L	0.0625	ND	99.3	80-120	0.578	20	
Thallium	0.0596	0.0020	mg/L	0.0625	ND	95.4	80-120	0.828	20	

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Allalyte	resuit	LIIIII	Office	Level	rtesuit	70TCLO	Lillito	IN D	LIIIII	140103
Batch BCK2072 - EPA 200.2										
Matrix Spike Dup (BCK2072-MSD2)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/2	9/2023 18:01									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	115	4.00	mg/L	6.25	105	155	80-120	4.08	20	D2, M3
Post Spike (BCK2072-PS1)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/2	7/2023 15:42									
Mercury	0.0026	0.0005	mg/L	0.00250	ND	105	75-125			
Molybdenum	0.06	0.01	mg/L	0.0625	ND	103	75-125			
Antimony	0.055	0.005	mg/L	0.0625	ND	87.9	75-125			
Arsenic	0.0635	0.0010	mg/L	0.0625	0.0006	101	75-125			
Barium	0.107	0.004	mg/L	0.0625	0.046	96.7	75-125			
Beryllium	0.0520	0.0020	mg/L	0.0625	ND	83.2	75-125			
Cadmium	0.0608	0.0010	mg/L	0.0625	ND	97.2	75-125			
Chromium	0.0629	0.0020	mg/L	0.0625	0.0028	96.1	75-125			
Cobalt	0.060	0.004	mg/L	0.0625	ND	95.8	75-125			
Lead	0.058	0.002	mg/L	0.0625	0.001	91.2	75-115			
Lithium	0.07	0.02	mg/L	0.0625	0.01	82.3	75-125			
Selenium	0.061	0.003	mg/L	0.0625	ND	97.1	75-125			
Thallium	0.0581	0.0020	mg/L	0.0625	ND	93.0	75-125			
Post Spike (BCK2072-PS2)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/2	9/2023 18:04									
Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
Calcium	114	4.00	mg/L	6.25	105	140	75-125			D2, M3

Conventional Chemistry Analyses Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1701 - Default Prep Micro										
LCS (BCK1701-BS1)										
Prepared: 11/21/2023 8:46, Analyzed:	11/21/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
LCS (BCK1701-BS2)										
Prepared: 11/21/2023 8:46, Analyzed:	11/21/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
Duplicate (BCK1701-DUP1)	Source: 3113381-03									
Prepared: 11/21/2023 8:46, Analyzed:	11/21/2023 15:08									
pH (Lab)	8.04	0.10	Std. Units		8.04			0.00	10	НЗ
Duplicate (BCK1701-DUP2)	Source: 3114321-03									
Prepared: 11/21/2023 8:46, Analyzed:	11/21/2023 15:08									
pH (Lab)	9.01	0.10	Std. Units		8.97			0.445	10	НЗ
Batch BCK2067 - Default Prep Wet Che	em									
Blank (BCK2067-BLK1)										
Prepared: 11/22/2023 17:30, Analyzed:	11/22/2023 17:30									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCK2067-BS1)										
Prepared: 11/22/2023 17:30, Analyzed:	11/22/2023 17:30									
Total Dissolved Solids	1500	25	mg/L	1500		99.7	80-120			
Duplicate (BCK2067-DUP1)	Source: 3112057-02									
Prepared: 11/22/2023 17:30, Analyzed:	11/22/2023 17:30									
Total Dissolved Solids	1850	250	mg/L		1780			3.86	10	
Duplicate (BCK2067-DUP2)	Source: 3114323-01									
Prepared: 11/22/2023 17:30, Analyzed:	11/22/2023 17:30									
Total Dissolved Solids	400	50	mg/L		408			1.98	10	

Ion Chromatography Madisonville - Quality Control

	D "	Reporting		Spike	Source	0/ 050	%REC	555	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2387 - Default Prep IC										
Blank (BCK2387-BLK1)										
Prepared: 11/29/2023 3:23, Analyzed: 11/29/2023	3:23									
Fluoride	ND	0.2	mg/L							U
Chloride	ND	0.5	mg/L							U
Sulfate	ND	1	mg/L							U
Blank (BCK2387-BLK2)										
Prepared: 11/29/2023 15:30, Analyzed: 11/29/2023	15:30									
Fluoride	ND	0.2	mg/L							U
LCS (BCK2387-BS1)										
Prepared: 11/29/2023 2:56, Analyzed: 11/29/2023	2:56									
Chloride	13.2		mg/L	12.5		106	90-110			
Fluoride	5.6		mg/L	5.00		111	90-110			L1
Sulfate	26		mg/L	25.0		103	90-110			
LCS (BCK2387-BS2)										
Prepared: 11/29/2023 15:03, Analyzed: 11/29/2023	15:03									
Fluoride	5.3		mg/L	5.00		105	90-110			
Matrix Spike (BCK2387-MS1) Sou	ırce: 3114321-0	11								
Prepared: 11/29/2023 1:33, Analyzed: 11/29/2023	1:33									
Chloride	15.4		mg/L	12.5	2.7	102	75-125			
Fluoride	5.2		mg/L	5.00	0.3	98.9	75-125			
Sulfate	37		mg/L	25.0	10	106	75-125			
Matrix Spike (BCK2387-MS2) Sou	ırce: 3114321-0	12								
Prepared: 11/29/2023 3:50, Analyzed: 11/29/2023	3:50									
Chloride	18.3		mg/L	12.5	5.8	100	75-125			
Fluoride	5.3		mg/L	5.00	0.2	102	75-125			
Sulfate	25		mg/L	25.0	0.4	99.8	75-125			
Matrix Spike (BCK2387-MS3) Sou	ırce: 3114321-0	3								
Prepared: 11/29/2023 4:45, Analyzed: 11/29/2023	4:45									
Chloride	27.1		mg/L	12.5	15.5	92.7	75-125			
Fluoride	5.2		mg/L	5.00	0.4	96.7	75-125			
Sulfate	45		mg/L	25.0	22	92.0	75-125			

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2387 - Default Prep IC										
Matrix Spike Dup (BCK2387-MSD1)	Source: 3114321-01									
Prepared: 11/29/2023 2:01, Analyzed: 11/29/	/2023 2:01									
Chloride	15.6		mg/L	12.5	2.7	103	75-125	1.33	15	
Fluoride	5.5		mg/L	5.00	0.3	104	75-125	4.98	15	
Sulfate	37		mg/L	25.0	10	110	75-125	2.40	15	
Matrix Spike Dup (BCK2387-MSD2)	Source: 3114321-02									
Prepared: 11/29/2023 4:18, Analyzed: 11/29/	/2023 4:18									
Chloride	18.3		mg/L	12.5	5.8	100	75-125	0.0600	15	
Fluoride	5.0		mg/L	5.00	0.2	94.9	75-125	7.16	15	
Sulfate	25		mg/L	25.0	0.4	99.3	75-125	0.546	15	
Matrix Spike Dup (BCK2387-MSD3)	Source: 3114321-03									
Prepared: 11/29/2023 5:13, Analyzed: 11/29/	/2023 5:13									
Chloride	28.8		mg/L	12.5	15.5	106	75-125	5.94	15	
Fluoride	5.7		mg/L	5.00	0.4	106	75-125	8.71	15	
Sulfate	48		mg/L	25.0	22	104	75-125	6.73	15	

Certified Analyses included in this Report

Analyte Certifications

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

SM 4500-H+ B-2011 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3114321
Shipped By: Client	Temperature: 15.80° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	
Check if bottles are intact	
Check if bottles are correct	
Check if bottles have sufficient volume	
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	
Check if samples are preserved properly	

Pace Analytical Services	s L	LC	Kentucky
P.O. Box 907	r	٠	
Madisonville KY 42431			

Chain of Custody
Scheduled for: 11/20/2023

	Pr .	<u>l</u> i 1
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Corporation Reid/Greer Station	Invoice To: n Big Rivers Electric Corporation Reid/Green Station
Project: HMPL Surface Impoundment	Mark Bertram	Mark Bertram
	9000 Highway 2096 Robards, KY 42452	9000 Highway 2096 Robards, KY 42452
	Phone: <u>(270) 844-6000</u>	
	PWS ID#: 1/ \	PO#:
Please Print Legibly	State: Fy	Quote#
Collected by (Signature): // required inform	nation*	Compliance Monitoring? Yes No
*For composite samples please indicate begin time, end til		Samples Chlorinated? Yes No X_
Influent: Start Date Start time		Temp (oC)
Effluent: Start Date Start time	End DateEnd Time	
	ક હાં d Preservative to Sample Description	n Composite
Sample ID#	<u> </u>	Sample Analysis Requested
	500mL pH<2 1 MW7 HNO3	g / c Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
1	on Check: pH :	
	astic 1L 1 MW7	g / c Fluoride 9056 TDS Sulfate 9056 pH (Lab) Chloride 9056
	pH<2 w/HNO3 1 MW7 226 (Sub)	g / c Radium 226 (sub)
	on Check: pH :	
Raģ 2	pH<2 w/HNO3 1 MW7 228 (Sub)	g / c Radium 228 (sub)
\	on Check: pH :	
3112057-01 E 11/21/23 5844 Plastic 1L Rad 2	pH<2 w/HNO3 1 MW7 228 (Sub)	g / c Radium 228 (sub)
3114321 Preservation	on Check: pH : <u> / </u>	hermomet.
Preservation Check Performed by: VED		181300 Nu
		Thermometer Serial Number
Field data collected by: Kallyn Spene	Date (mm/dd/yy) 11/21/23	
pH 7.18 cond (umhe) 3871	Res Cl (mg/L) Tot Cl (mg/L)	Free CI (mg/L)
111	tic Water Level DO (mg/L) _	· · · · · · · · · · · · · · · · · · ·
Flow (MGD) or (CFS) gr	(g/min)	
1 low (MGB)	(9/1111)	
Relinquished by: (Signature)	ceived by: (Signature)	Date (mm/dd/yy) Time (24 hr)
Kaelin and	Train Trulland	11 21 23 13:14
	1 - 1	
PACE- Check here if trip charge applied to asso	ociated COC 'rinted: 1	11/13/2023 11:50:38AM Page 15 of 34

Pace Analytical Services LLC Kentucky
P.O. Box 907
Madisonville, KY 42431

Chain of Custody
Scheduled for: 11/20/2023

	H			
Client: Big Rivers Electric Corporation Reid/Green Station	Station	Corporation Reid/Green	_	Electric Corporation Reid/Green Station
Project: HMPL Surface Impoundment	Mark Bertram 9000 Highway 2096	•	Mark Bert	ram
	Robards, KY 42452		•	KY 42452
	Phone: (270) 844-6	000	PO#:	
Please Print Legibly	State: KY		Quote#	,
Collected by (Signature):	ule		Com	pliance Monitoring? Yes No
·	Ji		Sam	ples Chlorinated? Yes No X
*For composite samples please indicate begin time, end t	ime and temp(oC) at e	nd time below:		
Influent: Start Date Start time	End Date	End Time T	emp (oC)	1
Effluent: Start Date Start time	End Date	End Time 1	emp (oC)	1
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr): Bottle ar	d Preservative .	Sample Description	Composit	e Sample Analysis Requested
	pH<2 w/HNO3 1	MW7	g/c	Radium Total (sub)
	(Sub) jon Check: pH :	_		
	500mL pH<2 1 //HNO3	MW8	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
Preservat	ion Check: pH :	_		
3112057-02 B	lastic 1L 1	MW8	g/c	Fluoride 9056 TDS Sulfate 9056 pH
3112057-02 C Plastic 1	_ pH<2 w/HNO3 1 226 (Sub)	MW8	g/c	(Lab) Chloride 9056 Radium 226 (sub)
Preservat	ion Check: pH :	-		
3112057-02 D Plastic	_ pH<2 w/HNO3 1 228 (Sub)	MW8	g/c	Radium 228 (sub)
3114321 Preservet	ion Check: pH :	-		1/16rmometer Serial Number
Preservation Check Performed by: VED				7 ter Serial Number 181390287 181460057
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)		742°C
pH Cond (umho)		Tot CI (mg/L)		Free Cl (mg/L)
		DO (mg/L)	- 11	Turb. (NTU)
Temp (oC) or (oF) \$tage				(V10)
Relinquished by: (Signature)	eceived by: (Signature)		Date (m	ım/dd/yy) Time (24 hr)
Kaelyn Anle 7	Kun Bre	charl	- 1	21/23 13:14
	<u></u>			<u> </u>
	•			
PACE- Check here if trip charge applied to ass	sociated COC	Printed: 1	1/7/2023 3:	00:14PM Page 16 of 34

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	Chain of Custody Scheduled for: 11/20/2023		
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Corporation Reid/Green. Station	Invoice To Big Rivers	
Project: HMPL Surface Impoundment	Mark Bertram 9000 Highway 2096 Robards, KY 42452	Mark Bertr 9000 High Robards, I	way 2096
Diagon Bright Logishiy	Phone: (270) 844-6000 PWS ID#:	PO#:	
Collected by (Signature):	State: _F y	Quote# Comp	pliance Monitoring? Yes No
*For composite samples please indicate begin time, end ti		Samp	oles Chlorinated? Yes No 📈
Influent: Start Date Start time	nd Date End Time Te	emp (oC)	
Effluent: Start Date Start time	End Date End Time Te	emp (oC)	
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr): Bottle and	ઇ Preservative ઇંગ Sample Description	Composite	Sample Analysis Requested
	pH<2 w/HNO3 1 MW8 228 (Sub)	g/c	Radium 228 (sub)
311205 02 F 11/21/23 1154 Plastic 11	pH<2 w/HNO3 1 MW8 Sub) on Check: pH :	g/c	Radium Total (sub)
	500mL pH<2 1 MW9	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
11/2/22 1154	on Check: pH : astic 1L	g/c	Fluoride 9056 TDS Sulfate 9056 pH
3112057.03 C 11/21/23 1154 Plastic 1L	pH<2 w/HNO3 1 MW9	g/c	(Lab) Chloride 9056 Radium 226 (sub)
) \ \(\(\(\(\(\) \\ \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	226 (Sub) on Check: pH :	Th	ermometer Serial Number 181390287 181460057 Temples of
	Date (mm/dd/yy) 11/21/23 Time (24 hr) 1	154	950
pH <u>6.93</u> Cond (umho) 4673	Res Cl (mg/L) Tot Cl (mg/L)		ree CI (mg/L)
Temp (oC) or (oF) Sta	tic Water Level DO (mg/L) 1	10	Turb. (NTU) <u>28/23</u>
Relinquished by: (Signature)	ceived by: (Signature)	Date (mr	n/dd/yy) Time (24 hr)
		11	

PACE- Check here if trip charge applied to associated COC

Page 17 of 34

Printed: 11/7/2023 3:00:14PM

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/20/2023</u>

	R			
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electri Station	c Corporation Reid/Green	Invoice To: Big Rivers E	lectric Corporation Reid/Green Station
gradient de la company de la	Mark Bertram		Mark Bertran	
Project: HMPL Surface Impoundment	9000 Highway 20		9000 Highwa Robards, KY	
	Robards, KY 424	52	, lobardo, i	
	Phone: (270) 844	<u>1-6000</u>	PO#:	
	PWS ID#:	.4	Quote#	
Please Print Legibly	<u> </u>		Compli	ance Monitoring? Yes No
Collected by (Signature): Kall Fequired Intern	nation*		1	es Chlorinated? Yes NoX_
*For composite samples please indicate begin time, end ti	me and temp(oC) a	t end time below:	Janiph	, , , , , , , , , , , , , , , , , , ,
Influent: Start Date Start time	and Date	End Time	Temp (oC)	
Effluent: Start Date Start time	End Date	End Time	_Temp (oC)	
Effluent: Start Date Start time	11			
LAB USE ONLY Workprder # 3112057 Sample ID# *required information* Date Collection (mm/dd/yy): Time (24 hr): Bottle ar	d Preservative	s Description Sample Description	n Composite	Sample Analysis Requested
311205 103 D 1/21/23 1154 Plastic 11	pH<2 w/HNO3	MW9	g/c	Radium 228 (sub)
	228 (Sub)	√		
1 11	pH<2 w/HNO3		g/c	Radium 228 (sub)
3112037-43 E 11/A1/8-3 11/A	228 (Sub)	/		
Preserva	don Check: pH : _			
3112057-03 F 11/21/23/154 Plastic 1	l pH<2 w/HNO3 (Sub)		g/c	Radium Total (sub)
•	tion Check: pH:_		~/~	Arsenic Tot 6020 Barium Tot 6020
	c 500mL pH<2 W/HNO3	1 MW10	g/c	Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
Preserva	ation Check: pH:_	<u> </u>		
3112057-0 B 11/21/23 1006	Plastic 1L	1 MW10	g/c	Fluoride 9056 TDS Sulfate 9056 pH (Lab) Chloride 9056
3114201 Preservation Check Performed by:			3	
MW-10 Field data collected by: Kaelyn Sperle	Date (mm/dd/w/)	11/21/23 Time (24 hr	1006	'
Field data collected by: Machine Tried data collected by: Machine Tried data collected by:	· 4	Tot CI (mg/l	1 1	Free CI (mg/L)
pH 9.12 cond (umho) .659	Res Cl (mg/L)	10t CI (ilig/i		_
Temp (oC) 15.1 or (oF)	Static Water Level	DO (mg/L)	3,00	Turb. (NTU) <u>5.83</u>
Flow (MGD) or (CFS)				
1 low (was)			Date (m	nm/dd/yy) Time (24 hr)
Relinquished by: (Signature)	Received by: (Sign	Bullar!		21/23 13:14
	<u>'</u>			
PACE- Check here if trip charge applied to	associated COC	'rinte	d: 11/13/2023 11	:50:38AM Page 4 of 8 Page 18 of 34

Pace Analytical Services LLC Kentucky
P.O. Box 907
Madisonville, KY 42431

Chain of Custody

1) 5 11		

Madisonville, KY 42431	Scheduled for: <u>11/20/2023</u>		
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment	Report To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096	Mark Bert 9000 Higl	Electric Corporation Reid/Green Station ram way 2096
	Robards, KY 42452 Phone: (270) 844-6000 PWS ID#:	Robards, PO#: Quote#	KY 42452
Please Print Legibly	State:		pliance Monitoring? Yes No
Collected by (Signature): Thally required into	mation*		
*For composite samples please indicate begin time, end	time and temp(oC) at end time below:		ples Chlorinated? Yes NoX
Influent: Start Date Start time	End Date End Time	T (-C)	1
Effluent: Start Date Start time	End Time		
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr): Bottle a	nd Preservative	Compos	te Sample Analysis Requested
3112057-04 C 11/21/23 100(e Plastic 1	1 pH<2 w/HNO3 1 MW10 1226 (Sub) tion Check: pH :	g/c	Radium 226 (sub)
311205704 D 11/21/23 1006 Plastic Ra	pH<2 w/HNO3 1 MW10 d 228 (Sub)	g/c	Radium 228 (sub)
3112057-04 E 11/21/23 100(Plastic Ra	pH<2 w/HNO3 1 MW10 d 228 (Sub)	g/c	Radium 228 (sub)
3112057 04 F 11/21/23 100 le Plastic	1 pH<2 w/HNO3 1 MW10 (Sub)	g/c	Radium Total (sub)
3114321		·	
Preservation Check Performed by:			
Field data collected by:	Date (mm/dd/yy) Time (24 hr)		:
pH Cond (umho)	Res Cl (mg/L) Tot Cl (mg/L)		Free Cl (mg/L)
Temp (oC) or (oF)	Static Water Level DO (mg/L)		Turb. (NTU)
Flow (MGD) or (CFS)	or (g/min)		: !
Relinquished by: (Signature)	Received by: (Signature) Haw Rukoud	Date	$ \begin{array}{ccc} \text{(mm/dd/yy)} & \text{Time (24 hr)} \\ \boxed{2123} & \boxed{3:14} \end{array} $
PACE- Check here if trip charge applied to	associated COC 'rinted:	11/13/2023	11:50:38AM Page 5 of 8 Page 19 of 34

Pace Analytical Services LLC Kentucky
P.O. Box 907
Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/20/2023

			J	
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment	Report To: Big Rivers Electory Station Mark Bertram 9000 Highway Robards, KY 42		Mark Ber 9000 Hig	s Electric Corporation Reid/Green Station
Please Print Legibly	Phone: (270) 8 PWS ID#: State:	<u>44-6000</u>	PO#: Quote#	
Collected by (Signature):	mation		Con	pliance Monitoring? Yes No
*For composite samples please indicate begin time, end t	1	at end time below:	Sam	ples Chlorinated? Yes No X
Influent: Start Date Start time	Ind Date	End Time	Temp (oC) _	<u>;</u>
Effluent: Start Date Start time	1			!
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr): Bottle ar Sample ID#	d Preservative	Sample Description	Composi	te Sample Analysis Requested
	500mL pH<2 /HNO3	1 DUPLICATE	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020
1	ion Check: pH:_	<u>/</u>		
	astic 1L	1 DUPLICATE	g/c	Fluoride 9056 TDS Sulfate 9056 pH (Lab) Chloride 9056
	. pH<2 w/HNO3 226 (Sub)	1 DUPLICATE	g/c	Radium 226 (sub)
Preservat	ion Check: pH : _	<u></u>		
	.pH<2 w/HNO3 228 (Sub) ion Check: pH : _		g/c	Radium 228 (sub)
3112057-05 E 11/21/23 / Plastic Rad	pH<2 w/HNO3 228 (Sub) ion Check: pH:		g/c	Radium 228 (sub)
Freservation Check Performed by: 16				
Field data collected by:	Date (mm/dd/yy)	Time (24 hr) _		
pH Cond (umho)	Res Cl (mg/L)	Tot CI (mg/L) _		Free CI (mg/L)
Temp (oC) or (oF) \$t:	atic Water Level _	DO (mg/L)		Turb. (NTU)
Flow (MGD) or (CFS) or	(g/min) _			
Relinquished by: (Signature) Ruly	eceived by: (Signa	ture) Rukard	Date (m	13:14
DACE Check here if trip charge applied to ass	posiated COC	ipinėnai. 4	1/13/2023 11:	-50:38AM Page 20 of 34

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/20/2023</u>

L. Committee of the com					
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment	Report To: Big Rivers Electric Co Station Mark Bertram 9000 Highway 2096	rporation Reid/Green	Mark Bertra 9000 Highw	m ay 2096	on Reid/Green Station
	Robards, KY 42452 Phone: (270) 844-600 PWS ID#:	<u>00</u>	Robards, K		
Please Print Legibly	State:		Quote#		
Collected by (Signature): Rully equired interest	1		1.1		9? Yes No Yes No X
*For composite samples please indicate begin time, end ti	me and temp(oC) at end	time below.	[]		
Influent: Start Date Start time	End Date E	ind Time	Temp (oc)		
Effluent: Start Date Start time	End DateE	End Time	Temp (oC)		
Sample ID#	d Preservative containers	Sample Description		Sample A	Analysis Requested
31120\$7-05 F 11/21/23 Plastic 11	pH<2 w/HNO3 1 (Sub)	DUPLICATE	g/c	Radium Total	(Sub)
3112057-06 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	on Check: pH :	FIELD BLANK	g/c	Beryllium Tot Cadmium Tot 6010B Chron	020 Barium Tot 6020 6020 Boron Tot 6010B 6020 Calcium Tot nium Tot 6020 Cobalt mony Tot 6020 Lithium
Preserva	tion Check: pH :	-		Tot 6020 Tha Tot 6020 Mol Selenium Tot	Ilium Tot 6020 Mercury ybdenum Tot 6020 6020
3112057 06 B 11/21/23 F	astic 1L 1	FIELD BLANK	g/c	(Lab) Chlorid	
Ra	pH<2 w/HNO3 1 226 (Sub) ion Check: pH :	FIELD BLANK	g/c	Radium 226	(sub)
Ra	L pH<2 w/HNO3 1 c 228 (Sub)	FIELD BLANK	g/c	Radium 228	(sub)
3114321	alon Glieck. pri	-			
Preservation Check Performed by:					
Field data collected by:	1	Time (24 hr)	K 1	5 01((1)	
pH Cond (umho)	Si .	Tot CI (mg/L)		Free CI (mg/L) _	•
Temp (oC) or (oF) 5	tatic Water Level	DO (mg/L)		Turb. (NTU) _	
Flow (MGD) or (CFS)	r (g/min)		_		
Relinquished by: (Signature) Xaulyn Owl	Received by: (Signature	reckarl	Date (n	nm/dd/yy)	Time (24 hr)
			. 44 (40 (2022)	.50,28AM	Page 7 of 8
PACE- Check here if trip charge applied to a	ssociated COC	rinted	: 11/13/2023 11	:3U:30AIVI	Page 21 of 34

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431	Chain of Custody Scheduled for: 11/20/2023	
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment	Report To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452	Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452
Please Print Legibly Collected by (Signature): **Trequired information of the content of the	Phone: (270) 844-6000 PWS ID#: State:	PO#: Quote# Compliance Monitoring? Yes No
*For composite samples please indicate begin time, end time		Samples Chlorinated? Yes No X
Influent: Start Date Start time E	,	mp (oC)
Effluent: Start Date Start time E		I I (
Sample ID# 3112057-06 E	Preservative Description Description FIELD BLANK Description FIELD BLANK Description FIELD BLANK Description FIELD BLANK Description FIELD BLANK Description FIELD BLANK Sub) Description FIELD BLANK Sub) Description FIELD BLANK Sub) Description FIELD BLANK Sub) Description	Composite Sample Analysis Requested Radium 228 (sub) Radium Total (sub)
Preservation Check Performed by:		
Field data collected by:	Date (mm/dd/yy) Time (24 hr) /	
pH Cond (umho)	Res Cl (mg/L) Tot Cl (mg/L)	Free CI (mg/L)
Temp (oC) or (oF) \$ta Flow (MGD) or (CFS) pr	tic Water Level DO (mg/L)	Turb. (NTU)
		!
Relinquished by: (Signature)	Sceived by: (Signature)	Date (mm/dd/yy) Time (24 hr)

PACE- Check here if trip charge applied to associated COC

Page 22 of 34

'rinted: 11/13/2023 11:50:38AM

(724)850-5600

December 19, 2023

Rob Whittington Pace Analytical Madisonville 825 Industrial Rd Madisonville, KY 42431

RE: Project: 3114321

Pace Project No.: 30642421

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on November 28, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

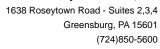
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622


Samantha Bayune

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3114321
Pace Project No.: 30642421

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

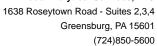
Guam Certification
Hawaii Certification
Idaho Certification
Illinois Certification
Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133

KY WW Permit #: KY0098221

KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

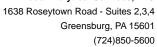

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



SAMPLE SUMMARY

Project: 3114321
Pace Project No.: 30642421

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30642421001	3114321-01	Water	11/21/23 08:44	11/28/23 09:40	
30642421002	3114321-02	Water	11/21/23 11:54	11/28/23 09:40	
30642421003	3114321-03	Water	11/21/23 10:06	11/28/23 09:40	
30642421004	3114321-04	Water	11/21/23 00:00	11/28/23 09:40	
30642421005	3114321-05	Water	11/21/23 00:00	11/28/23 09:40	

SAMPLE ANALYTE COUNT

Project: 3114321
Pace Project No.: 30642421

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30642421001	3114321-01	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30642421002	3114321-02	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30642421003	3114321-03	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30642421004	3114321-04	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
30642421005	3114321-05	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3114321
Pace Project No.: 30642421

Sample: 3114321-01 Lab ID: 30642421001 Collected: 11/21/23 08:44 Received: 11/28/23 09:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.

• Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		•		
Radium-226	EPA 903.1	0.215 ± 0.473 (0.854) C:NA T:94%	pCi/L	12/18/23 12:08	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.347 ± 0.347 (0.712) C:77% T:82%	pCi/L	12/12/23 14:56	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.562 ± 0.820 (1.57)	pCi/L	12/19/23 13:39	7440-14-4	

Sample: 3114321-02 Lab ID: 30642421002 Collected: 11/21/23 11:54 Received: 11/28/23 09:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.

• Samplers name and signature not listed on COC.

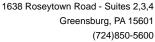
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.946 ± 0.534 (0.599) C:NA T:86%	pCi/L	12/18/23 12:08	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.250 ± 0.387 (0.837) C:74% T:80%	pCi/L	12/12/23 14:56	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.20 ± 0.921 (1.44)	pCi/L	12/19/23 13:39	7440-14-4	

Sample: 3114321-03 Lab ID: 30642421003 Collected: 11/21/23 10:06 Received: 11/28/23 09:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.


• Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytic	al Services - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.344 (0.727) C:NA T:89%	pCi/L	12/18/23 12:20	13982-63-3	
	Pace Analytic	al Services - Greensburg				
Radium-228	EPA 904.0	0.210 ± 0.483 (1.07) C:74% T:80%	pCi/L	12/12/23 14:56	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Matrix: Water

ANALYTICAL RESULTS - RADIOCHEMISTRY

 Project:
 3114321

 Pace Project No.:
 30642421

Sample: 3114321-04

Sample: 3114321-03 Lab ID: 30642421003 Collected: 11/21/23 10:06 Received: 11/28/23 09:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.

• Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	$0.210 \pm 0.827 (1.80)$	pCi/L	12/19/23 13:39	7440-14-4	

Collected: 11/21/23 00:00 Received: 11/28/23 09:40

PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

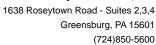
• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.

Lab ID: 30642421004

• Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.690 ± 0.510 (0.690) C:NA T:95%	pCi/L	12/18/23 12:20	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.64 ± 0.628 (0.979) C:75% T:77%	pCi/L	12/12/23 14:57	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	2.33 ± 1.14 (1.67)	pCi/L	12/19/23 13:39	7440-14-4	

Sample: 3114321-05 Lab ID: 30642421005 Collected: 11/21/23 00:00 Received: 11/28/23 09:40 Matrix: Water


PWS: Site ID: Sample Type:

Comments: • Sample collection times not listed on labels, time on bottle cap does not match COC

• 11/28/23 @ 17:00 - Added 5.0ml HNO3 to Metals bottle prior to analysis. pH <2.

• Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg		•		
Radium-226	EPA 903.1	0.180 ± 0.331 (0.591) C:NA T:100%	pCi/L	12/18/23 12:20	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.467 ± 0.422 (0.863) C:76% T:88%	pCi/L	12/12/23 14:57	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.647 ± 0.753 (1.45)	pCi/L	12/19/23 13:39	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

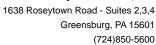
Project: 3114321
Pace Project No.: 30642421

QC Batch: 632704 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642421001, 30642421002, 30642421003, 30642421004, 30642421005


METHOD BLANK: 3084337 Matrix: Water

Associated Lab Samples: 30642421001, 30642421002, 30642421003, 30642421004, 30642421005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.462 ± 0.415 (0.840) C:81% T:73%
 pCi/L
 12/12/23 14:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3114321
Pace Project No.: 30642421

QC Batch: 632703 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642421001, 30642421002, 30642421003, 30642421004, 30642421005

METHOD BLANK: 3084336 Matrix: Water

Associated Lab Samples: 30642421001, 30642421002, 30642421003, 30642421004, 30642421005

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0768 ± 0.175 (0.282) C:NA T:95%
 pCi/L
 12/18/23 11:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 3114321 Pace Project No.: 30642421

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Date: 12/19/2023 01:41 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3114321

WO#: 30642421

SENDING	LAROR	ATORY.
		$\alpha_1 \cup \alpha_1$

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID Comments	
Sample ID: 3114321-01	Water	Sampled:11/21/2023 08:44	Specific Method	001
Radium Total (sub)		05/19/2024 08:44	EPA 904.0 Radium Sum (***************************************
Radium 228 (sub)		05/19/2024 08:44	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/19/2024 08:44	EPA 903.1	
SAMPLE STATE OF ORI	GIN	Ky	RUSH MULTIPLIER	
Sample ID: 3114321-02	Water	Sampled:11/21/2023 11:54	Specific Method	003
Radium Total (sub)		05/19/2024 11:54	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/19/2024 11:54	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/19/2024 11:54	EPA 903.1	
SAMPLE STATE OF ORI	GIN	Ky	RUSH MULTIPLIER	

Sample ID: 3114321-03	Water	Sampled:11/21/2023 10:06	Specific Method	003
Radium Total (sub)		05/19/2024 10:06	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/19/2024 10:06	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/19/2024 10:06	EPA 903.1	
	<i>f</i> -			

SAMPLE STATE OF ORIGIN

RUSH MULTIPLIER

Received by Pace Greensburg
Therm ID __ Corr Factor +/Receipt Temp Corrected Temp

Correct Preservation Y(N

Released By

Date

Received By

Date

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky

3114321

Analysis		Expires	Laboratory ID Comments	· · · · · · · · · · · · · · · · · · ·
Sample ID: 3114321-04	Water	Sampled:11/21/2023 00:00	Specific Method	<u> 14</u>
Radium Total (sub)		05/19/2024 00:00	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/19/2024 00:00	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/19/2024 00:00	EPA 903.1	
SAMPLE STATE OF ORIG Sample ID: 3114321-05	Water	Sampled:11/21/2023 00:00	RUSH MULTIPLIER Specific Method	5
Radium Total (sub)		05/19/2024 00:00	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/19/2024 00:00	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/19/2024 00:00	EPA 903.1	
SAMPLE STATE OF ORIG	ein _	14	RUSH MULTIPLIER	-

WO#: 30642421

PM: SMB

Due Date: 12/19/23

CLIENT: PACE_44_MVKY

11/28/23 940 Date Received By Released By Received By Date Released By Date

DC# Title: ENV-FRM-0	BUF	8-008	8 v06	S_Sample Condition Upon Receipt-
Pittsburgh				
Paco				WO#: 30642421
Effective Date: 09/20/2023				PM: SMB Due Date: 12/19/23
Client Name: Pace - KY				CLIENT: PACE_44_MVKY
Courier: ☐ Fed Ex ☑ ÚPS ☐ USPS ☐ Client ☐	Com	mercia	ıl 🗌 Pa	ace 🗌 Other Initial / Date
Tracking Number: 12 067 451	01	400		0556 Examined By: p5 11107(2)
17 067 451	O'	495	7	7347 Yes-ENO Labeled By:
Thermometer Used: Typ	s⊡M∂ e of lo			Intact: Yes No Labeled By: 8 1113 113 113 113 113 113 113 113 113
				ction Factor:oC Final Temp:oC
Temp should be above freezing to 6°C			COLL	d martang.
Temp should be above treezing to 5 5				pH paper Lot# D.P.D. Residual Chlorine Lot #
Comments:	Yes	No	NA	1000831
Chain of Custody Present				1.
Chain of Custody Filled Out:	/			2.
-Were client corrections present on COC				
Chain of Custody Relinquished				3.
Sampler Name & Signature on COC:		-		4.
Sample Labels match COC:				5.
-Includes date/time/ID				bottle caps suy 13:40 for fines
Matrix:	U	UT		No times on Cabels.
Samples Arrived within Hold Time:	_			6.
Short Hold Time Analysis (<72hr				7.
remaining):				
Rush Turn Around Time Requested:				8.
Sufficient Volume:				9.
Correct Containers Used:		<u> </u>		10.
-Pace Containers Used				11
Containers Intact:				11.
Orthophosphate field filtered:		<u> </u>		13.
Hex Cr Aqueous samples field filtered: Organic Samples checked for dechlorination				14:
Filtered volume received for dissolved tests:	ļ			15:
All containers checked for preservation:			-	16.
·		L		added 50 ml HNO3 to
exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix				PS11128/23 all bottles
	<u> </u>			
All containers meet method preservation requirements:	X			completed Preservation (1000)
Ps 111	98/3	3		Lot# of added Preservative 430 800 63
8260C/D: Headspace in VOA Vials (> 6mm)				17.
624.1: Headspace in VOA Vials (0mm)				18.
Trip Blank Present:				Trip blank custody seal present? YES or NO
Rad Samples Screened <.05 mrem/hr.	1			Initial when completed PS Date: 128123 Survey Meter SN: 25014380
Comments:				
* Received without COC	- 1	11/7	8/2	13 9=40 - ps 11/28/23

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Certificate of Analysis 3112057

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 12/20/2023 14:18

Project Name:

HMPL Surface Impoundment

Workorder:

3112057

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/20/2023 16:13.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington

Rob Whittington, Project Manager

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3112057-02	MW8/		Groundwater	11/20/2023 13:47	11/20/2023 16:13	Kaelyn Sperle
<u>LabNumber</u>	Measurement	<u>Value</u>				
3112057-02	Field Conductance	2295				
	Field Dissolved Oxygen	2.56				
	Field pH	7.08				
	Field Temp (C)	15.5				
	Field Turbidity	4.17				

ANALYTICAL RESULTS

Lab Sample ID: **3112057-02** Sample Collection Date Time: 11/20/2023 13:47

Description: MW8 Sample Received Date Time: 11/20/2023 16:13

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Arsenic	ND	U	mg/L	0.0010	0.0004	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Barium	0.016		mg/L	0.004	0.001	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Beryllium	ND	M2, U	mg/L	0.0020	0.0010	SW846-6020 A	11/30/2023 09:08	12/01/2023 16:40	AKB
Boron	1.49	D1, M1, M2	mg/L	1.00	1.00	SW846 6010 B	11/30/2023 09:08	12/01/2023 11:53	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Calcium	251	D1, M1, M3	mg/L	40.0	13.0	SW846 6010 B	11/30/2023 09:08	12/01/2023 11:56	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Lithium	0.03	M2	mg/L	0.02	0.005	SW846-6020 A	11/30/2023 09:08	12/01/2023 16:40	AKB
Mercury	ND	M1,	mg/L	0.0005	0.0002	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Molybdenum	0.01	Y2, U	mg/L	0.01	0.002	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/30/2023 09:08	11/30/2023 17:14	AKB

Conventional Chemistry Analyses Madisonville

	Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
F	oH (Lab)	7.64	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
7	Total Dissolved Solids	1780		mg/L	250	250	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.599	_Sub	pCi/L			EPA 903.1	12/20/2023 11:55	12/20/2023 11:55	RCW
See Attached Subcontract Report	1.22	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:55	12/20/2023 11:55	RCW
Radium	1.82	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:55	12/20/2023 11:55	RCW
See Attached Subcontract Report	1.82	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/20/2023 11:55	12/20/2023 11:55	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	46.5	M2	mg/L	0.5	0.4	SW846 9056	11/28/2023 15:04	11/28/2023 15:04	CSC
Fluoride	0.4	M2	mg/L	0.2	0.2	SW846 9056	11/28/2023 15:04	11/28/2023 15:04	CSC
Sulfate	1600	D, M1	mg/L	10	5	SW846 9056	11/28/2023 15:32	11/28/2023 15:32	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3112057

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
E	Concentration exceeds calibration range
H3	Sample received and analyzed past holding time.
L2	The associated blank spike recovery was below method acceptance limits.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
T17	Sample receipt temperature outside 0 - 6°C; sample collected on same day as receipt; sample not received on ice; client gave permission to proceed as documented on the COC or the project manager notified to contact client before proceeding.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Qualifiers/Acronyms

Υ2

MDL

MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample
MS	Matrix Spike
MSD	Matrix Spike Duplicate
DUP	Sample Duplicate
% Rec	Percent Recovery
RPD	Relative Percent Difference

Method Detection Limit

Greater than
Less than

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2456 - EPA 200.2										
Blank (BCK2456-BLK1)										
Prepared: 11/30/2023 9:08, Analyzed: 11/30/2023	17:06									
Antimony	ND	0.005	mg/L							U
Mercury	ND	0.0005	mg/L							U
Boron	ND	0.10	mg/L							U
Molybdenum	ND	0.01	mg/L							U
Calcium	ND	0.40	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
Blank (BCK2456-BLK2)										
Prepared: 11/30/2023 9:08, Analyzed: 12/1/2023 1	6:33									
Beryllium	ND	0.0020	mg/L							U
Blank (BCK2456-BLK3)										
Prepared: 11/30/2023 9:08, Analyzed: 12/1/2023 1	1:21									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
LCS (BCK2456-BS1)										
Prepared: 11/30/2023 9:08, Analyzed: 12/1/2023 1	1:34									
Boron	0.12	0.10	mg/L	0.125		99.0	85-115			
Antimony	0.065	0.005	mg/L	0.0625		103	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		102	85-115			
Molybdenum	0.07	0.01	mg/L	0.0625		105	85-115			
Calcium	6.14	0.40	mg/L	6.25		98.3	85-115			
Arsenic	0.0620	0.0010	mg/L	0.0625		99.2	85-115			
Barium	0.060	0.004	mg/L	0.0625		96.5	85-115			
Beryllium	0.0531	0.0020	mg/L	0.0625		84.9	85-115			L2
Cadmium	0.0610	0.0010	mg/L	0.0625		97.6	85-115			
Chromium	0.0632	0.0020	mg/L	0.0625		101	85-115			
Cobalt	0.062	0.004	mg/L	0.0625		99.6	85-115			
Lead	0.062	0.002	mg/L	0.0625		98.7	85-115			
Lithium	0.05	0.02	mg/L	0.0625		85.0	85-115			
Selenium	0.060	0.003	mg/L	0.0625		95.2	85-115			
Thallium	0.0622	0.0020	mg/L	0.0625		99.5	85-115			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2456 - EPA 200.2										
LCS (BCK2456-BS2)										
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 16:37									
Beryllium	0.0599	0.0020	mg/L	0.0625		95.8	85-115			
LCS (BCK2456-BS3)										
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 11:34									
Boron	0.12	0.10	mg/L	0.125		99.0	85-115			
Calcium	6.14	0.40	mg/L	6.25		98.3	85-115			
Matrix Spike (BCK2456-MS1)	Source: 3112057-	02								
Prepared: 11/30/2023 9:08, Analyzed: 11,										
Mercury	0.0033	0.0005	mg/L	0.00250	ND	133	80-120			M1
Antimony	0.066	0.005	mg/L	0.0625	ND	106	80-120			
Boron	1.58	1.00	mg/L	0.125	1.49	65.6	80-120			D2, M2
Molybdenum	0.08	0.01	mg/L	0.0625	0.01	107	80-120			
Calcium	264	4.00	mg/L	6.25	251	199	80-120			D2, M1
Arsenic	0.0669	0.0010	mg/L	0.0625	ND	107	80-120			,
Barium	0.076	0.004	mg/L	0.0625	0.016	96.9	80-120			
Beryllium	0.0454	0.0020	mg/L	0.0625	ND	72.7	80-120			M2
Cadmium	0.0591	0.0010	mg/L	0.0625	ND	94.6	80-120			
Chromium	0.0638	0.0020	mg/L	0.0625	ND	102	80-120			
Cobalt	0.062	0.004	mg/L	0.0625	ND	99.2	80-120			
Lead	0.060	0.002	mg/L	0.0625	ND	95.5	80-120			
Lithium	0.07	0.02	mg/L	0.0625	0.03	62.2	80-120			M2
Selenium	0.064	0.003	mg/L	0.0625	ND	102	80-120			
Thallium	0.0599	0.0020	mg/L	0.0625	ND	95.8	80-120			
Matrix Spike (BCK2456-MS2)	Source: 3114432-	19								
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 14:21									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
Mercury	0.0026	0.0005	mg/L	0.00250	ND	103	80-120			
Molybdenum	0.07	0.01	mg/L	0.0625	ND	107	80-120			
Antimony	0.066	0.005	mg/L	0.0625	ND	105	80-120			
Calcium	65.6	4.00	mg/L	6.25	59.1	104	80-120			D2
Arsenic	0.0624	0.0010	mg/L	0.0625	0.0004	99.2	80-120			
Barium	0.084	0.004	mg/L	0.0625	0.022	99.1	80-120			
Beryllium	0.0481	0.0020	mg/L	0.0625	ND	76.9	80-120			M2
Cadmium	0.0609	0.0010	mg/L	0.0625	ND	97.4	80-120			
Chromium	0.0631	0.0020	mg/L	0.0625	ND	101	80-120			
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.2	80-120			
Lead	0.061	0.002	mg/L	0.0625	ND	97.6	80-120			
Lithium	0.05	0.02	mg/L	0.0625	ND	76.9	80-120			M2
Selenium	0.059	0.003	mg/L	0.0625	ND	95.0	80-120			
Thallium	0.0617	0.0020	mg/L	0.0625	ND	98.7	80-120			

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2456 - EPA 200.2								_ 		
Matrix Spike (BCK2456-MS3)	Source: 3112057-02									
Prepared: 11/30/2023 9:08, Analyzed:	12/1/2023 14:15									
Boron	1.58	1.00	mg/L	0.125	1.49	65.6	80-120			
Calcium	264	4.00	mg/L	6.25	251	199	80-120			D2, M3
Matrix Spike (BCK2456-MS4)	Source: 3114432-19		<u></u>			<u> </u>				
Prepared: 11/30/2023 9:08, Analyzed:										
Boron	ND	1.00	ma/l	0.125	ND		80-120			U
Boron Calcium	ND 65.6	1.00 4.00	mg/L mg/L	0.125 6.25	ND 59.1	104	80-120 80-120			U D2
		4.00	my/L	0.20	JJ. I	104	00-120			UZ
Matrix Spike Dup (BCK2456-MSD1)	Source: 3112057-02									
Prepared: 11/30/2023 9:08, Analyzed:										
Molybdenum	0.08	0.01	mg/L	0.0625	0.01	105	80-120	1.60	20	
Mercury	0.0025	0.0005	mg/L	0.00250	ND	101	80-120	27.0	20	Y2
Boron	1.62	1.00	mg/L	0.125	1.49	99.0	80-120	2.61	20	D2
Antimony	0.066	0.005	mg/L	0.0625	ND	106	80-120	0.0688	20	
Calcium	273	4.00	mg/L	6.25	251	345	80-120	3.41	20	D2, M1
Arsenic	0.0651	0.0010	mg/L	0.0625	ND	104	80-120	2.74	20	
Barium	0.076	0.004	mg/L	0.0625	0.016	96.1	80-120	0.707	20	
Beryllium	0.0446	0.0020	mg/L	0.0625	ND	71.4	80-120	1.71	20	M2
Cadmium	0.0588	0.0010	mg/L	0.0625	ND	94.1	80-120	0.565	20	
Chromium	0.0622	0.0020	mg/L	0.0625	ND	99.5	80-120	2.51	20	
Cobalt	0.061	0.004	mg/L	0.0625	ND	96.8	80-120	2.41	20	
Lead	0.059	0.002	mg/L	0.0625	ND	94.6	80-120	0.991	20	
Lithium	0.07	0.02	mg/L	0.0625	0.03	63.9	80-120	1.51	20	M2
Selenium	0.063	0.003	mg/L	0.0625	ND	101	80-120	0.642	20	
Thallium	0.0596	0.0020	mg/L	0.0625	ND	95.3	80-120	0.468	20	
Matrix Spike Dup (BCK2456-MSD2)	Source: 3114432-19									
Prepared: 11/30/2023 9:08, Analyzed:										
Molybdenum	0.07	0.01	mg/L	0.0625	ND	106	80-120	0.314	20	
Antimony	0.066	0.005	mg/L	0.0625	ND	105	80-120	0.0381	20	
Mercury	0.0025	0.0005	mg/L	0.0025	ND	102	80-120	1.30	20	
Boron	0.0025 ND	1.00	mg/L	0.00250	ND	102	80-120	1.00	20	D2, M2, U
Calcium			_		59.1	67.7	80-120	3 10		D2, M2, U D2
Arsenic	63.3 0.0632	4.00 0.0010	mg/L mg/L	6.25 0.0625	0.0004	67.7 100	80-120	3.49 1.23	20 20	IJΖ
Arsenic Barium	0.082	0.0010	_	0.0625	0.0004	95.5	80-120 80-120	2.66	20 20	
	0.082		mg/L							MO
Beryllium Cadmium		0.0020	mg/L	0.0625	ND	78.7 07.3	80-120 80-120	2.36	20	M2
Cadmium	0.0608	0.0010	mg/L	0.0625	ND	97.3 101	80-120	0.134	20	
Chromium	0.0634	0.0020	mg/L	0.0625	ND	101	80-120	0.416	20	
Cobalt	0.061	0.004	mg/L	0.0625	ND	97.5	80-120	0.243	20	
Lead	0.061	0.002	mg/L	0.0625	ND	97.1	80-120	0.608	20	
Lithium	0.05	0.02	mg/L	0.0625	ND	77.0	80-120	0.198	20	M2
Selenium	0.059	0.003	mg/L	0.0625	ND	94.8	80-120	0.110	20	
Thallium	0.0616	0.0020	mg/L	0.0625	ND	98.5	80-120	0.136	20	

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2456 - EPA 200.2										
Matrix Spike Dup (BCK2456-MSD3)	Source: 3112057-02									
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 14:18									
Boron	1.62	1.00	mg/L	0.125	1.49	99.0	80-120	2.61	20	
Calcium	273	4.00	mg/L	6.25	251	345	80-120	3.41	20	D2, M3
Matrix Spike Dup (BCK2456-MSD4)	Source: 3114432-19									
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 14:24									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	U
Calcium	63.3	4.00	mg/L	6.25	59.1	67.7	80-120	3.49	20	D2
Post Spike (BCK2456-PS1)	Source: 3112057-02									
Prepared: 11/30/2023 9:08, Analyzed: 11	/30/2023 18:52									
Antimony	61.3		ug/L	62.5	0.083	98.0	75-125			
Molybdenum	77.6		ug/L	62.5	13.7	102	75-125			
Mercury	2.53		ug/L	2.50	0.0652	98.7	75-125			
Boron	1660		ug/L	125	1490	132	75-125			D2, M1
Calcium	281000		ug/L	6250	251000	471	75-125			D2, M1
Arsenic	63.3		ug/L	62.5	0.0410	101	75-125			
Barium	74.4		ug/L	62.5	15.8	93.9	75-125			
Beryllium	42.9		ug/L	62.5	0.201	68.3	75-125			M2
Cadmium	56.2		ug/L	62.5	0.0305	89.8	75-125			
Chromium	60.0		ug/L	62.5	0.441	95.3	75-125			
Cobalt	58.4		ug/L	62.5	0.018	93.5	75-125			
Lead	57.3		ug/L	62.5	0.023	91.6	75-115			
Lithium	65.6		ug/L	62.5	28.0	60.1	75-125			M2
Selenium	61.7		ug/L	62.5	0.094	98.6	75-125			
Thallium	57.7		ug/L	62.5	0.0565	92.2	75-125			
Post Spike (BCK2456-PS2)	Source: 3112057-02									
Prepared: 11/30/2023 9:08, Analyzed: 12	/1/2023 14:27									
Boron	1660		ug/L	125	1490	132	75-125			
Calcium	281000		ug/L	6250	251000	471	75-125			D2, M3

Conventional Chemistry Analyses Madisonville - Quality Control

				0 "	0		0/5=0		DED	
Anglyto		Reporting	Unito	Spike	Source	0/ DEC	%REC	DDD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1701 - Default Prep Micro										
LCS (BCK1701-BS1)										
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
LCS (BCK1701-BS2)										
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
Duplicate (BCK1701-DUP1)	Source: 3113381-03									
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	8.04	0.10	Std. Units		8.04			0.00	10	H3
Duplicate (BCK1701-DUP2)	Source: 3114321-03									
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	9.01	0.10	Std. Units		8.97			0.445	10	Н3
Batch BCK2067 - Default Prep Wet Chem										
Blank (BCK2067-BLK1)										
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCK2067-BS1)										
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	1500	25	mg/L	1500		99.7	80-120			
Duplicate (BCK2067-DUP1)	Source: 3112057-02									
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	1850	250	mg/L		1780			3.86	10	
Duplicate (BCK2067-DUP2)	Source: 3114323-01									
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	400	50	mg/L		408			1.98	10	

Ion Chromatography Madisonville - Quality Control

		5 "		0 "	0		0/5=0		DE2	
Analyta	D14	Reporting	l loite	Spike	Source	0/ DEO	%REC	DDD	RPD	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2359 - Default Prep IC										
Blank (BCK2359-BLK1)										
Prepared: 11/28/2023 23:18, Analyzed:	11/28/2023 23:18									
Chloride	ND	0.5	mg/L							U
Fluoride	ND	0.2	mg/L							U
Sulfate	ND	1	mg/L							U
Blank (BCK2359-BLK2)										
Prepared: 11/28/2023 22:50, Analyzed:	11/29/2023 15:23									
Chloride	ND	0.5	mg/L							U
LCS (BCK2359-BS1)										
Prepared: 11/28/2023 22:50, Analyzed:	11/28/2023 22:50									
Chloride	11.1		mg/L	12.5		89.2	90-110			L2
Fluoride	4.7		mg/L	5.00		93.9	90-110			
Sulfate	23		mg/L	25.0		90.7	90-110			
LCS (BCK2359-BS2)										
Prepared: 11/28/2023 22:50, Analyzed:	11/29/2023 14:55									
Chloride	12.9		mg/L	12.5		103	90-110			
Matrix Spike (BCK2359-MS1)	Source: 3112057-02									
Prepared: 11/28/2023 21:28, Analyzed:	11/28/2023 21:28									
Fluoride	2.4		mg/L	5.00	0.4	41.8	75-125			M2
Chloride	48.1		mg/L	12.5	41.9	49.9	75-125			M2
Sulfate	988		mg/L	25.0	1440	NR	75-125			M1
Matrix Spike (BCK2359-MS2)	Source: 3113381-01									
Prepared: 11/28/2023 23:45, Analyzed:	11/28/2023 23:45									
Chloride	25.0		mg/L	12.5	15.9	73.1	75-125			M2
Fluoride	5.1		mg/L	5.00	0.3	96.1	75-125			
Sulfate	260		mg/L	25.0	361	NR	75-125			M1
Matrix Spike (BCK2359-MS3)	Source: 3113381-02									
Prepared: 11/29/2023 0:40, Analyzed:	11/29/2023 0:40									
Chloride	28.8		mg/L	12.5	16.3	100	75-125			
Fluoride	6.8		mg/L	5.00	0.4	129	75-125			M1
Sulfate	31		mg/L	25.0	2	116	75-125			

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2359 - Default Prep IC										
Matrix Spike (BCK2359-MS4)	Source: 3113381-03									
Prepared: 11/29/2023 1:35, Analyzed: 1	1/29/2023 1:35									
Chloride	22.7		mg/L	12.5	9.8	104	75-125			
Fluoride	6.5		mg/L	5.00	0.3	123	75-125			
Sulfate	49		mg/L	25.0	22	109	75-125			
Matrix Spike Dup (BCK2359-MSD1)	Source: 3112057-02									
Prepared: 11/28/2023 21:55, Analyzed:	11/28/2023 21:55									
Chloride	48.2		mg/L	12.5	41.9	50.5	75-125	0.145	15	M2
Fluoride	2.6		mg/L	5.00	0.4	45.5	75-125	7.24	15	M2
Sulfate	991		mg/L	25.0	1440	NR	75-125	0.291	15	M1
Matrix Spike Dup (BCK2359-MSD2)	Source: 3113381-01									
Prepared: 11/29/2023 0:13, Analyzed: 1	11/29/2023 0:13									
Chloride	25.2		mg/L	12.5	15.9	75.0	75-125	0.939	15	
Fluoride	5.1		mg/L	5.00	0.3	95.2	75-125	0.865	15	
Sulfate	261		mg/L	25.0	361	NR	75-125	0.325	15	M1
Matrix Spike Dup (BCK2359-MSD3)	Source: 3113381-02									
Prepared: 11/29/2023 1:07, Analyzed: 1	11/29/2023 1:07									
Fluoride	6.1		mg/L	5.00	0.4	113	75-125	11.8	15	
Chloride	27.6		mg/L	12.5	16.3	90.0	75-125	4.45	15	
Sulfate	28		mg/L	25.0	2	102	75-125	11.5	15	
Matrix Spike Dup (BCK2359-MSD4)	Source: 3113381-03									
Prepared: 11/29/2023 2:02, Analyzed: 1	11/29/2023 2:02									
Chloride	23.3		mg/L	12.5	9.8	108	75-125	2.55	15	
	6.9		mg/L	5.00	0.3	131	75-125	6.15	15	M1
Fluoride										
	50		mg/L	25.0	22	115	75-125	2.67	15	
Fluoride Sulfate Certified Analyses included in this Rep			mg/L	25.0	22	115	75-125	2.67	15	

2540 C-2015 in Water **Total Dissolved Solids**

KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water (02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

SM 4500-H+ B-2011 in Water

KY Drinking Water Mdv (00030) TN Drinking Water (02819) pH (Lab)

SW846 6010 B in Water

VA NELAC MDV (460210) Calcium

	Sample Acceptance Checklist for Work Order 3112057
Shipped By: Client	Temperature: 16.70° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	
Check if Collector Signature Present	☑
Check if bottles are intact	
Check if bottles are correct	₫
Check if bottles have sufficient volume	
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	
Check if samples are preserved properly	

Pace Analytical Services LLC entucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody
Scheduled for: 11/20/2023

	337134413413	11/20/2020					
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment	Report To: Big Rivers Electric C Station Mark Bertram 9000 Highway 2096	Corporation Reid/Green	Mark Bertrar				
	Robards, KY 42452		9000 Highway 2096 Robards, KY 42452				
•	Phone: (270) 844-60 PWS ID#:	000	PO#:				
Please Print Legibly	State:		Quote#				
Collected by (Signature):	1 information		·	ance Monitoring? Yes No			
*For composite samples please indicate begin time	, end time and temp(oC) at er	nd time below:	Sample	es Chlorinated? Yes No X			
Influent: Start Date Start time	End Date	End Time Te	mp (oC)				
Effluent: Start Date Start time	End Date	End Time Te	emp (oC)				
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr): Bo	ottle and Preservative	Sample Description	Composite	Sample Analysis Requested			
	stic 1L pH<2 w/HNO3 1	MW7	g/c	Radium Total (sub)			
	(Sub) servation Check: pH :						
3112057-02 A <u>11/20/23 1347</u> F	Plastic 500mL pH<2 · 1 w/HNO3	MW8	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt			
1				Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020			
	servation Check: pH :	-					
3112057-02 B 11/20/23 1347	Plastic 1L 1	MW8	g/c	Fluoride 9056 TDS Sulfate 9056 pH (Lab) Chloride 9056			
-	stic 1L pH<2 w/HNO3 1 Rad 226 (Sub)	MW8	g/c	Radium 226 (sub)			
11/00/00 12117	servation Check: pH :	MW8	g/c	Radium 228 (sub)			
Pre	servation Check: pH :	•		•			
Preservation Check Performed by:		·					
MW-8 Field data collected by: Kallyn Sperie	Date (mm/dd/yy) 11 /	20/23 Time (24 hr) 13	347				
pH 7.08 cond (emino) a.20	75 Res CI (mg/L)	Tot Cl (mg/L)	Fre	ee CI (mg/L)			
<u>'</u>	Static Water Level	DO (mg/L) <u>2</u>	.56 T	urb. (NTU) <u>4:17</u>			
Flow (MGD) or (CFS)	•						
Relinquished by: (Signature)	Received by: (Signature)		Date (mm/	(dd/yy) Time (24 hr)			
"Kaelyn Aule			11/20	0/23 1613			
1		***					
·		<u> </u>		· ·			
PACE- Check here if trip charge applied	to associated COC	rinted: 11/	3/2023 11:50	:38AM Page 13 of 24			

rinted: 11/13/2023 11:50:38AM

PACE- Check here if trip charge applied to associated COC

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody Scheduled for: 11/20/2023

	Ochedaled 10	1. 11/20/2020						
Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric C	Corporation Reid/Green	Invoice To: Big Rivers El	lectric Corporation Reid/Green S	Station			
Project: HMPL Surface Impoundment	Mark Bertram 9000 Highway 2096 Robards, KY 42452		Mark Bertram 9000 Highway 2096 Robards, KY 42452					
	Phone: (270) 844-60	000	PO#:					
Please Print Legibly	PWS ID#:		Quote#					
Collected by (Signature):	equired information*		Complia	ance Monitoring? Yes No	_			
*For composite samples please indicate beg		nd time below:	Sample	s Chlorinated? Yes No	X _			
Influent: Start Date Start time _	•		emp (oC)	· 				
Effluent: Start Date Start time _	End Date	End Time T	emp (oC)					
LAB USE ONLY *required information* Workorder # Date Collection 3112057 (mm/dd/yy): Time (24 hr) Sample ID#	: Bottle and Preservative Co	Sample Description	Composite	Sample Analysis Request	ed			
3112057-02 E 11/20/23 1347	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	MW8	g/c	Radium 228 (sub)				
3112057-02 F 11/20/23 1347	Plastic 1L pH<2 w/HNO3 1 (Sub) Preservation Check: pH:	- MW8	g/c	Radium Total (sub)				
3112057-03 A	Plastic 500mL pH<2 1 w/HNO3	MW9	g/c ·	Arsenic Tot 6020 Barium Tot 60 Beryllium Tot 6020 Boron Tot 60 Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Co Tot 6020 Antimony Tot 6020 Li Tot 6020 Thallium Tot 6020 Me Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020	6010B ot obalt ithium ercury			
	Preservation Check: pH :	-		14				
3112057-03 B <u>· </u>	_ Plastic 1L 1	MW9	g/c	Fluoride 9056 TDS Sulfate 905 (Lab) Chloride 9056	56 pH			
3112057-03 C	Plastic 1L pH<2 w/HNO3 1 Rad 226 (Sub) Preservation Check: pH:	MW9 -	g / c Thermo	Radium 226 (sub) meter Serial Number 181390287 181460057				
Preservation Check Performed by:	MAK		-	Temp l€-1 °C.				
Field data collected by:	Date (mm/dd/yy)	Time (24 hr)	·					
pH Cond (umho)	Res CI (mg/L)	Tot Cl (mg/L)	Fre	e Cl (mg/L)				
Temp _. (oC) or (oF)	Static Water Level	DO (mg/L)	Tı	urb. (NTU)				
Flow (MGD) or (CFS)	or (g/min)							
Relinquished by: (Signature)	Received by: (Signature)		Date (mm/	dd/yy) Time (24 hr)				
Jaelyn An De			_ 111201 	123 1613				
				38AM Page 14 of				
PACE- Check here if trip charge a	oblied to associated COC	'rinted: 11/	13/2023 11:50:	JOHN I aye I U	. <u>-</u> -			

PACE- Check here if trip charge applied to associated COC

'rinted: 11/13/2023 11:50:38AM

(724)850-5600

December 19, 2023

Rob Whittington
Pace Analytical Madisonville
825 Industrial Rd
Madisonville, KY 42431

RE: Project: 3112057

Pace Project No.: 30642435

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on November 28, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

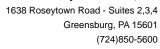
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622


Samantha Bayune

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3112057
Pace Project No.: 30642435

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification

Indiana Certification
Iowa Certification #: 391
Kansas Certification #: E-10358
Kentucky Certification #: KY90133
KY WW Permit #: KY0098221
KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572023-03
New Hampshire/TNI Certification #: 297622
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190
Ohio EPA Rad Approval: #41249

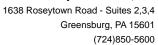
Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

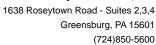
Wisconsin Approve List for Rad


1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

SAMPLE SUMMARY

Project: 3112057
Pace Project No.: 30642435

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30642435001	3112057-02	Water	11/20/23 13:47	11/28/23 09:40



SAMPLE ANALYTE COUNT

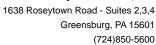
Project: 3112057
Pace Project No.: 30642435

				Analytes	
Lab ID	Sample ID	Method	Analysts	Reported	Laboratory
30642435001	3112057-02	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3112057 Pace Project No.: 30642435


Sample: 3112057-02 Lab ID: 30642435001 Collected: 11/20/23 13:47 Received: 11/28/23 09:40 Matrix: Water

PWS: Site ID: Sample Type:

Comments: • 11/28/23 @ 17:00 - Added 5ml HNO3 to RAD bottle prior to analysis. pH <2.

Collection time not listed on sample labels, matches what is written on bottle cap
Samplers name and signature not listed on COC.

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.599 ± 0.484 (0.703) C:NA T:90%	pCi/L	12/18/23 12:20	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.22 ± 0.582 (1.02) C:74% T:83%	pCi/L	12/12/23 14:57	15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.82 ± 1.07 (1.72)	pCi/L	12/19/23 13:39	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

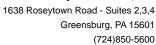
Project: 3112057
Pace Project No.: 30642435

QC Batch: 632704 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642435001


METHOD BLANK: 3084337 Matrix: Water

Associated Lab Samples: 30642435001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.462 ± 0.415 (0.840) C:81% T:73%
 pCi/L
 12/12/23 14:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3112057
Pace Project No.: 30642435

QC Batch: 632703 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642435001

METHOD BLANK: 3084336 Matrix: Water

Associated Lab Samples: 30642435001

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0768 ± 0.175 (0.282) C:NA T:95%
 pCi/L
 12/18/23 11:55

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 3112057
Pace Project No.: 30642435

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 12/19/2023 01:41 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentucky 3112057

SENDING LABORATORY:

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375 Fax: 844-270-7904

Project Manager:

Rob Whittington

RECEIVING LABORATORY:

Pace Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone: (724) 850-5615

Fax:

Analysis		Expires	Laboratory ID Comments	
Sample ID: 3112057-02	Water	Sampled:11/20/2023 13:47	Specific Method	00)
Radium Total (sub)		05/18/2024 13:47	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/18/2024 13:47	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/18/2024 13:47	EPA 903.1	
SAMPLE STATE OF ORIGI	N	Ky	RUSH MULTIPLIER	<u> </u>

WO#:30642435

Received by Pace Greensburg
inerm ID _____Corr Factor +/Receipt Temp Corrected Temp Correct Preservation Y / (N)

Released By

Released By

Date

Received By

Date

	DC# Title: ENV-FRM-0	GBUF	R-008	8 v06	S_Sample Condition Upon Receipt-
_	Pittsburgh				
Bass					₩0#∶30642435
AHALYTICAL SERVICES	Effective Date: 09/20/2023				PM: SMB Due Date: 12/19/23
Client Name:	Pace-KY				CLIENT: PACE_44_MVKY
Courier: Fed	Ex 🛮 UPS 🗆 USPS 🗆 Client [Com	mercia	al 🗆 P	ace 🗆 Other
Tracking Number	er: 12067457 01	42	77	73	
Tracking Manue					
Thermometer U	sed: Typ	es ⊡No eoflo	e: W	/et Bl	Intact:
Cooler Tempera	ture: Observed Temp		•C	Corre	ction Factor:oC Final Temp:oC
Temp should be abo	ve freezing to 6°C				
			1	T	pH paper Lot# D.P.D. Residual Chlorine Lot #
Comments:		Yes	No	NA	1000831
Chain of Custody				<u> </u>	1.
Chain of Custody				ļ	2.
	corrections present on COC				. 1
Chain of Custody				ļ	3.
	k Signature on COC:				4.
Sample Labels m				<u> </u>	5.
-Includes da	te/time/ID		است		bottle caps say 16:45 time on bottles match COC
Matrix:		<u> </u>	N.	T	time as bottles match COCi
	within Hold Time:				6.
Short Hold Time	Analysis (<72hr				7.
remaining):	17° Barratal			-	0
	nd Time Requested:				9.
Sufficient Volum Correct Containe					10.
-Pace Containe					10.
Containers Intac					11.
Orthophosphate					12.
	samples field filtered:				13.
	checked for dechlorination				14:
	received for dissolved tests:				15:
	ecked for preservation:				16.
•	VOA, coliform, TOC, O&G, adon, non-aqueous matrix				PSIND8123 added 5.0 mc HNO3 to
All containers m	eet method preservation	X	/		Initial when pc Date/Time of 11 (28/23 17:00
requirement		18112			Lot# of added 112 0 3 CTO 1 2
		70183	'		
	pace in VOA Vials (> 6mm)				17.
	e in VOA Vials (0mm)				18.
Trip Blank Preser	nt:				Trip blank custody seal present? YES or NO
Rad Samples Scr	eened <.05 mrem/hr.	/			Initial when completed PS Date: 138123 Survey Meter SN: 25014380
Comments:					

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

Certificate of Analysis 3113381

Mark Bertram
Big Rivers Electric Corporation Reid/Green Station
9000 Highway 2096
Robards, KY 42452

Customer ID: Report Printed:

44-102032 12/11/2023 15:02

Project Name: HM

HMPL Surface Impoundment Characterization Wells

Workorder: 3113381

Dear Mark Bertram

Enclosed are the analytical results for samples received by the laboratory 11/20/2023 16:13.

The results relate to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services LLC Kentucky - Madisonville

If you have any questions concerning this report, please feel free to contact me.

#460210 Madisonville, KY #460291 Pikeville, KY

> This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Rob Whittington

Rob Whittington, Project Manager

SAMPLE SUMMARY

Lab ID	Client Sample ID/Alias		Matrix	Date Collected	Date Received	Sampled By
3113381-01	MW-110/		Groundwater	11/20/2023 14:58	11/20/2023 16:13	Kaelyn Sperle
3113381-02	MW-111/		Groundwater	11/20/2023 12:43	11/20/2023 16:13	Kaelyn Sperle
3113381-03	MW-112/		Groundwater	11/20/2023 11:37	11/20/2023 16:13	Kaelyn Sperle
LabNumber	<u>Measurement</u>	<u>Value</u>				
3113381-01	Field Conductance	979				
	Field Dissolved Oxygen	2.06				
	Field pH	7.15				
	Field Temp (C)	15.4				
	Field Turbidity	47.27				
3113381-02	Field Conductance	484				
	Field Dissolved Oxygen	1.81				
	Field pH	7.94				
	Field Temp (C)	15.6				
	Field Turbidity	15.56				
3113381-03	Field Conductance	466				
	Field Dissolved Oxygen	2.04				
	Field pH	7.50				
	Field Temp (C)	15.7				
	Field Turbidity	53.12				

ANALYTICAL RESULTS

 Lab Sample ID: 3113381-01
 Sample Collection Date Time: 11/20/2023 14:58

 Description: MW-110
 Sample Received Date Time: 11/20/2023 16:13

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Arsenic	0.0006	J	mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Barium	0.046		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Boron	0.56	M2	mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	12/01/2023 11:44	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Calcium	105	D1, M3	mg/L	40.0	13.0	SW846 6010 B	11/27/2023 08:58	11/29/2023 16:20	MRWD
Chromium	0.0028		mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Lead	0.001	J	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Lithium	0.01	J	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Mercury	ND	M1,	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
		Y2, U	_						
Molybdenum	ND	U	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:45	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	7.70	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	824		mg/L	100	100	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.148	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.663	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.811	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.811	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	17.6	M2	mg/L	0.5	0.4	SW846 9056	11/28/2023 15:59	11/28/2023 15:59	CSC
Fluoride	0.3		mg/L	0.2	0.2	SW846 9056	11/28/2023 15:59	11/28/2023 15:59	CSC
Sulfate	401	D, M1	mg/L	5	2	SW846 9056	11/28/2023 16:26	11/28/2023 16:26	CSC

ANALYTICAL RESULTS

Lab Sample ID: **3113381-02**Description: **MW-111**Sample Collection Date Time: 11/20/2023 12:43
Sample Received Date Time: 11/20/2023 16:13

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Arsenic	0.0011		mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Barium	1.03	D1	mg/L	0.040	0.010	SW846-6020 A	11/27/2023 08:58	11/28/2023 18:56	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Boron	0.57		mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	12/01/2023 11:47	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Calcium	16.6	D1	mg/L	4.00	1.30	SW846 6010 B	11/27/2023 08:58	11/29/2023 16:26	MRWD
Chromium	ND	U	mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Lead	ND	U	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Lithium	0.008	J	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Molybdenum	0.002	J	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:48	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.31	НЗ	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	292		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.784	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.924	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	1.71	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	1.71	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	18.2		mg/L	0.5	0.4	SW846 9056	11/28/2023 16:54	11/28/2023 16:54	CSC
Fluoride	0.4	M1	mg/L	0.2	0.2	SW846 9056	11/28/2023 16:54	11/28/2023 16:54	CSC
Sulfate	2		mg/L	1	0.5	SW846 9056	11/28/2023 16:54	11/28/2023 16:54	CSC

ANALYTICAL RESULTS

 Lab Sample ID: 3113381-03
 Sample Collection Date Time: 11/20/2023 11:37

 Description: MW-112
 Sample Received Date Time: 11/20/2023 16:13

Metals by SW846 6000 Series Methods Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Antimony	ND	U	mg/L	0.005	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Arsenic	0.0018		mg/L	0.0010	0.0004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Barium	0.331		mg/L	0.004	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Beryllium	ND	U	mg/L	0.0020	0.0010	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Boron	0.37		mg/L	0.10	0.10	SW846 6010 B	11/27/2023 08:58	11/30/2023 15:19	MRWD
Cadmium	ND	U	mg/L	0.0010	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Calcium	27.6	D1	mg/L	4.00	1.30	SW846 6010 B	11/27/2023 08:58	11/29/2023 16:45	MRWD
Chromium	0.0021		mg/L	0.0020	0.0006	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Cobalt	ND	U	mg/L	0.004	0.004	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Lead	0.0006	J	mg/L	0.002	0.0005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Lithium	0.007	J	mg/L	0.02	0.005	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Mercury	ND	U	mg/L	0.0005	0.0002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Molybdenum	0.006	J	mg/L	0.01	0.002	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Selenium	ND	U	mg/L	0.003	0.001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB
Thallium	ND	U	mg/L	0.0020	0.0001	SW846-6020 A	11/27/2023 08:58	11/27/2023 14:52	AKB

Conventional Chemistry Analyses Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
pH (Lab)	8.04	H3	Std. Units	0.10	0.10	SM 4500-H+ B-2011	11/21/2023 08:46	11/21/2023 15:08	AED
Total Dissolved Solids	278		mg/L	50	50	2540 C-2015	11/22/2023 17:30	11/22/2023 17:30	HAG

Subcontracted Analyses

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
See Attached Subcontract Report	0.341	_Sub	pCi/L			EPA 903.1	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.224	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
Radium	0.565	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW
See Attached Subcontract Report	0.565	_Sub	pCi/L			EPA 904.0 Radium Sum Calc	12/11/2023 14:13	12/11/2023 14:14	RCW

Ion Chromatography Madisonville

Analyte	Result	Flag	Units	MRL	MDL	Method	Prepared	Analyzed	Analyst
Chloride	10.9		mg/L	0.5	0.4	SW846 9056	11/28/2023 17:48	11/28/2023 17:48	CSC
Fluoride	0.3	M1	mg/L	0.2	0.2	SW846 9056	11/28/2023 17:48	11/28/2023 17:48	CSC
Sulfate	24		mg/L	1	0.5	SW846 9056	11/28/2023 17:48	11/28/2023 17:48	CSC

Pace Analytical Services, LLC P.O. Box 907 Madisonville, KY 42431 270.821.7375 www.pacelabs.com

Notes for work order 3113381

- Samples collected by PACE personnel are done so in accordance with procedures set forth in PACE field services SOPs .
- Results contained in this report are only representative of the samples received.
- PACE does not provide interpretation of these results unless otherwise stated .
- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- The Chain of Custody document is included as part of this report.

See subcontractors report.

- All Library Search analytes should be regarded as tentative identification based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.

Qualifiers

_Sub

D	Results reported from dilution.
D1	Sample required dilution due to high concentration of target analyte.
D2	Sample required dilution due to matrix interference.
E	Concentration exceeds calibration range
H3	Sample received and analyzed past holding time.
J	Estimated value.
L2	The associated blank spike recovery was below method acceptance limits.
M1	Matrix spike recovery was high; the method control sample recovery was acceptable.
M2	Matrix spike recovery was low; the method control sample recovery was acceptable.
М3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
T17	Sample receipt temperature outside 0 - 6°C; sample collected on same day as receipt; sample not received on ice; client gave permission to proceed as documented on the COC or the project manager notified to contact client before proceeding.
U	Target analyte was analyzed for, but was below detection limit (the value associated with the qualifier is the laboratory method detection limit in our LIMS system).

MS/MSD RPD exceeded the method control limit. Recovery met acceptance criteria.

Standard Qualifiers/Acronyms

Y2

	. ,
MDL	Method Detection Limit
MRL	Minimum Reporting Limit
ND	Not Detected
LCS	Laboratory Control Sample

Laboratory Control Sample

MS Matrix Spike

MSD Matrix Spike Duplicate DUP Sample Duplicate % Rec Percent Recovery

RPD Relative Percent Difference

Greater than Less than

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2072 - EPA 200.2										
Blank (BCK2072-BLK1)										
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023	14:37									
Antimony	ND	0.005	mg/L							U
Molybdenum	ND	0.01	mg/L							U
Mercury	ND	0.0005	mg/L							U
Arsenic	ND	0.0010	mg/L							U
Barium	ND	0.004	mg/L							U
Beryllium	ND	0.0020	mg/L							U
Cadmium	ND	0.0010	mg/L							U
Chromium	ND	0.0020	mg/L							U
Cobalt	ND	0.004	mg/L							U
Lead	ND	0.002	mg/L							U
Lithium	ND	0.02	mg/L							U
Selenium	ND	0.003	mg/L							U
Thallium	ND	0.0020	mg/L							U
Blank (BCK2072-BLK2)										
Prepared: 11/27/2023 8:58, Analyzed: 11/29/2023	16:04									
Boron	ND	0.10	mg/L							U
Calcium	ND	0.40	mg/L							U
LCS (BCK2072-BS1)										
Prepared: 11/27/2023 8:58, Analyzed: 11/27/2023	14:41									
Antimony	0.062	0.005	mg/L	0.0625		98.6	85-115			
Mercury	0.0025	0.0005	mg/L	0.00250		99.0	85-115			
Molybdenum	0.06	0.01	mg/L	0.0625		101	85-115			
Arsenic	0.0619	0.0010	mg/L	0.0625		99.1	85-115			
Barium	0.061	0.004	mg/L	0.0625		97.8	85-115			
Beryllium	0.0562	0.0020	mg/L	0.0625		89.9	85-115			
Cadmium	0.0610	0.0010	mg/L	0.0625		97.6	85-115			
Chromium	0.0611	0.0020	mg/L	0.0625		97.7	85-115			
Cobalt	0.060	0.004	mg/L	0.0625		96.7	85-115			
Lead	0.058	0.002	mg/L	0.0625		93.4	85-115			
Lithium	0.06	0.02	mg/L	0.0625		88.8	85-115			
Selenium	0.061	0.003	mg/L	0.0625		97.1	85-115			
Thallium	0.0595	0.0020	mg/L	0.0625		95.2	85-115			

Metals by SW846 6000 Series Methods Madisonville - Quality Control

		Donestina		Critica	Course		0/ DEC		DDD	
Analyta	D#	Reporting	l leite	Spike	Source	0/ DEC	%REC	DDD	RPD	Netss
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2072 - EPA 200.2										
LCS (BCK2072-BS2)										
Prepared: 11/27/2023 8:58, Analyzed: 11/	/29/2023 16:07									
Boron	0.13	0.10	mg/L	0.125		108	85-115			
Calcium	6.15	0.40	mg/L	6.25		98.3	85-115			
Matrix Spike (BCK2072-MS1)	Source: 3113381-0	01								
Prepared: 11/27/2023 8:58, Analyzed: 11/	/27/2023 15:35									
Molybdenum	0.07	0.01	mg/L	0.0625	ND	104	80-120			
Mercury	0.0033	0.0005	mg/L	0.00250	ND	131	80-120			M1
Antimony	0.062	0.005	mg/L	0.0625	ND	99.8	80-120			
Arsenic	0.0651	0.0010	mg/L	0.0625	0.0006	103	80-120			
Barium	0.110	0.004	mg/L	0.0625	0.046	102	80-120			
Beryllium	0.0538	0.0020	mg/L	0.0625	ND	86.1	80-120			
Cadmium	0.0618	0.0010	mg/L	0.0625	ND	98.8	80-120			
Chromium	0.0654	0.0020	mg/L	0.0625	0.0028	100	80-120			
Cobalt	0.062	0.004	mg/L	0.0625	ND	98.7	80-120			
Lead	0.059	0.002	mg/L	0.0625	0.001	93.1	80-120			
Lithium	0.07	0.02	mg/L	0.0625	0.01	85.2	80-120			
Selenium	0.062	0.003	mg/L	0.0625	ND	98.8	80-120			
Thallium	0.0591	0.0020	mg/L	0.0625	ND	94.6	80-120			
Matrix Spike (BCK2072-MS2)	Source: 3113381-0)1								
Prepared: 11/27/2023 8:58, Analyzed: 11/	/29/2023 17:58									
Boron	ND	1.00	mg/L	0.125	ND		80-120			D2, M2, U
•		1.00 4.00	mg/L mg/L	0.125 6.25	ND 105	232	80-120 80-120			D2, M2, U D2, M3
Boron Calcium	ND 119	4.00	-			232				
Boron	ND 119 Source: 3113381-6	4.00	-			232				
Boron Calcium Matrix Spike Dup (BCK2072-MSD1)	ND 119 Source: 3113381-6	4.00	mg/L			232		0.239	20	
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2011 Molybdenum	ND 119 Source: 3113381-0 /27/2023 15:39 0.07	4.00	mg/L	6.25	105 ND		80-120	0.239 21.0		D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2014 Molybdenum Mercury	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026	4.00 01 0.01 0.0005	mg/L mg/L mg/L	0.0625 0.00250	ND ND	104 106	80-120 80-120 80-120	21.0	20	
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2000 Molybdenum Mercury Antimony	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063	0.01 0.0005 0.005	mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625	ND ND ND	104 106 101	80-120 80-120 80-120 80-120	21.0 1.64	20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2000 Molybdenum Mercury Antimony Arsenic	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650	4.00 0.01 0.0005 0.005 0.0010	mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625	ND ND ND ND 0.0006	104 106 101 103	80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143	20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11. Molybdenum Mercury Antimony Arsenic Barium	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109	4.00 01 0.01 0.0005 0.005 0.0010 0.004	mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046	104 106 101 103 100	80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927	20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11, Molybdenum Mercury Antimony Arsenic Barium Beryllium	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540	0.01 0.005 0.005 0.0010 0.004 0.0020	mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND	104 106 101 103 100 86.4	80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357	20 20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2016 Molybdenum Mercury Antimony Arsenic Barium Beryllium Cadmium	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540 0.0626	0.01 0.005 0.005 0.0010 0.004 0.0020 0.0010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND ND	104 106 101 103 100 86.4 100	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357 1.30	20 20 20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/ Molybdenum Mercury Antimony Arsenic Barium Beryllium Cadmium Chromium	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540 0.0626 0.0649	0.01 0.005 0.005 0.0010 0.004 0.0020 0.0010 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND ND 0.0028	104 106 101 103 100 86.4 100 99.3	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357 1.30 0.842	20 20 20 20 20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/ Molybdenum Mercury Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540 0.0626 0.0649 0.061	0.01 0.005 0.005 0.0010 0.004 0.0020 0.0010 0.0020 0.004	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND ND 0.0028 ND	104 106 101 103 100 86.4 100 99.3 98.2	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357 1.30 0.842 0.545	20 20 20 20 20 20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/2000 Molybdenum Mercury Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540 0.0626 0.0649 0.061 0.060	0.01 0.005 0.005 0.0010 0.004 0.0020 0.0010 0.0020 0.004 0.0020	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND ND 0.0028 ND	104 106 101 103 100 86.4 100 99.3 98.2 94.0	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357 1.30 0.842 0.545 0.968	20 20 20 20 20 20 20 20 20 20	D2, M3
Boron Calcium Matrix Spike Dup (BCK2072-MSD1) Prepared: 11/27/2023 8:58, Analyzed: 11/ Molybdenum Mercury Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	ND 119 Source: 3113381-0 /27/2023 15:39 0.07 0.0026 0.063 0.0650 0.109 0.0540 0.0626 0.0649 0.061	0.01 0.005 0.005 0.0010 0.004 0.0020 0.0010 0.0020 0.004	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.0625 0.00250 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625	ND ND ND 0.0006 0.046 ND ND 0.0028 ND	104 106 101 103 100 86.4 100 99.3 98.2	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	21.0 1.64 0.143 0.927 0.357 1.30 0.842 0.545	20 20 20 20 20 20 20 20 20	D2, M3

Metals by SW846 6000 Series Methods Madisonville - Quality Control

	F			Childa	C		0/ DEC		DDD	
		Reporting		Spike	Source	0/ DE0	%REC	222	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2072 - EPA 200.2										
Matrix Spike Dup (BCK2072-MSD2)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/29	9/2023 18:01									
Boron	ND	1.00	mg/L	0.125	ND		80-120		20	D2, M2, U
Calcium	115	4.00	mg/L	6.25	105	155	80-120	4.08	20	D2, M3
Post Spike (BCK2072-PS1)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/27	7/2023 15:42									
Mercury	0.0026	0.0005	mg/L	0.00250	ND	105	75-125			
Antimony	0.055	0.005	mg/L	0.0625	ND	87.9	75-125			
Molybdenum	0.06	0.01	mg/L	0.0625	ND	103	75-125			
Arsenic	0.0635	0.0010	mg/L	0.0625	0.0006	101	75-125			
Barium	0.107	0.004	mg/L	0.0625	0.046	96.7	75-125			
Beryllium	0.0520	0.0020	mg/L	0.0625	ND	83.2	75-125			
Cadmium	0.0608	0.0010	mg/L	0.0625	ND	97.2	75-125			
Chromium	0.0629	0.0020	mg/L	0.0625	0.0028	96.1	75-125			
Cobalt	0.060	0.004	mg/L	0.0625	ND	95.8	75-125			
Lead	0.058	0.002	mg/L	0.0625	0.001	91.2	75-115			
Lithium	0.07	0.02	mg/L	0.0625	0.01	82.3	75-125			
Selenium	0.061	0.003	mg/L	0.0625	ND	97.1	75-125			
Thallium	0.0581	0.0020	mg/L	0.0625	ND	93.0	75-125			
Post Spike (BCK2072-PS2)	Source: 3113381-01									
Prepared: 11/27/2023 8:58, Analyzed: 11/29	9/2023 18:04									
Boron	ND	1.00	mg/L	0.125	ND		75-125			D2, M2, U
Calcium	114	4.00	mg/L	6.25	105	140	75-125			D2, M3

Conventional Chemistry Analyses Madisonville - Quality Control

				0 "	•		0/5=0		DED	
Anglyto		Reporting	Linito	Spike	Source	0/ DEC	%REC	DDD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK1701 - Default Prep Micro										
LCS (BCK1701-BS1)										
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
LCS (BCK1701-BS2)										
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	4.97		Std. Units	5.00		99.4	98.8-101.2			
Duplicate (BCK1701-DUP1)	Source: 3113381-03									
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	8.04	0.10	Std. Units		8.04			0.00	10	Н3
Duplicate (BCK1701-DUP2)	Source: 3114321-03									
Prepared: 11/21/2023 8:46, Analyzed: 11/21	1/2023 15:08									
pH (Lab)	9.01	0.10	Std. Units		8.97			0.445	10	Н3
Batch BCK2067 - Default Prep Wet Chem										
Blank (BCK2067-BLK1)										
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	ND	25	mg/L							U
LCS (BCK2067-BS1)										
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	1500	25	mg/L	1500		99.7	80-120			
Duplicate (BCK2067-DUP1)	Source: 3112057-02									
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	1850	250	mg/L		1780			3.86	10	
Duplicate (BCK2067-DUP2)	Source: 3114323-01									
Prepared: 11/22/2023 17:30, Analyzed: 11/2	2/2023 17:30									
Total Dissolved Solids	400	50	mg/L		408			1.98	10	

Ion Chromatography Madisonville - Quality Control

		D		0. "	0		0/ 550		DED	
Analyte	Result	Reporting Limit	Units	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	LITTIIL	Units	Level	Result	%KEC	Limits	KPD	LIIIIII	notes
Batch BCK2359 - Default Prep IC										
Blank (BCK2359-BLK1)										
Prepared: 11/28/2023 23:18, Analyzed:	11/28/2023 23:18									
Fluoride	ND	0.2	mg/L							U
Chloride	ND	0.5	mg/L							U
Sulfate	ND	1	mg/L							U
Blank (BCK2359-BLK2)										
Prepared: 11/28/2023 22:50, Analyzed:	11/29/2023 15:23									
Chloride	ND	0.5	mg/L							U
LCS (BCK2359-BS1)										
Prepared: 11/28/2023 22:50, Analyzed:	11/28/2023 22:50									
Fluoride	4.7		mg/L	5.00		93.9	90-110			
Chloride	11.1		mg/L	12.5		89.2	90-110			L2
Sulfate	23		mg/L	25.0		90.7	90-110			
LCS (BCK2359-BS2)										
Prepared: 11/28/2023 22:50, Analyzed:	11/29/2023 14:55									
Chloride	12.9		mg/L	12.5		103	90-110			
Matrix Spike (BCK2359-MS1)	Source: 3112057-02									
Prepared: 11/28/2023 21:28, Analyzed:	11/28/2023 21:28									
Chloride	48.1		mg/L	12.5	41.9	49.9	75-125			M2
Fluoride	2.4		mg/L	5.00	0.4	41.8	75-125			M2
Sulfate	988		mg/L	25.0	1440	NR	75-125			M1
Matrix Spike (BCK2359-MS2)	Source: 3113381-01									
Prepared: 11/28/2023 23:45, Analyzed:	11/28/2023 23:45									
Fluoride	5.1		mg/L	5.00	0.3	96.1	75-125			
Chloride	25.0		mg/L	12.5	15.9	73.1	75-125			M2
Sulfate	260		mg/L	25.0	361	NR	75-125			M1
Matrix Spike (BCK2359-MS3)	Source: 3113381-02									
Prepared: 11/29/2023 0:40, Analyzed:	11/29/2023 0:40									
Fluoride	6.8		mg/L	5.00	0.4	129	75-125			M1
Chloride	28.8		mg/L	12.5	16.3	100	75-125			
Sulfate	31		mg/L	25.0	2	116	75-125			

Ion Chromatography Madisonville - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BCK2359 - Default Prep IC										
Matrix Spike (BCK2359-MS4)	Source: 3113381-03									
Prepared: 11/29/2023 1:35, Analyzed:	11/29/2023 1:35									
Chloride	22.7		mg/L	12.5	9.8	104	75-125			
Fluoride	6.5		mg/L	5.00	0.3	123	75-125			
Sulfate	49		mg/L	25.0	22	109	75-125			
Matrix Spike Dup (BCK2359-MSD1)	Source: 3112057-02									
Prepared: 11/28/2023 21:55, Analyzed	: 11/28/2023 21:55									
Fluoride	2.6		mg/L	5.00	0.4	45.5	75-125	7.24	15	M2
Chloride	48.2		mg/L	12.5	41.9	50.5	75-125	0.145	15	M2
Sulfate	991		mg/L	25.0	1440	NR	75-125	0.291	15	M1
Matrix Spike Dup (BCK2359-MSD2)	Source: 3113381-01									
Prepared: 11/29/2023 0:13, Analyzed:	11/29/2023 0:13									
Chloride	25.2		mg/L	12.5	15.9	75.0	75-125	0.939	15	
Fluoride	5.1		mg/L	5.00	0.3	95.2	75-125	0.865	15	
Sulfate	261		mg/L	25.0	361	NR	75-125	0.325	15	M1
Matrix Spike Dup (BCK2359-MSD3)	Source: 3113381-02									
Prepared: 11/29/2023 1:07, Analyzed:	11/29/2023 1:07									
Fluoride	6.1		mg/L	5.00	0.4	113	75-125	11.8	15	
Chloride	27.6		mg/L	12.5	16.3	90.0	75-125	4.45	15	
Sulfate	28		mg/L	25.0	2	102	75-125	11.5	15	
Matrix Spike Dup (BCK2359-MSD4)	Source: 3113381-03									
Prepared: 11/29/2023 2:02, Analyzed:	11/29/2023 2:02									
Fluoride	6.9		mg/L	5.00	0.3	131	75-125	6.15	15	M1
Chloride	23.3		mg/L	12.5	9.8	108	75-125	2.55	15	
Sulfate	50		mg/L	25.0	22	115	75-125	2.67	15	
Certified Analyses included in this Re	port									

2540 C-2015 in Water

Total Dissolved Solids KY Drinking Water Mdv (00030) VA NELAC MDV (460210) KY Wastewater Mdv (00030) TN Drinking Water

(02819) WV Wastewater Madisonville (241), 825 Industrial Rd Madisonville, KY 42431 MS Drinking Water

MADV

SM 4500-H+ B-2011 in Water

pH (Lab) KY Drinking Water Mdv (00030) TN Drinking Water (02819)

SW846 6010 B in Water

Calcium VA NELAC MDV (460210)

	Sample Acceptance Checklist for Work Order 3113381
Shipped By: Client	Temperature: 15.60° Celcius
Condition	
Check if Custody Seals are Present/Intact	
Check if Custody Signatures are Present	☑
Check if Collector Signature Present	
Check if bottles are intact	
Check if bottles are correct	lacktriangledown
Check if bottles have sufficient volume	☑
Check if samples received on ice	
Check if VOA headspace is acceptable	
Check if samples received in holding time.	☑
Check if samples are preserved properly	

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/20/2023</u>

Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment Characterization Wells			Station Mark Bertram 9000 Highway	2096	orporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452 PO#:			
			Phone: (270) 8		<u>00</u>				
Please Print L		0.1.	State:	1		Quote#			
Collected by (S	ignature): 🗡	allynea	uired information*			-	-	oring? Yes No	
*For composite	samples please	e indicate begin	time, end time and temp(oC) at en	d time below:	Sample	es Chlorinate	ed? Yes No	
Influent: Start (Date	Start time	End Date	E	End Time	Temp (oC)			
Effluent: Start	Date	Start time	End Date	I	End Time	Temp (oC)			
LAB USE ONL Workorder # 3113381	Date	information* Collection Time (24 hr):	Bottle and Preservative	Containers	Sample Description	Composite	0	la Analysia Danyastad	
Sample ID# 3113381-01 A	I /onloc	2 1.15.62	Plastic 500mL pH<2	<u>ö</u>	MW-110	g/c		le Analysis Requested t 6020 Barium Tot 6020	
3113361-01 A) 17 9 ₽	w/HNO3			g, c	Beryllium Cadmium 6010B Chi Tot 6020 A Tot 6020 T	Tot 6020 Boron Tot 6010B Tot 6020 Calcium Tot romium Tot 6020 Cobalt Antimony Tot 6020 Lithium Thallium Tot 6020 Mercury Molybdenum Tot 6020	
	11/04/2	1.100	Preservation Check: pH:						
3113381-01 B	<u> 17/20/20</u>	1458	Plastic 1L	1	MW-110	g/c	(Lab) Chlo		
3113381-01 C	11/20123	1458_	Plastic 1L pH<2 w/HNO3 Rad 226 (Sub) Preservation Check: pH:		MW-110	g/c	Radium 22	26 (sub)	
3113381-01 D	11/20/23	1458	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:		MW-110	g/c	Radium 22	28 (sub)	
3113381-01 E	11/20/23	1458	Plastic 1L pH<2 w/HNO3 Rad 228 (Sub) Preservation Check: pH:	1	, MW-110	g/c	Radium 22	28 (sub)	
	Check Perform							·	
Field data colle	cted by: Ko	ulyn Spa	Date (mm/dd/yy)	4/2	20/23 Time (24 hr) <u> </u>	<u>458</u> .			
р Н	7.15 c	M S/∠ M` ond (unth o)	979 Res CI (mg/L)		Tot CI (mg/L) _	Fre	e Cl (mg/L)	·	
Temp (oC)	<u>5.Ч</u> or	(oF)	Static Water Level		DO (mg/L) 🕰	·Ole T	urb. (NTU)	47.27	
Flow (MGD)	or		or (g/min)						
Relinquished b	y: (Signature)		Received by: (Sign	ature)		Date (mm		Time (24 hr)	
Kaely	m 6	Juli	- M			11/20	123	1613	
				•		_			
	· .							D: 44 (22	
PACE-	Check here if	trip charge api	plied to associated COC		'rinted: 11	1/13/2023 11:50	:46AM	Page 14 of 30	

'rinted: 11/13/2023 11:50:46AM

PACE- Check here if trip charge applied to associated COC

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: <u>11/20/2023</u>

	ı		<u> </u>		J			
Client: Big Rivers Electric Corporation Reid/Green Station Project: HMPL Surface Impoundment Characterization Wells			Report To: Big Rivers Electr Station Mark Bertram 9000 Highway 20 Robards, KY 424		Invoice To: Big Rivers Electric Corporation Reid/Green Statio Mark Bertram 9000 Highway 2096 Robards, KY 42452			
			Phone: <u>(270) 844</u> PWS ID#: State:		PO#:	PO#:		
Please Print L Collected by (Si		Ward In	State. V-			iance Monitoring? Yes No		
Collected by (Si	igriature)	rec	quired information*		•	es Chlorinated? Yes No		
*For composite	samples plea	se indicate begir	time, end time and temp(oC) a	t end time below:	Sample	35 Chiomated: Tes No /		
Influent: Start [Date	Start time	End Date	End Time	Temp (oC)			
Effluent: Start (Date	Start time	End Date	End Time	Temp (oC)			
LAB USE ONLY Workorder # 3113381 Sample ID#	Date	d information* Collection Time (24 hr):	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested		
3113381-01 F	11/20/2	3 1458	Plastic 1L pH<2 w/HNO3 1	MW-110	g/c	Radium Total (sub)		
4	/00/1/		(Sub) Preservation Check: pH :					
3113381-02 A	U/20/23	3 <u>1243</u>	Plastic 500mL pH<2 1 w/HNO3	, MW-111	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Molybdenum Tot 6020 Selenium Tot 6020		
			Preservation Check: pH :	$ \mathcal{L} $		SCIONIAN 101 0020		
3113381-02 B	11/20/23	3 <u>1243</u>	Plastic 1L 1	MW-111	′ g/c	Fluoride 9056 TDS Sulfate 9056 pH		
3113381-02 C	11/20/27	<u> 1243</u>	Plastic 1L pH<2 w/HNO3 1	MW-111	g/c	(Lab) Chloride 9056 Radium 226 (sub)		
			Rad 226 (Sub) Preservation Check: pH:					
3113381-02 D	11/20/20	<u> </u>	Plastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) Preservation Check: pH:	MW-111	g/c	Radium 228 (sub)		
Preservation C	heck Perform	ned by:	MAK					
pH	7.94 c	cond (timing) <u>4</u>	Date (mm/dd/yy) 11 양비 Res CI (mg/L) Static Water Level or (g/min)	Tot CI (mg/L) DO (mg/L)	Fre			
Relinquished by	: (Signature)		Received by: (Signatu		Date (mm/	/dd/yy) Time (24 hr)		
Kaeli	on C	Jule	- MI			23 16/3		
		•	<u> </u>		_			
		•						

'rinted: 11/13/2023 11:50:46AM

Chain of Custody

Scheduled for: 11/20/2023

Client: Big Rivers Electric Corporation Reid/Green Station	Report To: Big Rivers Electric Station	Corporation Reid/Green	Invoice To: Big Rivers Electric Corporation Reid/Green Station			
Project: HMPL Surface Impoundment	Mark Bertram		Mark Bertram			
Characterization Wells	9000 Highway 209	6	9000 Highw	ay 2096		
	Robards, KY 4245	2	Robards, K	Y 42452		
•	Phone: (270) 844-6 PWS ID#:	6000	PO#:			
Please Print Legibly	State:	<u> </u>	Quote#			
Collected by (Signature):	AND		Compl	iance Monitoring? Yes No		
Jreq.	lired information			100		
*For composite samples please indicate begin	time, end time and temp(oC) at e	end time below:	Sampi	es Chlorinated? Yes No		
Influent: Start Date Start time	End Date	_ End Time T	emp (oC)			
Effluent: Start Date Start time	End Date	_ End TimeT	emp (oC)			
LAD LICE ONLY *required information*	Ø		•	75.55		
LAB USE ONLY *required information* Workorder # Date Collection Control of the c	Bottle and Preservative		a [']			
3113381 (mm/dd/yy): Time (24 hr): Sample !D#	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested		
3113381-02 E 11/20/A3 1243	Plastic 1L pH<2 w/HNO3 1	MW-111	∴gr/ c	Radium 228 (sub)		
,	Rad 228 (Sub) Preservation Check: pH:	/	•			
3113381-02 F 11/20/23 1243	Plastic 1L pH<2 w/HNO3 1	— 	0/0	Radium Total (sub)		
3113361-02F <u>1117-01-5</u> 7 <u>1871</u> 7	(Sub)	/ IVIVY-111	, g/c	nadium (otal (şub)		
	Preservation Check: pH:	_				
3113381-03 A [[/20/23 1137	Plastic 500mL pH<2 1 w/HNO3	MW-112	g/c	Arsenic Tot 6020 Barium Tot 6020 Beryllium Tot 6020 Boron Tot 6010B Cadmium Tot 6020 Calcium Tot 6010B Chromium Tot 6020 Cobalt Tot 6020 Antimony Tot 6020 Lithium Tot 6020 Thallium Tot 6020 Mercury Tot 6020 Tot 6020		
	Preservation Check: pH :			Selenium Tot 6020		
3113381-03 B 11/20/23 1137	Plastic 1L 1	— MW-112	g/c	Fluoride 9056 TDS Sulfate 9056 pH		
3113381-03 C 11/20/23 1137	Plastic 1L pH<2 w/HNO3 1	/ MW-112		(Lab) Chloride 9056		
3113381-03 C (1/80/8) 113/	Rad 226 (Sub) Preservation Check: pH:	- IVIVV-112	g/c	Radium 226 (sub)		
Preservation Check Performed by:	MAL					
MW-12 Field data collected by: Kallyn Spe	Date (mm/dd/yy)	/26/23 Time (24 hr)	137			
	4662 Res Cl (mg/L)			ee CI (mg/L)		
	Static Water Level					
•			<u> </u>			
Flow (MGD) or (CFS)	or (g/min)			′		
Relinquished by: (Signature)	Received by: (Signature		Date (mm/	/dd/yy) Time (24 hr)		
Karlyn Juli			<u> 11/201</u>	23 1613		
		t.				
PACE- k here if trip charge app	lied to associated COC	rinted: 11/	 13/2023 11:50	#46AM Daga 16 of 20		
PACE- Where it trip charge app	mon to accordance doc			Page 16 of 30		

Pace Analytical Services LLC Kentucky P.O. Box 907 Madisonville, KY 42431

Chain of Custody

Scheduled for: 11/20/2023

•		Ocheduled id	71. <u>11/20/2023</u>				
Client: Big Rivers Electr Reid/Green Station Project: HMPL Surface In Characterization Wells		Report To: Big Rivers Electric of Station Mark Bertram 9000 Highway 2096 Robards, KY 42452		Invoice To: Big Rivers Electric Corporation Reid/Green Station Mark Bertram 9000 Highway 2096 Robards, KY 42452			
		Phone: <u>(270) 844-6</u> PWS ID#:) / \	<u>000</u>)	PO#:			
Please Print Legibly		State:	Z	Quote#			
Collected by (Signature):	Lacy Pequire	egrinformation*		Compli	ance Monitoring? Yes No		
*For composite samples pl	lease indicate begin tim	e, end time and temp(oC) at e	nd time below:	Sample	es Chlorinated? Yes No X		
Influent: Start Date	Start time	End Date	End Time	Temp (oC)			
Effluent: Start Date	Start time	End Date	End Time	Temp (oC)			
Workorder # Date 3113381 (mm/dd/ Sample ID#	/yy): Time (24 hr): E	Bottle and Preservative	Sample Description	Composite	Sample Analysis Requested		
3113381-03 D 11/20	, - 101 (01	lastic 1L pH<2 w/HNO3 1 Rad 228 (Sub) eservation Check: pH:	MW-112 , -	g/c	Radium 228 (sub)		
3113381-03 E 11/20/		lastic 1L pH<2 w/HNO3 1 Rad 228 (Sub)	MW-112	g/c	Radium 228 (sub)		
3113381-03 F (1/20/2	<u>3 1137</u> p	lastic 1L pH<2 w/HNO3 1 (Sub) eservation Check: pH:	- MW-112	g/c	Radium Total (sub)		
			The	181390 181390 181460 Temp 151	10c-		
Preservation Check Perf	ormed by:	<u> </u>					
Field data collected by:		Date (mm/dd/yy)	Time (24 hr) _				
pH	Cond (umho)	Res Cl (mg/L)	Tot CI (mg/L) _	Fre	ee CI (mg/L)		
Temp (oC)	•	Static Water Level					
Flow (MGD)		or (g/min)			į		
Relinquished by: (Signatur	mle.	Received by: (Signature		Date (mm/			
					9		

rinted: 11/13/2023 11:50:46AM

(724)850-5600

December 08, 2023

Rob Whittington
Pace Analytical Madisonville
825 Industrial Rd
Madisonville, KY 42431

RE: Project: 3113381-Revised Report

Pace Project No.: 30642203

Dear Rob Whittington:

Enclosed are the analytical results for sample(s) received by the laboratory on November 28, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

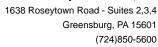
• Pace Analytical Services - Greensburg

(Greensburg, PA) - Revision 1 - This report replaces the December 6, 2023 report. This project was revised on December 8, 2023 to include QC sheets.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com (724)850-5622


Samantha Bayune

Project Manager

Enclosures

cc: Doug Wolfe, Pace Analytical Madisonville

CERTIFICATIONS

Project: 3113381-Revised Report

Pace Project No.: 30642203

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification lowa Certification #: 391 Kansas Certification #: E-10358 Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

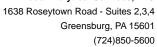
Maine Certification #: 2023021 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235

Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572023-03 New Hampshire/TNI Certification #: 297622

New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

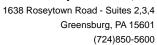

Oregon/TNI Certification #: PA200002-015 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18
Utah/TNI Certification #: PA014572223-14
USDA Soil Permit #: 525-23-67-77263
Vermont Dept. of Health: ID# VT-0282
Virgin Island/PADEP Certification
Virginia/VELAP Certification #: 460198
Washington Certification #: C868
West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad



SAMPLE SUMMARY

Project: 3113381-Revised Report

Pace Project No.: 30642203

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
30642203001	3113381-01	Water	11/20/23 14:58	11/28/23 09:40	
30642203002	3113381-02	Water	11/20/23 12:43	11/28/23 09:40	
30642203003	3113381-03	Water	11/20/23 11:37	11/28/23 09:40	

SAMPLE ANALYTE COUNT

Project: 3113381-Revised Report

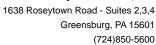
Pace Project No.: 30642203

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30642203001	3113381-01	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30642203002	3113381-02	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA
30642203003	3113381-03	EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	LAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 3113381-Revised Report


Pace Project No.: 30642203

Sample: 3113381-01 Lab ID: 30642203001 Collected: 11/20/23 14:58 Received: 11/28/23 09:40 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.148 \pm 0.459 \quad (0.889)$ Radium-226 pCi/L 12/06/23 14:51 13982-63-3 C:NA T:84% Pace Analytical Services - Greensburg EPA 904.0 0.663 ± 0.514 (1.03) Radium-228 pCi/L 12/05/23 15:26 15262-20-1 C:82% T:76% Pace Analytical Services - Greensburg Total Radium Total Radium $0.811 \pm 0.973 \quad (1.92)$ pCi/L 12/06/23 16:29 7440-14-4 Calculation Sample: 3113381-02 Lab ID: 30642203002 Collected: 11/20/23 12:43 Received: 11/28/23 09:40 PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. Act ± Unc (MDC) Carr Trac **Parameters** Method Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg Radium-226 EPA 903.1 0.784 ± 0.789 (1.24) pCi/L 12/06/23 14:51 13982-63-3 C:NA T:85% Pace Analytical Services - Greensburg $0.924 \pm 0.517 \quad (0.953)$ Radium-228 EPA 904.0 12/05/23 15:26 15262-20-1 pCi/L C:78% T:78% Pace Analytical Services - Greensburg Total Radium Total Radium 1.71 ± 1.31 (2.19) pCi/L 12/06/23 16:29 7440-14-4 Calculation Sample: 3113381-03 Lab ID: 30642203003 Collected: 11/20/23 11:37 Received: 11/28/23 09:40 Matrix: Water PWS: Site ID: Sample Type: Comments: • Samplers name and signature not listed on COC. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.341 \pm 0.519 \quad (0.894)$ Radium-226 pCi/L 12/06/23 14:51 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 0.224 ± 0.600 (1.34) pCi/L 12/05/23 15:26 15262-20-1 C:80% T:57% Pace Analytical Services - Greensburg Total Radium Total Radium 0.565 ± 1.12 (2.23) pCi/L 12/06/23 16:29 7440-14-4

REPORT OF LABORATORY ANALYSIS

Calculation

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3113381-Revised Report

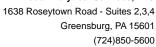
Pace Project No.: 30642203

QC Batch: 632697 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642203001, 30642203002, 30642203003


METHOD BLANK: 3084324 Matrix: Water

Associated Lab Samples: 30642203001, 30642203002, 30642203003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 -0.0813 ± 0.311 (0.747) C:82% T:82%
 pCi/L
 12/05/23 15:29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 3113381-Revised Report

Pace Project No.: 30642203

QC Batch: 632696 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30642203001, 30642203002, 30642203003

METHOD BLANK: 3084322 Matrix: Water

Associated Lab Samples: 30642203001, 30642203002, 30642203003

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.396 ± 0.321 (0.179) C:NA T:89%
 pCi/L
 12/06/23 14:20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

QUALIFIERS

Project: 3113381-Revised Report

Pace Project No.: 30642203

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 12/08/2023 04:47 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Pace Analytical Services, LLC Kentuck 3113381

WO#:30642203

ENDING	I AFE	ORAT	$\alpha \mathbf{r} \mathbf{v}$

Pace Analytical Services, LLC Kentucky

PO BOX 907

Madisonville, KY 42431 Phone: (270) 821-7375

Pax: 844-270-7904 Project Manager 1

Project Manager: Rob Whittington

RECEIVING LABORATORY:

Page Analytical Services LLC Greensburg PA

1638 Rosey Town Rd Suite 2,3,4

Greensburg, PA 15601

Phone :(724) 850-5615

Fax:

Received by Pace Greensburg
Therm ID ____Corr Factor +/___

Receipt Temp

Corrected Temp

Correct Preservation YIN

Analysis	· · · · · · · · · · · · · · · · · · ·	Expires	Laboratory ID Comments	
				\circ
Sample ID: 3113381-01	Water	Sampled:11/20/2023 14:58	Specific Method	
Radium Total (sub)	The TET GRANALINE	05/18/2024 (4:58	EPA 904.0 Radium Sum C	
Redium 228 (sub)		05/18/2024 14:58	EPA 904.0 Radium Sum C	
Radium 226 (50b)		05/16/2024 14:58	EPA 903.1	
SAMPLE STATE OF ORI	GIN HL		RUSH MULTIPLIER	
	J			
Sample ID: 3113381-02	Water	Sampled:11/20/2023 12:43	Specific Method	00 7
Radium Total (sub)	Ne	05/18/2024 12:43	EPA 904.0 Radium Sum (
Radium 228 (sub)		05/18/2024 12:43	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/18/2024 12:43	EFA 903.1	
SAMPLE STATE OF ORI	gin <u>K</u> L	 	RUSH MULTIPLIER	and managed reserved
Sample ID: 3113381-03	Water	Sampled:11/20/2023 11:37	Specific Method	(X)3
Radiner Total (sub)		05/18/2024 11:37	EPA 904.0 Rzdium Sum C	
Radium 228 (sub)		05/18/2024 11:37	EPA 904.0 Radium Sum C	
Radium 226 (sub)		05/18/2024 11:37	EPA 903.1	
Sample State of Ori	GIN	Ky	RUSH MULTIPLIER 💍	***************************************
	GIN		EPA 903.1	

Released By

Date

Received By

Date

Puprou 11/28/23 9=40

Page 1 of 1

DC#_Title: ENV-FRM-0 Pittsburgh	GBUF	R-008	8 v0(S_Sample Condition Upon Receipt- WO#:30642203
Effective Date: 09/20/2023				PM: SMB Due Date: 12/07/23
Client Name: Pace-KY				CLIENT: PACE_44_MVKY
Courier: 🗆 Fed Ex DUPS 🗆 USPS 🗆 Client (Com	mercia 40°	31 □ P 7 7	0556 Examined By: <u>p6 11 123(25</u>
custou, sen en en en en en en en en en en en en e	e of lo	e: W	/et Bl	Intact: Yes INO Labeled By: 11 (23)23 Temped By:C Ction Factor:C Temped By:C
Temp should be above freezing to 6°C				pH paper Lot# D.P.D. Residual Chlorine Lot #
Comments:	Yes	No	NA	109083
Chain of Custody Present				1. COC received via PM 11/28/23
Chain of Custody Filled Out:	والمسالم			2.
-Were client corrections present on COC				
Chain of Custody Relinquished				3.
Sampler Name & Signature on COC:		- American		4.
Sample Labels match COC:				5.
-Includes date/time/ID	<u> </u>	1	<u> </u>	hous on Caps suy 16:45 for all bottles.
Matrix:	1	JT		times on Caps suy 16:45 for all bottles.
Samples Arrived within Hold Time:		Ĭ '		6. itnut are robbed off; including
Short Hold Time Analysis (<72hr	***			7. OIC, OZC, OZE, O3C, O3E
remaining):		_		010,000,000,000
Rush Turn Around Time Requested:		phone		8.
Sufficient Volume:	app.			9.
Correct Containers Used:	FEEDWARE			10.
-Pace Containers Used		Market		
Containers Intact:	(manager)		İ	11.
Orthophosphate field filtered:			P. Carrier Van	12.
Hex Cr Aqueous samples field filtered:			area.	13.
Organic Samples checked for dechlorination			Service -	14:
Filtered volume received for dissolved tests:			S	15:
All containers checked for preservation:	Carren			16.
exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, non-aqueous matrix				PHC.3
All containers meet method preservation requirements:				Initial when completed P5 Date/Time of Preservation
				Preservative
8260C/D: Headspace in VOA Vials (> 6mm)			25	17.
624.1: Headspace in VOA Vials (0mm)				18.
Trip Blank Present:				Trip blank custody seal present? YES or NO
Rad Samples Screened <.05 mrem/hr.	/			Initial when RS Date: 128123 Survey Meter SO14380
Comments:				
* Received without COC	· 4	11/1	812	3 9=40.

Note: For NC compliance samples with discrepancies, a copy of this form must be sent to the DEHNR Certification office. PM Review is documented electronically in LIMS through the SRF Review schedule in the Workorder Edit Screen.

DC#_Title: ENV-FRM-GBUR-0072 v02_Sample Container Count Offshore Projects Effective Date: 1/11/2023

บาอล ВN Other ISGN <u>∞</u> % **B**1N BUDE SPLC Profile Number MGKN MGFU Notes VOAK U69V Vials T65V H69A S69a UEAB ₽, BP3S ВРЗИ Page Plastic ВРЗС USAB 8248 UMB ВЫИ <u>ulaka</u> TSDA Amber Glass NGDA UEĐA 311338 **SEÐ∀ Hr**9A Container Codes Matrix 500 Sample Line Item

	Glass			Plastic
1 Gallon Jug with HNO3	DG9S	40mL amber VOA vial H2SO4	GCUB	1 gallon cubitainer
100mL amber glass unpreserved	VG9U	40mL clear VOA vial	12GN	1/2 gallon cubitainer
100mL amber glass Na Thiosulfate	VG9T	40mL clear VOA vial Na Thiosulfate	SP5T	120mL coliform Na Thiosulf
1 Gallon Jug	VG9H	40mL clear VOA vial HCI	BP1N	1L plastic HNO3
1L amber glass H2SO4	JGFU	4oz amber wide jar	BP1U	1L plastic unpreserved
1L amber glass HCI	WGFU	4oz wide jar unpreserved	BP3S	250mL plastic H2SO4
1L amber glass NA Thiosulfate	BG2U	500mL clear glass unpreserved	BP3N	250mL plastic HNO3
1L clear glass unpreserved	AG2U	500mL amber glass unpreserved	BP3U	250mL plastic unpreserved
250mL amber glass H2S	4 · 20	MO# : 2064256	BP3C	250mL plastic NAOH
250mL amber glass unpr))	047703	BP2S	500mL plastic H2SO4
PM: SMB	3	Due Deter 12 cm	BP2U	500mL plastic unpreserved
CLIEN	LIENT: PACE 44 MVKY	- Date: 12/01/23		

AG1S

SJN

AG1H

AG1T

GJN AG5U

AG5T

BG1U

338

Page 28 of 30

Plastic/Misc.GCUB1 gallon cubitainerEZI5g Encore12GN1/2 gallon cubitainerVOAKKit Volatile SolidSP5T120mL coliform Na ThiosulfateIWipe/SwabBP1N1L plastic HNO3ZPLCSiploc BagBP1U1L plastic unpreservedWTWaterBP3S250mL plastic HNO3SLSolidBP3U250mL plastic unpreservedSLSolidBP3C250mL plastic NAOHWPWipeBP2S500mL plastic H2SO4WPWipeBP2U500mL plastic unpreservedWPWipe

Page 1 of 1

® Analytical Services, LLC

Qualtrax ID: 55678

Face Analytical"

Quality Control Sample Performance Assessment

Analyst Must Manually Enter All Fields Highlighted in Yellow. Ra-226 CLM 11/30/2023

76608 DW

Batch ID: Matrix:

Test: Analyst: Date:

0.396 0.317 0.179 2.45 N/A #N/A

MB concentration: M/B Counting Uncertainty: MB MDC:

MB Sample ID

Method Blank Assessment

MB Numerical Performance Indicator:
MB Status vs Numerical Indicator:
MB Status vs. MDC:

MS/MSD 2																														
MS/MSD 1																									-					
Sample Matrix Spike Control Assessment	Sample Collection Date:	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Spike I.D.:	MS/MSD Decay Corrected Spike Concentration (pCi/mL):	Spike Volume Used in MS (mL):	Spike Volume Used in MSD (mL):	MS Aliquot (L, g, F):	MS Target Conc.(pCi/L, g, F):	MSD Aliquot (L, g, F):	MSD Target Conc. (pCi/L, g, F):	MS Spike Uncertainty (calculated):	MSD Spike Uncertainty (calculated):	Sample Result:	Sample Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, g, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):	MS Numerical Performance Indicator:	MSD Numerical Performance Indicator:	MS Percent Recovery:	MSD Percent Recovery:	MS Status vs Numerical Indicator:	MSD Status vs Numerical Indicator:	MS Status vs Recovery:	MSD Status vs Recovery:	MS/MSD Upper % Recovery Limits:	MS/MSD Lower % Recovery Limits:
															76608	2023	013	279	9	355	928	332	310	292	90	.02%	⋖	SS	3%	3%

Laboratory Control Sample Assessment	LCSD (Y or N)?	Υ	-
	TCS76608	LCSD76608	
Count Date:	12/6/2023	12/6/2023	· ·
Spike I.D.:	23-013	23-013	
Spike Concentration (pCi/mL):	32.279	32.279	Matrix
Volume Used (mL):	0.10	0.10	
Aliquot Volume (L. g, F):	0.657	0.655	Matrix Spike Dur
Target Conc. (pCi/L, g, F):	4.912	4.929	-
Uncertainty (Calculated):	0.231	0.232	
Result (pCi/L, g, F):	5.586	6.310	
LCS/LCSD Counting Uncertainty (pCi/L, g, F):	1.256	1.292	
Numerical Performance Indicator:	1.03	2.06	
Percent Recovery:	113.72%	128.02%	
Status vs Numerical Indicator:	N/A	Y/A	
Status vs Recovery:	Pass	Pass	
Upper % Recovery Limits:	133%	133%	
Lower % Recovery Limits:	73%	73%	
Duplicate Sample Assessment			Matrix Spike/Matri

Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D.	Sample MS I.D.	Sample MSD I.D.	Sample Matrix Spike Result:	Matrix Spike Result Counting Uncertainty (pCi/L, q, F):	Sample Matrix Spike Duplicate Result:	Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, q, F);	Duplicate Numerical Performance Indicator:	(Based on the Percent Recoveries) MS/ MSD Duplicate RPD:	MS/ MSD Duplicate Status vs Numerical Indicator:	MS/ MSD Duplicate Status vs RPD:	
<u> </u>	er Duplicate	nple IDs if	ther than	S/LCSD in	pace below.							
			5.586	1.256 LC	6.310 the s	1.292	Q Q	-0.787	11.83%	N/A	Pass	32%
	Matrix Spike/Matrix Spike Duplicate Sample Assessment	LCS76608 Enter Duplicate Sample Assessment Sample Assessment Sample LCS76608 Enter Duplicate Sample I.D.	Matrix Spike/Matrix Spike Duplicate Sample Ass Enter Duplicate sample IDs if	Matrix Spike/Matrix Spike Duplicate Sample Assess Enter Duplicate sample IDs if San other than	Matrix Spike/Matrix Spike Duplicate Sample Assess Enter Duplicate Sample IDs if Sample	Matrix Spike/Matrix Spike Duplicate Sample Assess Enter Duplicate Sample Assess Enter Duplicate Sample Assess Sample IDs if other than Sample Matrix Spike Result Counting Uncertainty	Enter Duplicate Sample Assess Enter Duplicate Sample Assess ample IDs if other than LCS/LCSD in Matrix Spike Result Counting Uncertainty (Sample Matrix Spike Matr	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.	Matrix Spike/Matrix S Enter Duplicate sample IDs if other than LCS/LCSD in the space below. Matrix Spike Duplica	Enter Duplicate sample IDs if other than LCS/LCSp in the space below.	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.	Enter Duplicate sample IDs if other than LCS/LCSD in the space below.

Sample I.D.

Duplicate Sample I.D.

Sample Result (pCl/L, g, F):

Sample Result Counting Uncertainty (pCl/L, g, F):

Sample Duplicate Result (pCl/L, g, F):

Sample Duplicate Result (pCl/L, g, F):

Are sample and/or duplicate results below RL?

(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:

Duplicate Numerical Performance Indicator:

Duplicate Status vs Numerical Indicator: Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the RL.

Comments:

Y/V#

Ra-226 NELAC QC Printed: 12/6/2023 15:35

Ra-226_76608_W.xls Ra-226_76609_W.xls

1 of 1

Face Analytical"

Quality Control Sample Performance Assessment

Ra-228 Worklist: Matrix: Test: Analyst: Date:

VAL 12/1/2023 76609 WT

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date

Sample Matrix Spike Control Assessment

Spike I.D.:

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL): MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Target Conc. (pCi/L, g, F):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Sample Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Result: Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):

Sample Result:

MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated) Sample Matrix Spike Duplicate Result: Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): MS Numerical Performance Indicator:

MS Status vs Numerical Indicator:
MSD Status vs Numerical Indicator:
MS Status vs Recovery:
MSD Status vs Recovery:

MSD Percent Recovery

MS Percent Recovery

MSD Numerical Performance Indicator

MS/MSD Upper % Recovery Limits: MS/MSD Lower % Recovery Limits:

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Method Blank Assessment	
MB Sample ID	3084324
MB concentration:	-0.081
M/B 2 Sigma CSU:	0.311
MB MDC:	0.747
MB Numerical Performance Indicator:	-0.51
MB Status vs Numerical Indicator:	Pass
MB Status vs. MDC:	Pass

Laboratory Control Sample Assessment	LCSD (Y or N)?	, A
	CS76609	CSD76609
Count Date:	12/5/2023	12/5/2023
Spike I.D.:	23-043	23-043
Decay Corrected Spike Concentration (pCi/mL):	38.762	38.762
Volume Used (mL):	0.10	0.10
Alignot Volume (L, g, F):	0.816	0.816
Target Conc. (pCi/L, g, F):	4.750	4.751
Uncertainty (Calculated):	0.233	0.233
Result (pCi/L, g, F):	4.056	3.319
LCS/LCSD 2 Sigma CSU (pCi/L, g, F):	0.947	0.831
Numerical Performance Indicator:	-1.39	-3.25
Percent Recovery:	85.40%	%98.69
Status vs Numerical Indicator:	N/A	A/N
Status vs Recovery:	Pass	Pass
Upper % Recovery Limits:	135%	135%
Lower % Recovery Limits:	%09	%09

Matrix (٠			13.	<u> </u>		_	
	Enter Duplicate	sample IDs if	other than	LCS/LCSD in	the space below.							
	LCS76609	LCSD76609	4.056	0.947	3.319	0.831	O _N	1.147	20.04%	Pass	Pass	36%
plicate Sample Assessment	Sample I.D.:	Duplicate Sample I.D.	Sample Result (pCi/L, g, F):	Sample Result 2 Sigma CSU (pCi/L, g, F):	Sample Duplicate Result (pCi/L, g, F):	Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):	Are sample and/or duplicate results below RL?	Duplicate Numerical Performance Indicator:	(Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:	Duplicate Status vs Numerical Indicator:	Duplicate Status vs RPD:	% RPD Limit:

Duplicate Sample Assessn

	666 B 6 B 6 C 6 C 6 C 8 B
Matrix Spike/Matrix Spike Duplicate Sample Assessment	Sample I.D. Sample Matrix Solike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Solike Result. Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): Sample Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Result 2 Sigma CSU (pCi/L, g, F): Duplicate Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD:

Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

26.23

Evaluatio

Page 30 of 30